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Abstract—This paper addresses the problem of detecting 

the partially-correlated 
2
 fluctuating targets with two and 

four degrees of freedom. It presents the performance 

analysis, in its exact form, of GTM-CFAR processor 

when the operating environment is contaminated with 

extraneous targets and the radar receiver post-detection 

integrates M pulses of exponentially correlated targets. 

Mathematical formulas for the detection and false alarm 

probabilities are derived, in the absence as well as in the 

presence of spurious targets which are fluctuating in 

accordance with the so-called moderately fluctuating 
2
 

targets. A thorough performance assessment by several 

numerical examples, which has considered the role that 

each parameter can play in the processor performance, is 

also given. The results show that the processor 

performance improves, for weak SNR of the primary 

target, as the correlation coefficient ρs increases and this 

occurs either in the absence or in the presence of outlying 

targets. As the strength of the target return increases, the 

processor tends to invert this behavior. The SWI & SWII 

and SWIII & SWIV models enclose the correlated target 

cases when the target correlation follows 
2
 fluctuation 

models with two and four degrees of freedom, 

respectively, and this behavior is common for all GTM 

based detectors. 

 
Index Terms—Adaptive radar detectors, post-detection 

integration, Swerling fluctuation models, partially-

correlated 
2
 fluctuating targets, target multiplicity 

environments. 

 

I.  INTRODUCTION 

Radar has long been used in a variety of military and 

civilian applications and has become an essential tool of 

current defensive systems. The chief reason for this 

belongs to its ability to survey wide areas rapidly during 

the day or at night and in all weather conditions. Radar 

systems use modulated waveforms and directive antennas 

to transmit electromagnetic energy into a specific volume 

in space to search for targets. Objects within a search 

volume will reflect portions of this energy (radar returns 

or echoes) back to the radar. These echoes are then 

processed by the radar receiver to extract target 

information such as range, velocity, angular position, and 

other target identifying characteristics. The primary 

functions of any radar system are detection, tracking and 

imaging. The detection process represents the main 

fundamental concern of the radar because based on it, it 

will decide to continue or stop any further needed 

processes.  

In attempting to sense the presence of a target through 

the detection of its returned signal, the radar may have to 

contend with clutter, jamming, and various interference 

signals as well as noise. Since both the target signal 

returns and the radar noise background result from 

random processes, the detection is a statistical process. 

This process is accomplished by comparing the received 

signal amplitude with a threshold level. This threshold is 

usually set to exclude most noise signals. If the noise 

power "ψ" is assumed to be constant, then the detection 

process becomes a simple problem since the detection 

threshold is held fixed. If the received signal is the larger, 

a target is declared to be present. Otherwise, it is declared 

to be absent. In practice, however, the system noise level 

may change due to changing atmospheric conditions or 

component temperatures or to a varying noise 

background from jamming or other interference. In the 

cases of external clutter and jamming signals, the changes 

in the noise level and the resulting rate of false alarm may 

be dramatic. To avoid such situations, many radars 

employ receiver techniques to compensate for such 

system noise level changes by continuously updating the 

detection threshold based on the estimates of the noise 

variance. The process of continuously changing the 

threshold value for maintaining a constant rate of false 

alarm is known as constant false alarm rate (CFAR). 

Since the CFAR circuits automatically adjust the 

detection threshold, they have been enthusiastically used 

in radar systems. As a consequence, much attention has 

been paid to the task of designing and assessing these 

adaptive detection techniques since the task of keeping a 

near-constant probability of false alarm (CFAR) is of 

primary concern in modern radar systems [1-5]. 

A target‘s radar cross section (RCS), which determines 

the amount of returned power, varies greatly with the 

considered aspect angle. Those variations impair 

significantly the detection and estimation performance of 

the radar system. Consider a scanning radar system where 

the antenna's main beam crosses a target. As the beam 

sweeps past, the radar receives a group of M pulses 
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before the target passes out of the main beam. In some 

cases cross section is stable enough to produce M 

constant-amplitude pulses. However, by the time the 

antenna returns to again search the area containing the 

target, cross section may have changed. This behavior is 

characterized by fluctuation from pulse group to pulse 

group but not within a group. It is sometimes referred to 

as scan-to-scan fluctuation. Two names, Swerling I (SWI) 

and Swerling III (SWIII), are usually given to group 

fluctuations when cross section fluctuates according to 

the exponential density for case I or the 
2
 density for 

case III. On the other hand, when target cross section 

fluctuates rapidly enough that each pulse's cross section 

can be considered independent of the others in a group of 

M pulses, we say fluctuation is pulse to pulse. Swerling 

considered this type of fluctuation, which has come to be 

known as Swerling case II (SWII) for exponential 

fluctuations of cross section and as Swerling case IV 

(SWIV) for 
2
 fluctuations. 

Although Swerling cases bracket the behavior of 

fluctuating targets of practical interest, recent 

investigations of target cross section fluctuation statistics 

indicate that some targets may have probability of 

detection curves which lie considerably outside the range 

of cases which are satisfactorily bracketed by those cases. 

An important class of targets is represented by the so-

called moderately fluctuating Rayleigh and 
2
 targets, 

which when illuminated by a coherent pulse train, return 

a train of correlated pulses with a correlation coefficient 

in the range 01. Partially-correlated 
2
 targets have 

attracted great interest in both theoretical research and 

practical applications. Therefore, the detection of such 

type of fluctuating targets is of great importance [6-11].  

Target fluctuation lowers the probability of 

detection, or equivalently reduces the SNR. 

Swerling showed that the statistics associated 

with SWI and SWII models apply to targets 

consisting of many small scatterers of 

comparable RCS values, whilst the statistics 

associated with SWIII and SWIV models apply to 

targets consisting of one large RCS scatterer 

and many small equal RCS scatterers. Non-

coherent integration can be applied to all 

four Swerling models; however, coherent 

integration cannot be used when the target 

fluctuation is either SWII or SWIV because of 

the de-correlation of the target amplitudes 

from pulse to pulse (fast fluctuation), and 

thus phase coherency cannot be maintained [9]. 

Since it is of importance for radar processing systems 

to operate in non-stationary background noise 

environments with a predetermined constant level of 

performance, we focus our attention to use the constant 

false alarm rate (CFAR) algorithm, which sets its 

threshold adaptively, based on local information of total 

noise power, to handle this objective of detecting such 

type of partially-correlated 
2
 fluctuating targets. 

However, potential target information and/or sharp 

transitions in the clutter power will generally degrade the 

performance of such detector. To mitigate these effects of 

outliers, the clutter observations must be censored from 

large and small deviations. On the other hand, the OS 

based processors represent the most important category of 

CFAR detectors due to their immunity to non-

homogeneous situations caused by outlying targets and 

clutter edges [7, 11-14]. These techniques rely on 

ordering the candidates of a finite-length window devoted 

to estimate the strength of the background noise and 

choosing an appropriate reference cell to represent that 

strength. However, the large processing time taken by it, 

in scoring the reference samples, limits its practical 

applications. The modified versions of the OS procedure 

have been introduced to solve this problem. The GTM 

algorithm, which is a generalized version of OS 

technique, has been receiving much attention due to its 

immunity to outliers as well as its ability to improve the 

ideal detection performance of the conventional OS 

scheme [5, 8].  

From this brief discussion, it is obvious that there is a 

need to consider the performance of various CFAR 

algorithms, which coherently process received signals 

that are multi-dimensional in nature. In the CFAR 

context, results of such analysis may be useful in 

assessing the potential benefits of utilizing the capability 

of radar systems that can acquire and process multi-

dimensional (or vector) signals. Therefore, our objective 

in this manuscript is to analyze the performance of the 

GTM algorithm for partially-correlated 
2
 targets with 

two and four degrees of freedom in the absence as well as 

in the presence of spurious targets. Section II briefly 

covers the necessary background information along with 

problem formulation for the case where the signal 

fluctuation obeys 
2
 statistics with two and four degrees 

of freedom. The performance of the scheme under 

consideration is analyzed, in ideal (homogeneous) 

background environment, and the performance evaluation 

results are displayed in section III. Section IV is devoted 

to the performance evaluation along with the numerical 

results of GTM scheme in multitarget environments. A 

brief discussion along with our conclusions is outlined in 

section V. 

 

II.  SIGNAL MODEL AND PROBLEM DESCRIPTION 

Let us assume that M pulses hit the target which is 

fluctuating in accordance with 
2
 fluctuation model with 

two and four degrees of freedom. The radar receiver is of 

superheterodyne type, where the RF stage is a low noise 

transistor amplifier, in which the mixer and local 

oscillator convert the RF signal to an intermediate 

frequency (IF) where it is amplified by the IF amplifier. 

