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Abstract—This paper presents a method for the design of 

two-channel quadrature mirror filter (QMF) banks with 

linear phase in frequency domain. Low-pass prototype 

filter of the QMF bank is implemented using polyphase 

decomposition. Prototype filter coefficients are optimized 

to minimize an objective function using eigenvalue-

eigenvector approach without matrix inversion. The 

objective function is formulated as a weighted sum of 

four terms, pass-band error and stop-band residual energy 

of low-pass analysis filter, the square error of the overall 

transfer function at the quadrature frequency and 

amplitude distortion of the filter bank. The simulation 

results clearly show that the proposed method requires 

less computational efforts in comparison to the other 

state-of-art existing design methods.  

 

Index Terms—Nonlinear optimization, Polyphase 

decomposition, Sub-band coding, Perfect reconstruction. 

 

I. INTRODUCTION 

Quadrature mirror filters (QMF) are based on the 

concept of splitting the bandwidth of the original 

spectrum in two halves, the low and the high bands. This 

is done by designing special purpose low-pass and high-

pass filters [1]. Two-channel QMF bank finds 

applications in various signal processing fields, such as 

multicarrier modulation systems [2], design of wavelet 

bases [3],  image coding [4], digital trans-multiplexers [5], 

discrete multi-tone modulation systems [6], ECG signal 

compression [7], antenna systems [8], speech 

compression [9], biomedical signal processing [10] and  

acoustic echo-cancellation [11].  

Various unconstrained and constrained optimization 

techniques [12─25] have been developed for the design 

of two-channel QMF banks in both time and frequency 

domains. Analysis and synthesis sections of a typical 

QMF bank are shown in Fig. 1. Using the low-pass and 

high-pass analysis filters H1 (z) and H2 (z), an input signal 

x(n) is divided into two equally spaced frequency sub-

bands. These sub-band signals are decimated by a factor 

of 2 to accomplish signal compression. At the receiver 

end, sub-band signals are interpolated and recombined 

using similar set of synthesis filters to obtain the 

reconstructed output signal. Due to the fact that filters H1 

(z), H2(z), G1(z), and G2(z) are not ideal,  the output signal 

y(n) suffers from three errors: aliasing distortion (ALD), 

phase distortion (PHD) and amplitude distortion (AMD) 

[26, 27]. Thus, the design problem for the two-channel 

QMF bank is to find the optimal filters for the 

analysis/synthesis sections such that the reconstructed 

signal y(n) approximates the original signal x(n). 

The expression for the overall transfer function of the 

alias free two-channel QMF bank can be written as 

[16−23]  
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where synthesis filters are defined in terms of analysis 

filters as given below for  alias cancellation  
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and mirror image analysis filters H1(z) and H2(z) are 

related to each other by following equation  
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Equation (1) indicates that the overall design task 

reduces to the determination of the optimized filter 

coefficients of the low pass analysis filter H1 (z) only, 

which is known as low-pass prototype filter. To obtain 

the exact reconstruction QMF bank, PHD and AMD 

should also be eliminated, in this case the overall transfer 

function T(z) must be a pure delay, i. e.,  
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Let the low-pass filter H1 (z) is selected to be a 

linearphase finite impulse response (FIR) with even filter 

length N, then from (1), T (z) also becomes linear phase 

FIR and PHD of QMF bank is eliminated completely. 

The inverse Z transform h1 (n) of H1 (z) is given by  
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The corresponding frequency response has the form 
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where HR (ω) is the amplitude function. For real impulse 

response h1 (n), the magnitude response |H1(e
jω)| is an 

even function of ω, therefore, by substituting (6) into (1) 

yields the overall frequency response of QMF bank as 

follows: 

 

 

 

 
 