This IF amplifier is designed as a matched filter; that is, 

one maximizes the output peak signal-to-mean noise 

ratio. Thus, the matched filter maximizes the detectability 

of weak echo signals and attenuates unwanted signals. 

Almost all radars employ a matched filter or a close 

approximation. The IF amplifier is followed by a crystal 
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diode, which is traditionally called the demodulator. Its 

purpose is to assist in extracting the modulating signal 

from the carrier. The combination of IF amplifier, 

demodulator, and video amplifier acts as an envelope 

detector to pass the envelope of the pulse and reject the 
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carrier frequency. This combination is designed to 

provide sufficient amplification to raise the level of the 

input signal to a magnitude where it can be the input to a 

digital computer for further processing. The obtained 

signal is sampled in range and the sampling rate is chosen 

in such a way that the successive samples are non-

correlated. The sampled version of the received signal is 

stored in a shift register of length N+1 resolution cells, 

where N is an even quantity number. Since the obtained 

data is collected from M sweeps, the resulting samples 

can be formulated in a matrix with N+1rows and M 

columns. Each column of the data matrix consists of the 

values of the signal obtained for M pulse intervals in one 

range resolution cell. Let us also assume that the first N/2 

and the last N/2 rows of the data matrix are used as a 

reference window in order to estimate the ―noise-plus-

interference‖ level in the test resolution cell of the radar. 

In this case, the samples of the reference cells result in a 

matrix X of the size NxM. The test cell or the radar target 

image includes the elements of the N/2+1 row of the data 

matrix and it is represented by a vector  of length M. 

The underlined CFAR detector is shown in Fig.(1). 

The reference window is applied to a sorting algorithm 

for the purpose of ordering its elements. The ranked 

samples go under the processing of excision in order to 

trim a specified numbers of the lowest and the highest 

ranked cells before adding the candidates of the reference 

sub-window to represent an estimation of the unknown 

noise power level. The estimated noise power levels, 

from the leading and trailing sub-windows, are then 

processed under mean-level operation to extract the final 

noise power level which exactly represents the 

background noise in the radar receiver. To guarantee a 

constant rate of false alarm, the average value of the noise 

power levels must be multiplied by a constant scale value 

"T" in order to achieve the process of adaptive detection. 

The result of this multiplication is used as a detection 

threshold; against which the content of the cell under test 

is compared in order to declare the presence or the 

absence of the searching target. Now, let us now go to 

formulate our problem of detection.  

The characteristics of the radar target represent the 

driving force in design and performance analysis of all 

radar systems. A radar target whose return varies up and 

down in amplitude as a function of time is known as a 

fluctuating target. The fluctuation rate may vary from 

essentially independent return amplitudes from 

pulse-to-pulse to significant variation only on a 

scan-to-scan basis. Because the exact nature of the 

change is difficult to be predicted, a statistical description 

is often adopted to characterize the target radar cross 

section. There are many probability density functions 

(PDF's) for target cross section. The more important PDF 

is the so-called 
2
 distribution with 2κ degrees of freedom. 

This model approximates a target with a large reflector 

and a group of small reflectors, as well as a large reflector 

over a small range of aspect values. The 
2
 family 

includes the Rayleigh (SWI & SWII) model, the  

four-degree of freedom model (SWIII & SWIV), the 

Weinstock model (κ <1) and the generalized model (κ is a 

positive real number). The 
2
 models are used to 

represent complex targets such as aircraft and have the 

characteristic that the distribution is more concentrated 

about the mean as the value of the parameter κ is 

increased. If the radar target fluctuates following 


2
-distribution with 2κ degrees of freedom, it has a 

moment generating function (MGF) given by [11]: 
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In the above expression, E{.} denotes the expectation 

operator, S represents the signal-to-noise ratio (SNR), and 

λi‘s are the nonnegative eigenvalues of the correlation 

matrix "Λ".  

In view of Eq.(1), the solution for partially-correlated 

case requires the computation of the eigenvalues of the 

correlation matrix . It is assumed here that: i) the 

statistics of the signal are stationary ii) the signal can be 

represented by a first order Markov process. Under these 

assumptions,  becomes a Toeplitz nonnegative definite 

matrix of a mathematical form given by [8]: 
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To simplify the processor performance analysis, Eq.  (1) can be reformatted in a more simpler form as: 
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It is of importance to note that the eigenvalues for the 

Swerling III and IV (κ=2) target fluctuation models are 

the same as that for Swerling I and II cases (κ=1), 

respectively. Eq.(3) is the backbone of our analysis in the 

current research. For 
2
 fluctuation model with four 

degrees of freedom, the PDF of the output of the ith test 

tap is given by the Laplace inverse of Eq.(3) after making 

some minor modifications. If the ith test tap contains 

noise alone, we let S=0, that is the average noise power at 

the receiver input is "". If the ith range cell contains a 

return from the primary target, it rests as it is without any 

modifications, where S represents the strength of the 

target return at the receiver input. On the other hand, if 

the ith test cell is corrupted by interfering target return, S 

must be replaced by I, where I denotes the interference-

to-noise (INR) at the receiver input. 

 

III. STATISTICAL HOMOGENEOUS ANALYSIS OF THE GTM 

PROCESSOR 

In this section, we provide a statistical analysis of the 

underlined CFAR detector under the condition that the 

operating environment is free of any outlying targets as 

well as it represents a homogeneous background. The 

statistical model with uniform clutter background 

represents the classical signal situation with stationary 

noise in the reference window. In this model, two signal 

cases are of interest: the first case describes one target in 

the test cell in front of an otherwise uniform background, 

while the second one deals with uniform noise situation 

throughout the reference window. In these cases, the 

background noise has a uniform statistic, i.e., the random 

variables X1, X2, …...., XN in the reference window are  

assumed to be statistically independent and identically 

distributed (IID). In the absence of the target return, the 

random variable Θ of the cell under test is assumed to be 

statistically independent of the neighborhood and subject 

to the same distribution as the random variables Xi‘s.  

The process of continuously changing the threshold 

value to maintain a constant probability of false alarm is 

known as Constant False Alarm Rate (CFAR). This 

CFAR world of detection assumes that the interference 

distribution is known and approximates the unknown 

parameters associated with these distributions. The 

essence of CFAR is to compare the decision statistic Θ 

with an adaptive threshold TZ. The threshold coefficient 

T is a constant scale factor used to satisfy the required 

false alarm rate for a given window size N when the 

background noise is homogeneous. The statistic Z is a 

random variable whose distribution depends upon the 

particular CFAR scheme and the underlying distribution 

of each of the reference range cells. Since the unknown 

noise power level estimate Z is a random variable, the 

processor performance is determined by calculating the 

average values of false alarm and detection probabilities. 

Since the probability of detection is more general than 

that of false alarm, it is sufficient to compute it in 

different situations of operating conditions. Actually, the 

probability of detection tends to the false alarm 

probability in the absence of the searching target (S=0). 

Therefore, it is of importance to calculate this interesting 

characteristic in order to show what its sensing 

parameters to evaluate them for the processor under 

consideration. The detailed analysis of this calculation 

can be found in [6]. Thus, the probability of adaptive 

detecting a fluctuating target obeying two degrees of 

freedom 
2
 model is 
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On the other hand, when the fluctuation of the primary 

target follows 
2
- distribution with four degrees of 

freedom, the probability of detection becomes [11] 
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In order to calculate the constant scale factor T for a 

specified rate of false alarm, it is necessary to obtain the 

relationship between them. As M-pulse noncoherent 

integration is used, the required relationship takes a 

mathematical expression of the form [12] 
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In this case, Z () has an Mth order pole at =-1. 

Thus, 
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It is of importance to note that the above expression for 

the rate of false alarm is verified for 
2
 targets either with 

two degrees or four degrees of freedom. Moreover, the 

MGF of the noise power level estimate ‗Z‘ is the 

backbone of the processor performance analysis, as 

shown in Eqs.(4, 5 & 9), either in homogeneous or non-

homogeneous background environments. Therefore, our 

scope in the following subsections is to evaluate this 

important quantity for the GTM-CFAR detection scheme. 

a)  Single-Window OS Detector 

Since the OS technique represents the fundamental 

element of the performance analysis of the GTM 

processor, we will give the basic principles of this 

procedure that will help us in evaluating the detection 

probability of the under investigated scheme. To analyze 

the OS detector, the amplitude values taken from the 

reference window, of size N, are first rank-ordered 

according to their increasing magnitudes. The sequence 

thus achieved has a form 

(1) (2) ( 1) ( ) ( 1) ( )
....... .......

K K K N 
               (10) 

 

The indices in parentheses indicate the rank-order 

number. X(1) denotes the minimum and X(N) the 

maximum value. The sequence given in Eq. (10) is called 

an ordered-statistic. The central idea of the OS- CFAR 

processor is to select one certain value from the above 

sequence and to use it as an estimate Z for the average 

clutter power as observed in the reference window. Thus, 
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We will denote by OS(K) the OS scheme with 

parameter K. Practically, the value of K, that maximizes 

the detection probability of the OS processor in an ideal 

environment, is generally chosen. 

In order to analyze the processor detection 

performance in uniform clutter background, the statistic 

of the selected sample must be known. Given that the 

reference samples are IID, the Kth ordered sample has a 

PDF of the form [11]: 
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In the above expression, ƒt(.) and Ft(.) represent the 

PDF and its associated cumulative distribution function 

(CDF) of the sample that contains thermal noise return, 

which is uniform and of background clutter power ψ. 

This PDF has a MGF given by Eq.(1) after setting S 

equals zero. The Laplace inverse of the resulting formula 

yields 
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U(z), in the above expression, denotes the unit-step 

function. The integration of the above equation gives its 

associated CDF which becomes 
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The substitution of Eqs.(13 & 14) into Eq.(12) and 

taking the Laplace transformation of the resulting 

formula, after making some mathematical processing, 

will give the required MGF of the random variable ZOS. 

This interesting quantity can be expressed as [10] 
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Once the MGF of the noise power level estimate (ZOS) 

is obtained, the processor detection performance becomes 

an easy task as we have previously demonstrated. Finally, 

the ℓth derivative of this MGF is given by 
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The notation (γ)ℓ represents the Pochhammer symbol 

which is defined as [13] 
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A desirable CFAR scheme would of course be one that 

is insensitive to the changes in the total noise power level  

within the cells of the reference window so that a 

constant rate of false alarm can be achieved. This is 

actually the case of all the architectures considered in this 

manuscript.  

b) Single-window GTM Detector 

A more generalized OS-CFAR detector, which 

combines ordering with arithmetic averaging, is discussed 

in this subsection. Such a scheme is known as trimmed-

mean (TM) filtering in signal processing literature. This 

processor has a performance which is the best 

compromise between homogeneous and non-

homogeneous operating environments. In this processor, 

the ordered range cells of a particular reference window 

are trimmed from both the upper and lower ends. The 

threshold is estimated by forming the sum of the 

remaining range cells. The linear combination may be 

anticipated to give better results because averaging 

estimates the noise power level more efficiently as in the 

case of cell-averaging procedure.  

The TM scheme first orders the candidates of the 

reference window in an increasing magnitude and then 

trims N1 cells from the lower end and N2 ones from the 

upper end before summing the rest to estimate the 

unknown noise power level. In other words, the 

construction of ZTM takes the form [3] 
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The CA and OS(K) schemes can be treated as special 

cases of this processor with (N1, N2) = (0, 0) and (K-1, N-

K), respectively. In order to include the other familiar 

CFAR schemes, as special cases, the generalized 

trimmed-mean (GTM) algorithm has been introduced [5]. 

The statistic of this new version has a form given by   

 

   

2

2

1 1

N N

GTM j N N
j N

Z 



 

      (21) 

 

η, in the previous formula, denotes to weighting factor. 

This factor is chosen in such a way that the processor 

mechanism will lead to unbiased estimate of the unknown 

noise power level [2]. We will denote the GTM-CFAR 

processor, with N1 trimmed samples from the lower end, 

N2 censored cells from the upper end and a weighted 

parameter η, by GTM(N1, N2, η). Based on this 

definition, the well-known CFAR schemes can be 

considered as special cases of this new version of GTM 

processor. They can be defined by assuming specific 

values for its parameters according to Table (I). 

Table 1. Trimming Parameter Values For The Well-Known CFAR 
Processors 

Parameter 

Algorithm 

N1 N2 η 

CA 0 0 0 

OS(K) K  -  1 N  -  K 0 

CCA(K) 0 N  -  K 0 

CML(K) 0 N  -  K N  -  K 

TM(T1, T2) T1 T2 0 

 

To start the analysis of this more generalized version of 

the TM detector, it is of importance to note that the 

ordered statistics X(1), X(2), …….., X(N), are neither 

independent nor identically distributed even when the 

original samples X1, X2, ……., XN, are IID random 

variables. However, when the observations are 

exponentially distributed, the clutter variates Xi‘s can be 

transformed into another independent random variables 

Yℓ‘s, ℓ=1, 2, ……., N-N1-N2 according to the following 

relation: 
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In terms of MGF‘s of the ordered-statistics X(i)‘s, we 

can compute the Laplace transformation of the previous 

expression to obtain the MGF of the random variable Yi 

which becomes [3]: 
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Since the MGF of the ℓth ordered statistic X(ℓ) 

represents the backbone of the calculation of the 

corresponding MGF of Yℓ, we are going to evaluate it. 

This MGF is given by Eq.(15) after replacing K by ℓ. 

Thus, 
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with 
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In terms of Yi‘s, the noise power level estimation 

ZGTM, given by Eq.(21), can be written as 
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Since Yi‘s are statistically independent, the MGF of 

ZGTM can be easily obtained by multiplying the individual 

MGF‘s of its associated random variables. Therefore, we 

have          
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Once the MGF of the noise power level is calculated, 

the detection performance of the CFAR processor under 

consideration is completely determined. 

c)  Double-window GTM Detector 

Although the ordered-statistics based detector has 

some advantages over the conventional cell-averaging 

scheme, the large processing time taken by it in sorting 

the candidates of the reference window limits its practical 

applications. The double-window detector has been 

introduced as a solution to this problem [5]. Employing 

two simultaneously specialized processors, one for each 

set of neighboring cells, it is possible to reduce by half 

the single-window processing time without altering the 

estimation of the clutter statistics. On the other hand, if 

the leading and trailing sets of cells are independently 

ordered and subsequently compared under the mean, the 

maximum, or the minimum criterion, we will obtain a 

new random variable with differing statistics from the 

representative cell of the OS-CFAR algorithm. Each one 

of these modified versions can reduce the single-window 

processing time in half and has the same advantages as 

the OS detector with only a negligible increment of the 

CFAR loss. Since the mean-level (ML) has the best 

compromise performance when the operating 

environment is either free of or contaminated with 

spurious target returns, it is of importance to be interested 

in evaluating the performance of the ML-GTM algorithm.  

Referring to Fig.(1), the elements of the reference 

window are equally partitioned into leading and trailing 

sub-windows. The generic operation of the two-window 

family of CFAR schemes is to process the cells of each 

local sub-window separately, and then combining the 

resulting estimates through the ML operation to obtain 

the final estimate of the unknown noise power level. The 

samples of the leading sub-window (of size Nh=N/2) are 

firstly ordered from smallest to largest and then the L1 

cells are discarded from the lower end and the L2 ordered 

samples are trimmed from its upper end before adding the 

rest ordered cells to estimate the unknown noise power 

level of this sub-window Z1. Therefore, the estimation of 

leading subset noise power level is given by 
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Similarly, the estimation of the noise power level of 

the trailing reference sub-window Z2 is 
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Here, the smallest T1 ordered samples and the largest 

T2 ordered ones are excised from the candidates of the 

trailing subset while the rest cells are added to formulate 

the noise power level estimate of the sub-window under 

consideration. 

In the ML-GTM processor, the total noise power is 

estimated by combining the local noise level estimates 

through the mean operation. The combiner puts out the 

noise level estimate Zf as 
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The rationale for the mean family of CFAR schemes is 

that by choosing the mean, the optimum CFAR detector 

in a homogeneous background when the reference cells 

contain IID observations can be achieved. In addition, as 

the size of the reference window increases, the detection 

probability approaches that of the optimum detector, 

which is the object that each processor tried to attain its 

behavior. 

Since the total noise power level estimate is obtained 

by averaging the local estimates of the noise power 

estimates, the MGF of Zf is simply given by the product 

of the MGF‘s of Z1 and Z2. Therefore, 
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By following the same steps as in the case of single-

window detector, we can derive the MGF of the leading 

subset noise power level estimate Z1, where the ℓth 

ordered cell has a MGF given by 
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Similarly, the trailing noise power level estimate Z2 has 

an expression of the same form as that given by Eq. (33) 

after replacing L1, L2, η1, and Lt by T1, T2, η2, and Tt, 

respectively. Thus, 
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Again, we demonstrate that once the MGF of the noise 

power level estimate is obtained, the processor false 

alarm and detection performances are fully determined. 

Finally, a desirable CFAR scheme would of course be 

one that is insensitive to changes in the total noise power 

within the candidates of the reference window so that a 

constant false alarm rate is maintained. This is actually 

the case of our selected algorithm. 

d)  Processor Performance Assessment 

In this subsection, some numerical results are 

presented to verify the above analysis and compare the 

performance of the GTM family under ideal operating 

environments. In other words, the numerical evaluation of 

the above derived formulas is carried out to obtain an 

idea about the behavior of different detection algorithms 

against the strength of correlation between the target 

returns. The displayed results are the outcomes of a 

computer program the input data of which are: the size of 

the reference window (N) is taken as 24, the design false 

alarm rate (Pfa) is chosen to be 10
-6

, the number of sweeps 

(M) varies from 1 to 4, and the correlation coefficient of 

the primary target's returns (ρs) is allowed to vary from 0 

to 1; with special focusing on its initial and final 

boundaries. Figs. (2-6) depict the detection performance 

o f  t h e  f a m i l y  o f  G T M - C F A R  s c h e m e  f o r 

partially-correlated χ
2
 fluctuating targets with two and for 

degrees of freedom when the radar receiver integrates 

two and four consecutive sweeps and operates in an 

environment which is free of any outliers. This family 

incorporates the well-known processors: CA, CML, CCA, 

TM, and OS, respectively. Similar parameter values, for 

the leading and trailing sub-windows, are assigned in 

running our computer programs. For the comparison to 

be clear, we choose the optimum value for the ranking 

parameter K which is 10 for Nh=N/2=12. Since the two 

noise level estimates are combined through the 

mean-level operation and this is common for all the 

candidates of GTM-CFAR scheme, it is sufficient to call 

each detector with that rule based on which the noise 

level is estimated. Fig. (2) displays the detection 

performance of GTM(0,0,0) processor. In this case, the 
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local noise level is constructed based on the CA formula: 

N1=0, N2=0, and η=0; as Table (I) demonstrates. To see 

to what extent the M-sweeps can improve the detector 

performance, the single sweep (M=1) results are also 

included in all the family of curves. It is of importance to 

note that the candidates of this scene are labeled in the 

number of sweeps (M), the degrees of freedom (=2κ), as 

well as the strength of correlation between the target's 

returns. The behavior of the curves of the underlined 

figure illustrates that for weak signal return; the more 

correlated samples give higher performance than those of 

weak correlation. As the signal strength becomes highly, 

the two behavior cases approach each other till the point 

at which the two performances coincide. The continuity 

of the signal strength makes the reverse of the above 

behavior to be satisfied, where the weakest target's 

returns presents higher detection performance than those 

of strong correlation among them. In other words, there is 

a critical value of SNR; before which the processor's 

performance improves as the correlation of the samples 

increases, whilst the detector's behavior deteriorates, 

behind that value, as the correlation of the reference 

samples augments.  Additionally, all the partially-

correlated curves are always embraced by the Swerling's 

models which represent the initial (ρs=0) and the final 

(ρs=1) values of the correlation coefficient between the 

returned samples of the primary target. This behavior is 

common either in the case of target fluctuations obeying 

χ
2
 with two degrees of freedom or in the situation where 

the target fluctuates following χ
2
 statistics with four 

degrees of freedom. However, the performance 

corresponding to χ
2
 statistics with four degrees of 

freedom is always higher than that obtained for χ
2
 

distribution with two degrees of freedom; given that all 

the parameter values are held unchanged in the two 

situations.  Additionally, the critical point is the same for 

the two situations of target fluctuations. Moreover, as M 

increases, better performance, and consequently lower 

CFAR loss [7], is obtained for the two cases of target 

fluctuations, given that the parameter values rest 

unchanged. 

 

 

Fig.2 Homogeneous detection performance of GT M(0,0,0) for 
partially-correlated x2targets with 2&4 degrees of freedom when N=24, 

and Pfa=1.OE-6 

 

Fig. 3 Homogeneous detection performance of GTM(0,2,2)for 
partially-correlated x2 targets with 2 & 4 degrees of freedom when 

N=24, and Pfa=1.0E-6. 

Fig.(3) shows the variation of the detection probability 

of GTM(0,2,2) scheme as a function of the primary target 

signal strength for several values of M when the target 

returns have a correlation of 0, 40%, 90%, and 100%. 

This processor is known in the literature as CML scheme. 

The local noise level of CML is achieved by adding up 

the cells of the reference window after ordering them and 

rejecting the two largest ones and adjusting the weight of 

its top ranked sample according to the rules of Table (I). 

The carefully inspect of the curves of this figure 

demonstrates that they vary in the same manner as those 

of Fig.(2) with minor degradation and their behavior is 

identical to the previous detector. This procedure of 

detection gives the best homogeneous performance after 

the conventional CA processor. Fig.(4) displays the same 

thing for GTM(0,2,0) scheme in which the local noise 

level is extracted by adding up the lowest ordered N/2-2 

samples and this is equivalent to the CCA processor. Fig. 

(5) illustrates the variation of the detection probability 

with the strength of the primary target's signal for 

GTM(4,4,0) procedure in which the estimation of the 

local noise level is carried out by summing the middle 

four ordered samples after excising the four lowest 

ordered cells and the four highest ordered ones and this is 

equivalent to the conventional TM detector. Fig.(6) 

depicts the same thing for GTM(9,2,0) detector in which 

the local noise level is estimated by selecting the tenth 

ordered cell and this is equivalent to the conventional OS 

detector. The results of these figures show that the 

detection performances of all the processors under 

investigation behave the same behavior with minor 

distinction from one detector to another. In each figure of 

this family, there are two families of curves: the first one 

represents the detection performance of the processor 

under investigation for partially-correlated χ
2
 targets with 

two and four degrees of freedom when the correlation 

strength of the target's returns takes the values ρs=0, 0.4, 

0.9, and 1.0 for the case where the number of integrated 

pulses is 2, and the second family indicates the same 

performance when the processing data are the results of 4 

integrated pulses. At low values of SNR, the detection 

performance improves as ρs increases and the SWI model  

Fig.(2) Homogeneous detection performance of GTM(0,0,0) for patially-correlated   

2 targets with 2 & 4 degrees of freedom when N=24, and Pfa=1.0E-6.
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Fig.(3) Homogeneous detection performance of GTM(0,2,2) for patially-correlated   

2 targets with 2 & 4 degrees of freedom when N=24, and Pfa=1.0E-6.
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gives higher performance than SWII case when the 

fluctuations of the target obey χ
2
 distribution with two 

degrees of freedom, whilst SWIII case has the top 

detection performance than the SWIV model in the case 

of target fluctuations with four degrees of freedom for the 

χ
2
 statistics. This behavior is rapidly changed as the 

signal of the primary target becomes stronger where the 

processor performance attains its highest value for ρs=0 

(SWII model for κ=2 or SWIV model for κ=4) while its 

lowest value is achieved for ρs=1 (SWI model for κ=2 or 

SWIII model for κ=4). In other words, the Swerling 

models embrace the correlated curves either the primary 

target's signal is weak or strong. For comparison, the 

single sweep detection performance is incorporated in 

these figures to show to what extent the processor 

performance improves as the number of integrated pulses 

augmented. Examining the curves of this group of figures 

demonstrates that as ρs increases from zero to unity, more 

per pulse average SNR is required to achieve the same 

value for the probability of detection. Additionally, for 

fixed SNR, there is an improvement in detection 

performance as the number of integrated pulses increases 

and this is common for all the processors considered here. 

 

 

Fig. 4 Homogeneous detection performance of GTM(0,2,0)for 
partially-correlated x2 targets with 2 & 4 degrees of freedom when 

N=24, and Pfa=1.0E-6. 

 

Fig. 5 Homogeneous detection performance of GTM(4,4,0)for 

partially-correlated x2 targets with 2 & 4 degrees of freedom when 
N=24, and Pfa=1.0E-6. 

 

Fig. 6 Homogeneous detection performance of GTM(9,2,0)for 
partially-correlated x2 targets with 2 & 4 degrees of freedom when 

N=24, and Pfa=1.0E-6. 

 

Fig. 7 M-sweeps required SNR, of GTM family of CFAR schemes, to 
achieve an operating point of (1.0-E6, 0.9) for N=24 and M=3 when it 

operatesin an ideal environment 

To gauge the performance of GTM-CFAR algorithms 

for finite observations and to compare their behavior 

against the uniform distribution of clutter throughout the 

elements of the reference window, the required SNR, to 

achieve an operating point of specified values for the 

detection and false alarm probabilities, is taken as a 

figure of merit. This important parameter is chosen to 

examine which processor has the top performance and 

which one gives the worst behavior against the detection 

of fluctuating targets obeying in their fluctuation to χ
2
 

distribution with two and four degrees of freedom. Fig.(7) 

depicts the variation of the required level of signal 

strength as a function of the correlation coefficient 

between the primary target returns for a constant level of 

detection of 90% as well as a fixed rate of false alarm of 

10
-6

 if three consecutive sweeps are noncoherently 

integrated (M=3). Both types of target fluctuations (=2 

& 4) are taken into account in plotting the curves of this 

figure. As a reference, against which any processor 

per formance  i s  compared ,  the  resul t s  o f  the 

fixed-threshold detector under the same operating 

conditions are included among the curves of this figure. 

Fig.(4) Homogeneous detection performance of GTM(0,2,0) for patially-correlated   

2 targets with 2 & 4 degrees of freedom when N=24, and Pfa=1.0E-6.
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Fig.(5) Homogeneous detection performance of GTM(4,4,0) for patially-correlated   

2 targets with 2 & 4 degrees of freedom when N=24, and Pfa=1.0E-6.
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Fig.(6) Homogeneous detection performance of GTM(9,2,0) for patially-correlated   

2 targets with 2 & 4 degrees of freedom when N=24, and Pfa=1.0E-6.
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Fig.(7) M-sweeps required SNR, of GTM family of CFAR schemes, to achieve an operating point 

of (1.0E-6, 0.9) for N=24 and M=3 when it operates in an ideal environment. 
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The displayed results show that the required SNR 

remains approximately constant till the correlation 

coefficient reaches 60%. After that specified value, there 

is a noticeable increase in the signal strength as the 

correlation of the target returns increases. On the other 

hand, the demand signal level, to satisfy the pre-assigned 

values of the detection and false alarm probabilities, 

attains its highest value when the target returns become 

fully correlated. This behavior is common for all the 

considered algorithms including the optimum processor. 

In addition, the correlated returns from target fluctuating 

according to 
2
-distribution with 4 degrees of freedom 

requires less signal strength than those coming from 

fluctuating target obeys 
2
-statistics with 2 degrees of 

freedom. The curves of this figure illustrate that the 

GTM(0,0,0) scheme requires the minimum level of signal 

strength after the optimum detector in both fluctuation 

models. After which the GTM(0,2,2) algorithm has the 

next minimum SNR, the GTM(0,2,0) scheme, the 

GTM(9,2,0) procedure, and finally the GTM(4,4,0) 

processor demands the highest signal strength to achieve 

the pre-defined operating point of (90%, 10
-6

). This 

graduation in detection schemes is predicted since the CA 

has the highest homogeneous performance, the CML 

comes next, the conventional OS, the CCA, and finally 

the TM processor, with four trimmed samples from both 

the lower and the upper ends of an ordered set, which has 

the worst performance, relative to the other algorithms 

considered here. Table (II) illustrates some of the 

required SNR (dB), for the family of the GTM scheme, 

when the primary target fluctuates in accordance with 

SWI and SWII models. 

Table 2. Required Snr (Db), For Gtm Family, To Achieve An Operating Point Of (0.90, 10-6) When N=24, And M=3 

Processor Optimum GTM(0,0,0)  GTM(0,2,2) GTM(0,2,0) GTM(9,2,0) 

Degree of 

Freedom 

κ=2 κ=4 κ=2 κ=4 κ=2 κ=4 κ=2 κ=4 κ=2 κ=4 

ρ=00% 12.13

72 

10.7774 12.7187 11.3597 12.9508 11.5924 13.0111 11.6529 12.9861 11.6299 

ρ=70% 13.43

47 

11.6511 14.0158 12.2329 14.2476 12.4652 14.3078 12.5255 14.2819 12.5012 

ρ=100% 17.31

10 

13.4394 17.8914 14.0204 18.1225 14.2522 18.1824 14.3123 18.1546 14.2862 

 

IV.  STATISTICAL MULTITARGET ANALYSIS OF THE GTM 

PROCESSOR 

The adaptive algorithms were originally developed to 

satisfactory operate in a statistical model of uniform 

background noise. However, that model doesn't represent 

the actual cases of operation. It is impossible to describe 

all radar working conditions by a single model, yet 

consideration of a larger number of different situations 

might be confusing. For these reasons, three different 

signal models are selected: uniform clutter, clutter edges 

and multiple targets. The performance of the CFAR 

techniques for uniform clutter model is completely 

analyzed in the previous section. Clutter edges, on the 

other hand, are used to describe transition areas between 

regions with very different noise characteristics. Since the 

primary concern of this research is focused on partially-

correlated χ
2
 fluctuating targets, the clutter edged 

situation is of secondary scope. On the other hand, 

multiple-target situations occur occasionally in radar 

signal processing when two or more targets are at a very 

similar range and the consequent masking of one target 

by the others represents its suppression. There are 

different sources of these interferers. They can arise from 

either real object returns or pulsed noise jamming. From a 

statistical point of view, this implies that the reference 

samples, although still independent of one another, are no 

longer identically distributed. Let us now examine the 

dependence of the performance of the CFAR procedures 

on the accurate knowledge of the target fluctuation model 

when the reference window is contaminated with 

fluctuating interfering target returns. 

In our analysis and study of the non-homogeneous 

background for which the reference cells don‘t follow a 

single common PDF, it is of importance to be concerned 

with increases in the value of ψ for some isolated 

reference cells due to the presence of spurious targets. 

The amplitudes of all the targets present amongst the 

candidates of the reference window are assumed to be of 

the same strength and to fluctuate in accordance with the 

partially-correlated χ
2
 fluctuation model with correlation 

coefficient ρi. The interference-to-noise ratio (INR) for 

each of the outlying targets is taken as a common 

parameter and is denoted by I. Thus, for reference cells 

containing extraneous target returns, the total background 

noise power is ψ(1+I), while the remaining reference 

cells have identical noise power of ψ value.  

a)  Single-Window OS Detector  
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When there are interfering target returns amongst the 

contents of the reference window, the assumption of 

statistical independence of the reference cells is retained. 

Consider the situation where there are ―r‖ reference 

samples contaminated by extraneous target returns, each 

with power level ψ(1+I), and the remaining ―N-r‖ 

reference cells contain thermal noise only with power 

level ψ. Under these assumptions, the Kth ordered 

sample, which represents the noise power level estimate 

of the OS scheme, has a CDF given by [14] 

The above mathematical expression can be formulated 

in another form by using binomial theorem which leads 

to: 

 

   
min( , )

max(0, )

( ; , ) 1 ( ) ( ) 1 ( ) ( )
i N rN

N r j j r i j i j

t t I I
i K j i r

N r r
z N r z z z z

K j i jF F F F F


    

  

  
            

        (36) 

 

         
min( , )

max(0, ) 0 0

; , 1 1 1 1
i N r j i jN

N r k rj k i j

K t I
i K j i r k

N r r j i j
z N r z z

j i j k
F F F

 
    

    

 
    



       
             

       
     

                                                                                          (37) 

 

The CDF of the reference cell that contains a thermal 

noise power rest as it is given by Eq.(14), whilst the CDF 

of the reference sample that contains spurious target 

return, given that the target fluctuates in accordance with 

χ
2
 with two degrees of freedom, can be evaluated by 

taking the Laplace inverse of Eq.(1) which yields [15]: 
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where L
-1

 denotes the Laplace inverse operator and 
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On the other hand, if the interfering target‘s fluctuation 

follows χ
2
 model with four degrees of freedom, FI (z) 

takes the form  
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Let us now go to calculate the CDF of the Kth ordered 

cell for the two cases of target fluctuations for the 

processor performance to be easily evaluated. If the 

interfering target fluctuates following χ
2
 statistics with 

two degrees of freedom, the Kth ordered sample has a 

CDF given by Eq.(37) after replacing Ft(z) and FI(z) by 

their formulas, Eq.(14) and Eq.(38), respectively. Thus, 
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Since the detection performance of the adaptive 

processor is completely determined by the MGF of its 

noise level estimate; where the false alarm and detection 

probabilities are completely functions of this 

transformation and its derivatives with respect to Ω, it is 

important to calculate the Laplace transformation of the 

previous formula. The Ω-domain representation of 

Eq.(43) takes the form [16]: 
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On the other hand, if the fluctuations of the outlying 

target obeys χ
2
 distribution with four degrees of freedom, 

the CDF of the Kth ordered cell can be obtained by 

substituting Eqs.(14 & 40), for the CDF of the sample 

that contains thermal noise or interfering target return, 

respectively, into Eq.(37) which becomes  
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By using the binomial theorem, we can expand the 

bracketed quantities as a binomial of z. In other words,  

the above formula can be rewritten as [17]:
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The Laplace transformation of the above equation  yields: 
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Since there is a direct relation between the Laplace 

transformation of the CDF and the MGF of the random 

variable "ZOS", the processor detection performance is 

now completely determined for partially-correlated χ
2
 

targets with four degrees of freedom.  

Finally, it is of importance to note that the OS  

multitarget detection performance is highly dependent 

upon the value of K. For example, if a single extraneous 

target appears in the reference window of appreciable 

magnitude, it occupies the highest ranked cell with high 
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probability. If K is chosen to be N, the estimate will 

almost always set the threshold based on the value of 

interfering target. This increases the overall threshold and 

may lead to a target miss. If, on the other hand, K is 

chosen to be less than the maximum value, the OS 

scheme will be influenced only slightly for up to N-K 

spurious targets. 

b)  Double-window GTM processor 

So far, the analysis of the performance of GTM-CFAR 

detector has been made under the assumption, which may 

not be the case, that the elements of the background set 

"Xi‘s" contain only thermal noise and/or clutter. This 

assumption is not critical to the Pfa, since the target 

information is assumed to be stochastically larger than 

the clutter, which increases the expected value of the 

threshold estimate. Therefore, it is not sufficient to 

evaluate the GTM performance in homogeneous 

background since it doesn't generally represent the actual 

operating circumstances. As a consequence of this, the 

computation of the GTM performance in non-uniform 

background is of practical interest. To evaluate the non-

homogeneous detection performance of this processor, 

we follow the same steps as in the case of uniform 

performance evaluation. The backbone of this analysis is 

the Laplace transformation of the CDF of the Kth ordered 

sample. This transformation has been previously 

developed for single window processor. The calculation 

of this transformation of the CDF of the K1th ordered cell 

of double-window scheme can be easily obtained by 

replacing N, K, and r by N/2, K1 and r1, respectively. 

Thus,  
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In the above expression, r1 represents the number of 

interfering target returns that may exist amongst the 

candidates of the leading subset. If the trailing subset 

contains r2 spurious target returns, the CDF of the K2th 

ordered sample has the same form, for its Ω-domain 

representation, as that given by Eq.(48) after replacing 

K1, and r1 by K2 and r2, respectively. 

Finally, in terms of this transformation, the MGF‘s of 

the random variables Xi‘s, see Eq, (23), can be computed 

according to the following relationship 
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c)  Processor Performance Results 

The focus of the previous sections has been to utilize 

ordered statistic based algorithms as threshold estimators 

in order to evaluate the performance of the underlined 

processor which is one of the most important schemes in 

the world of the CFAR techniques. In this section, the 

robustness of the GTM processor in terms of its power or 

probability of detection performance, in target 

multiplicity environments, will be demonstrated. A few 

sample results for the various cases discussed above are 

presented here for illustrative purposes. The non-

homogeneous performances of these processors are 

evaluated for the maximum allowable number of 

extraneous targets in each reference sub-window. Since 

the optimum value of K is 10, the detection scheme is 

able to discriminate the primary target from, at most, two 

outlying target returns, in each reference subset (r1=r2=2), 

with little degradation in its performance. Additionally, 

our numerical results are obtained for a possible practical 

situation where the primary and secondary interfering 

targets fluctuate in accordance with the χ
2
 fluctuation 

model with the same correlation coefficient (ρI=ρS=ρ) and 

of equal target's signal strength (INR=SNR). The results 

of this situation of operating conditions are classified into 

three categories. The first category is concerned with the 

evaluation of the detection performance of the well-

known processors, the homogeneous performances of 

which are previously discussed in Figs.(2-6), when they 

are operating in multitarget environment and the results 

of this evaluation are displayed in Figs.(8-12). As in 

homogeneous case, the size of the reference window is 

chosen to be 24, the design false alarm rate is maintained 

at 10
-6

, and two values (2 & 4) for the number of 

integrated pulses are selected. For the purpose of 

comparison, these figures also include the single sweep 

processor detection performance, relative to which we 

can demonstrate the processor performance improvement 

for M>1. The behavior of the curves of this family of 

figures is identical to their behavior in the absence of 

interfering target returns, except the GTM(0,0,0), which 

corresponds to the conventional cell-averaging (CA) 

scheme. Generally, the SWII (ρI=ρS=0) model and SWI 

(ρI=ρS=1) case embrace the partially-correlated curves, 

when the fluctuation of the tested target as well as the 

spurious ones obeys χ
2
 distribution with two degrees of 

freedom. If these targets fluctuate following χ
2
 statistics 

with four degrees of freedom, on the other hand, SWIV 

(ρI=ρS=0) and SWIII (ρI=ρS=1) models enclose the 

partially-correlated situations. This behavior is common 

for all the processors considered here. However, the CA 

detector behaves in a different manner against the 

presence of outliers among the reference samples used in 

constructing the detection threshold. This behavior is 

predicated since all the candidates of the reference set are 

incorporated in building the statistical decision. As a 

result of this, the existence of outlying targets raises the 

detection threshold and this in turn leads to lowering the 

probability of detection. Moreover, as the number of 

extraneous targets and/or the strength of the interfering 

target returns increases, the statistical threshold raises 

more and more and consequently the detection 

probability lowers more and more. This scenario of 

reaction against spurious targets makes CA technique 

occupying the majority status among the undesirable 

schemes for operating in non-homogeneous 
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environments. Because of the abnormality of the 

GTM(0,0,0) detector in its behavior against multiple-

target environment, we are going to discuss, in some 

details, its performance for single, double, and four 

receiving pulses. Firstly, for single sweep case, the 

performance of such scheme for fluctuating targets with 

two degrees of freedom is superior to its behavior against 

those fluctuating according to χ
2
 model with four degrees 

of freedom. This reaction is owing to the heavily return of 

the secondary target in the case of fluctuation of χ
2
 

distribution with κ=4 than its return when it fluctuates 

following χ
2
 model with κ=2. Since there is a direct 

relation between the extraneous target return and the 

detection threshold, it is obvious that as the outlying 

target return becomes heavily, the statistical threshold 

becomes higher and this in turn results in degrading the 

CA performance little by little.  

 

 

Fig. 8 Multitarget detection performance of GTM(0,0,0) for 

partially-correlated x2 targets with 2 & 4 degrees of freedom when 
N=24,r1=r2=2, and Pfa=1.0E-6. 

 

Fig. 9 Multitarget detection performance of GTM(0,2,2)for 
partially-correlated x2 targets with 2 & 4 degrees of freedom when 

N=24,r1=r2=2, and Pfa=1.0E-6. 

Secondly, in the case of M=2, it is noted that the 

processor performance improves as the correlation 

coefficient among the target returns increases, 

irrespective of the signal strength. This belongs to the 

contribution of the interfering target returns on the 

construction of the detection threshold. If the interferer 

returns are de-correlated, their effective value becomes 

large and this in turn raises the detection threshold and 

consequently the detection probability decreases. As the 

correlation among the outlying target returns increases, 

their effective value along with the detection threshold 

decreases and as a result of this, the processor 

performance improves. Additionally, the processor 

reaction against secondary interfering targets fluctuating 

with two-degrees of freedom is better than its reaction 

against those fluctuating with four-degrees of freedom. 

Moreover, the SWII targets have lower performance than 

SWI ones and outlying targets fluctuating following 

SWIV model give a degraded performance than those 

fluctuating according to SWIII model. 

 

 

Fig. 10 Multitarget detection performance of GTM(0,2,0)for 
partially-correlated x2 targets with 2 & 4 degrees of freedom when 

N=24,r1=r2=2, and Pfa=1.0E-6. 

 

Fig. 11 Multitarget detection performance of GTM(4,4,0)for 
partially-correlated x2 targets with 2 & 4 degrees of freedom when 

N=24,r1=r2=2, and Pfa=1.0E-6. 

Thirdly, for M=4, the processor performance behaves 

in another different form which is, to some extent, similar 

to the normal predicted behavior. In this case, it is noted 

Fig.(8) Multitarget detection performance of GTM(0,0,0) for patially-correlated 

2 targets with 2 & 4 degrees of freedom when N=24, r1=r2=2, and Pfa=1.0E-6.
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Fig.(9) Multitarget detection performance of GTM(0,2,2) for patially-correlated 2 

 targets with 2 & 4 degrees of freedom when N=24, r1=r2=2, and Pfa=1.0E-6.
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Fig.(10) Multitarget detection performance of GTM(0,2,0) for patially-correlated 2 

 targets with 2 & 4 degrees of freedom when N=24, r1=r2=2, and Pfa=1.0E-6.
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Fig.(11) Multitarget detection performance of GTM(4,4,0) for patially-correlated 2 

 targets with 2 & 4 degrees of freedom when N=24, r1=r2=2, and Pfa=1.0E-6.
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that there is a crossing point of specified value of SNR. 

For SNR values lower to that value, the processor 

reaction against spurious targets fluctuating with two-

degrees of freedom for χ
2
 statistics is better than its 

reaction for those of fluctuation model with χ
2
 model of 

four-degrees of freedom. For signal strengths greater than 

that point, the processor reacts in a reverse manner to the 

presence of outliers among the contents of the estimation 

set. This behavior is normal as the usual case where the 

Swerling models embrace the partially-correlated cases. 

In addition, the Swerling models for two-degrees of 

freedom χ
2
 distribution have higher performance than 

those fluctuating with four-degrees of freedom for the 

biasing points below that of threshold. This reaction is 

rapidly changed for biasing points above the thresholding 

point. Generally, an intolerable masking of the primary 

target is observed in the performance of the CA detector 

irrespective of the size of the estimation set or the number 

of sweeps. However, there is an improvement in its 

performance whether the number of the reference cells 

and/or the number of sweeps increases. Finally, it is of 

importance to note that the full scale of Fig.(8) is 60% 

instead of 100% in the normal state. 

While this is the behavior of the CA technique when it 

operates in multiple-target environment, all the ordered-

statistic based detectors (CML, CCA, TM, OS) exhibit 

robust detection performance in the case where the radar 

receiver operates in a background environment with 

secondary interfering targets besides the primary target of 

concern as Figs.(9-12) demonstrate. These techniques of 

CFAR have the same behavior against the presence of 

spurious target returns amongst the candidates of the 

background window. Each one of these procedures has its 

immunity to these unwanted targets given that their 

number is within its allowable values. It is well-known 

that the performance of the OS based detectors is highly 

dependent upon the value of K. If K is chosen to be less 

than the maximum (N), the OS-CFAR processor will be 

influenced only slightly for up to N-K interfering targets. 

In the case of double-window detectors, this constraint on 

the number of extraneous target returns must be fulfilled 

in each reference subset, for the scheme of detection to be 

able to discriminate the primary target from the spurious 

targets with little degradation in detection performance. 

When the number of outlying target returns in either 

reference subset exceeds its maximum allowable value, 

this will deprive the ML-GTM procedure from its 

immunity to interfering targets.  

 

Fig. 12 Multitarget detection performance of GTM(9,2,0)for 
partially-correlated x2 targets with 2 & 4 degrees of freedom when 

N=24, and Pfa=1.0E-6. 

 

Fig. 13 Required SNR to achieve a specified detection probability for 

GTM family when N=24, M=3, r1=r2=2, Pfa=1.0E-6, and P=1 for x2 
targets with 2 & 4 degrees of freedom. 

Let us now display the outcomes of the second 

category of our obtained numerical results. This group 

includes Figs. (13-14). These figures illustrate the 

required signal strength to achieve a given specified value 

for the detection probability when the GTM scheme 

operates in multitarget environment. In calculating these 

results, it is assumed that the false alarm rate is held 

constant at 10
-6

, the size of the reference set is fixed at the 

same value taken in obtaining the previous results, the 

number of extraneous target returns is kept at its 

maximum allowable value (r1=r2=2), the primary as well 

as the secondary interfering target returns are assumed to 

b e  e i t h e r  f u l l y - c o r r e l a t e d  ( ρ I = ρ S = 1 0 0 %)  o r 

fully-uncorrelated (ρI=ρS=0%), and the radar receiver 

noncoherently integrates three successive pulses (M=3) in 

order to decide the presence or absence of its underlined 

target. Since the optimum processor has received 

considerable attention in many areas of practical 

applications, where it represents a reference tool against 

Fig.(12) Multitarget detection performance of GTM(9,2,0) for patially-correlated 

2 targets with 2 & 4 degrees of freedom when N=24, r1=r2=2, and Pfa=1.0E-6.
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Fig.(13) Required SNR to achieve a specified detection probability for GTM family when     

 N=24, M=3, r1=r2=2, Pfa=1.0E-6, and=1 for 2 targets with 2 & 4 degrees of freedom.
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which the performance of any unknown processor is 

compared under any situation of operating conditions, the 

scenes of the present category incorporates the 

performance of the optimum detector besides that of the 

OS based processors. It is well-known that as the 

performance of the processor under test closes to that of 

the optimum processor as it becomes more attractable. 

Fig.(13) is depicted for (ρI=ρS=1.0) where the primary 

besides the secondary outlying targets fluctuate following 

in their fluctuation either to the SWI in the case of χ
2
 with 

2-degrees of freedom or to the SWIII in the case of χ
2
 

with 4-degrees of freedom. The behavior of the curves of 

this figure is normal where the required SNR increases as 

the proposed Pd increases and the rate of increasing varies 

according to three different ranges for the detection 

probability. In the lower range, which extends to 25%, 

the rate of augment is relatively high. The medium 

range ]25%, 80%] is characterized by slow rate of 

increasing, while the last range, greater than 80%, the 

required SNR increases with approximately the same rate 

as the lower range. Generally, the rate of increasing in the 

case of χ
2
 statistics with 2-degrees of freedom is higher 

than in the case of χ
2
 model with 4-degrees of freedom. 

This variation of the signal strength demanded to give a 

predetermined value of the detection probability is 

common for all the detectors considered here including 

the ideal one. It is noted that, in the lower range, the 

required SNR for χ
2
 distribution with 4-degrees of 

freedom is higher than that required for χ
2
 statistics with 

2-degrees of freedom. In the medium and large ranges, on 

the other hand, the reverse is actually the case where χ
2
 

model with 4-degrees of freedom requires less SNR than 

that for χ
2
 statistics with 2-degrees of freedom to achieve 

a given value for the detection performance. By making a 

comparison between the behavior of the various 

candidates of GTM scheme, it is noted that the 

GTM(4,4,0) comes after the optimum, the GTM(0,2,0) 

occupies the next position, the GTM(0,2,2) retains the 

ranked fourth, while GTM(9,2,0) requires the highest, 

amongst its colleagues, SNR to carry out a specified level 

of detection. Since the GTM(0,0,0) don't able to detect in 

multitarget environment, it is excluded out of this 

comparison. 

Table III summarizes the behavior of GTM family 

against spurious targets that may exist among the 

contents of the reference window when the fluctuation of 

these targets follows χ
2
-distribution with 2 & 4 degrees of 

freedom.  

Fig.(14) depicts the same thing as the previous figure 

in the case where the primary as well as the secondary 

extraneous targets fluctuate following in their fluctuation 

either to the SWII in the case of χ
2
 with 2-degrees of 

freedom or to the SWIV in the case of χ
2
 with 4-degrees 

of freedom. The elements of this family of curves have 

the same behavior as: those of the family of Fig.(13) with 

slower rate of increasing. As in the case of ρI=ρS=1, the 

OS based schemes have the same ordering from the 

highest detection performance point of view. This means 

that the GTM(4,4,0) algorithm comes next to the fixed-

threshold detector for its reaction against the presence of 

outlying target returns among the background estimation 

set. The GTM(0,2,0) procedure occupies the next location 

and the GTM(9,2,0) processor has the worst behavior, 

relative to its colleagues in the GTM family, whilst the 

GTM(0,2,2) scheme retains the fourth ranked position. 

To give the reader some order of magnitudes for the 

required SNR to implement a level of detection of 15, 50, 

and 95%, Table IV illustrates the reaction of the GTM 

family against the spurious target returns that may exist 

among the contents of the reference window when the 

fluctuation of these targets follows χ
2
-distribution with 2 

& 4 degrees of freedom. 

 

Table 3. Multitarget Required Snr (Db), For Gtm Family, To Achieve A Specified Level of Detection For N=24, M=3, R1=R2=2, Pfa=10-6 & 

Ρi=Ρs=1 

Processor Optimum GTM(0,2,0) GTM(0,2,2) GTM(4,4,0) GTM(9,2,0) 

Degree of 

Freedom 

κ=2 κ=4 κ=2 κ=4 κ=2 κ=4   κ=2 κ=4 κ=2   κ=4 

Pd=15% 4.2409 4.6288 5.8904 6.4169 5.9761 6.5434 5.76999 6.2575 6.3913 7.05499 

Pd =50% 8.9675 8.1474 10.7092 9.9431 10.8418 10.0955 10.5490 9.7643 11.3874 10.6852 

Pd =95% 20.4518 15.2347 22.2486 17.0097 22.4102 17.1699 22.0627 16.8294 23.0271 17.7990 
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Fig. 14 Required SNR to achieve a specified detection probability for 
GTM family when N=24, M=3, r1=r2=2, P=0 and fluctuating targets 

of x2 model with 2 & 4 degrees of freedom. 

 

Fig. 15 Multitarget required SNR to achieve an operating point 

(1.0E-6, 0.9) of GTM family when N=24, M=2, r1=r2=2, for x2 

fluctuating targets with 2 & 4 degrees of freedom. 

 

Table 4. Multitarget Required Snr (Db), For Gtm Family, To Achieve A Specified Level Of Detection For N=24, M=3, R1=R2=2, Pfa=10-6 & 

Ρi=Ρs=0 

 Optimum GTM(0,2,0) GTM(0,2,2) GTM(4,4,0) GTM(9,2,0) 

Degree of 

Freedom 

κ=2 κ=4 κ=2 κ=4 κ=2 κ=4 κ=2 κ=4 κ=2 κ=4 

Pd=15% 4.8432 

 

5.1444 6.6898 7.0557 6.8359 7.2241 6.5098 6.8494 7.3857 7.8036 

Pd =50% 7.8913 7.6479 9.7022 9.4633 9.8613 9.6323 9.5164 9.2765 10.4630 10.2400 

Pd =95% 13.5013 11.7068 15.2603 13.4341 15.4189 13.6479 15.0843 13.2121 16.0549 14.2410 

 

 

Fig. 16 Actual probability of false alarm versus correlation coefficient 
of GTM family for x2 fluctuating targets with 2 & 4 degrees of freedom 

when N=24, M=3, INR=5RB,and r1=r2=2. 

 

 

 

Fig. 17 Actual probability of false alarm versus Interference-to-noise 
ratio of GTM family for x2 model with 4 degrees of freedom when 

N=24, M=2, r1=r2=2, design Pfa=1.0E-6 
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Fig.(14) Required SNR to achieve a specified detection probability for GTM family when 

N=24, M=3, r1=r2=2, =0 and fluctuating targets of 2 model with 2 & 4 degrees of freedom 
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Fig.(15) Multitarget required SNR to achieve an operating point (1.0E-6, 0.9) of GTM family 

when N=24, M=2, and r1=r2=2, for 2 fluctuating targets with 2 & 4 degrees of freedom.
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Fig.(15) represents another figure of merit to compare 

the detection performance of the candidates of GTM 

scheme. It illustrates the required signal strength to verify 

a fixed level of detection given that the rate of false alarm 

is held constant. The level of detection is chosen to be 90% 

and the rate of false alarm is maintained unchanged at 

10
-6

. The horizontal axis represents the strength of 

correlation that the returns, from the primary or the 

secondary interfering target, may have and the data of 

simulation is collected from two successive sweeps 

(M=2). As usual in the previous figures, the target under 

investigation as well as the outlying one is assumed to be 

fluctuating and follow χ
2
-distribution, in their fluctuation, 

with 2 and 4 degrees of freedom. As a reference against 

which any processor performance is compared, the figure 

under consideration includes the same results for the 

optimum detector. The insight examination of the curves 

of the figure shows that the required SNR is 

approximately constant with minor increasing as the 

correlation among the target returns increases till 80% 

beyond which the signal strength, required to achieve the 

given operating point, has a noticeable rate of increasing. 

Additionally, the demand SNR to carry out the requested 

level of detection in the case of target fluctuation with 

four degrees of freedom is smaller than that required 

when the target fluctuation obeys χ
2
-distribution with two 

degrees of freedom. Moreover, the rate of increasing in 

the first case is always lower than that in the latter case. 

Furthermore, each one of the OS based procedures 

maintains its position in the sequence from the higher 

performance point of view. This sequence is as stated 

before: optimum, TMD, CCA, CML, and the 

conventional OS for their behavior against the presence 

of interferers in the background reference window which 

is the backbone of the noise level estimation based on 

which the detection threshold is constructed.   

Let us now turn our attention to the processor false 

alarm rate performance in the presence of outlying targets. 

Fig.(16) depicts the variation of the actual probability of 

false alarm as a function of the strength of correlation 

among the interfering target returns when these targets 

fluctuate according to 
2
 statistics with 2 & 4 degrees of 

freedom. The displayed results are obtained for a 

reference window of size 24, a maximum allowable 

number for the extraneous target returns that may exist in 

each reference sub-window (r1=r2=2), a collected data 

from three consecutive sweeps (M=3), an interference 

level of 5dB (INR=5dB), and a design rate of false alarm 

of 10
-6

. The candidates of this family of curves show that 

there is a negligible variation in the probability of false 

alarm as the outlying target returns become strongly 

correlated. It is of importance to note that as the false 

alarm rate of the CFAR processor closes to the designed 

value, as this processor becomes attractable. Additionally, 

the CFAR property of a specified detector enforces it to 

maintain a fixed rate of false alarm irrespective of the 

environment in which it is operated. Based on this rule, 

the GTM(4,4,0) becomes the king of this family, the 

GTM(0,2,0) occupies the second position, the GTM(0,2,2) 

retains the third ranked location, the GTM(9,4,0) comes 

next, whilst the GTM(0,0,0) has the worst behavior 

against the presence of outliers in its operating 

environment. The rate of increasing in this situation 

outperforms that of the other processors in the same 

group. In addition, its false alarm rate performance 

improves as the correlation among the spurious target 

returns increases. Moreover, the rate of improvement is 

higher than that of the OS based schemes. Furthermore, 

the processor false alarm rate performance for target 

fluctuation following 
2
-model with two degrees of 

freedom is higher than its performance when the 

interferers fluctuate according to 
2
-distribution with four 

degrees of freedom. This behavior is predicted since the 

returned signal in the latter case is heavily than in the 

former one and this in turn pushes, towards its higher 

values, the detection threshold. Consequently, the 

processor false alarm rate tends to decrease. On the other 

hand, Fig.(17) is another tool for measuring the capability 

of the CFAR processor to hold its false alarm rate 

unchanged in the presence of outliers in its operating 

environment. It measures the actual false alarm rate for 

various levels of interfering target return when the 

fluctuation model of the outlier follows either SWIII or 

SWIV. All the candidates of the GTM-CFAR scheme 

tend to maintain their false alarm rate constant en face of 

the strength of interfering target returns. For weak INR, 

all the family gives, approximately, the same rate of false 

alarm which is very close to its designed value. As the 

interference level increases, each processor has its own 

behavior in such a way that the SWIV model for the 

fluctuation of the secondary interfering target yields 

higher performance than its fluctuation according to 

SWIII.  For higher values of INR, on the other hand, the 

two performances tends to be coincide indicating that the 

processor presents the same false alarm rate performance 

for extraneous target fluctuation obeying either SWIII or 

SWIV model when the interference level becomes 

stronger. This behavior is predicted since the outlying 

target returns have no contribution on the determination 

of the detection threshold. The OS based techniques 

reserve their ordering, in giving acceptable false alarm 

rate performance, as we have previously stated in Fig.(16) 

where the CA procedure, GTM(0,0,0), has the highest 

degraded performance in this category of CFAR schemes. 

In other words, the CA scheme is the only one that is not 

able to hold this rate unchanged. Since the spurious target 

returns affect directly the calculation of the detection 

threshold, this threshold raises as the interfering target 

returns becomes strengthed and this in turn decreases the 

false alarm probability. This behavior of the CA false 

alarm rate performance continues as INR increases. 

 

V.  CONCLUSIONS 

This paper is devoted to the theoretical background and 

performance analysis of robust and efficient threshold 

estimates, which have invariant CFAR performance with 

respect to the unknown parameters of a clutter 

distribution. This results in improving the detection 
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probability of the CFAR schemes, in the case where some 

interfering target contaminated cells may exist amongst 

the candidates of the reference window, such as in the 

case of the CML, CCA, OS, and TM. These processors 

exhibit efficient estimation under the homogeneous 

distributed background observations. We have derived 

exact detection probabilities for these CFAR schemes, 

based on their local noise power level estimation on the 

ordered statistics technique, for partially-correlated χ
2
 

targets in the absence as well as in the presence of 

spurious targets. The primary and the secondary 

interfering targets are assumed to be fluctuating in 

accordance with the χ
2
 fluctuation model with two- and 

four-degrees of freedom. It was shown that for a 

prescribed false alarm probability and a given 

signal-to-noise ratio, the detectability of moderately 

fluctuating radar targets depends on the eigenvalues of 

the correlation matrix. Eigenvalue distributions lie 

between two distinct cases correspond to SWII & SWI 

when the fluctuation model follows 
2
 -distribution with 

two-degrees of freedom, and SWIV & SWIII in the 

situation where the target fluctuation follows 
2
 -statistics 

with four-degrees of freedom. The results are given in a 

closed form expressions. The analytical results have been 

used to develop a complete set of performance curves 

including the detection probability in homogeneous and 

multiple-target situations, the variation of false alarm rate 

with the strength of interfering targets that may exist 

amongst the contents of the estimation set, and the 

required SNR to achieve a prescribed operating point, as 

a function of the correlation coefficient. It is noted that 

the processor detection performance improves as the 

number of post-detection integrated pulses increases and 

more per pulse SNR is required to achieve a prescribed 

probability of detection, as the signal correlation 

increases from zero to unity. 

Finally, when the target's signal has fluctuated obeying 

χ2 statistics, the signal components are correlated from 

pulse-to-pulse and this correlation degrades the processor 

performance. A common and accepted practice in radar 

system design to mitigate the effect of target fluctuation 

is to provide frequency diversity to de-correlate the signal 

from pulse-to-pulse. While this technique is effective, it 

requires additional system complexity and cost. 
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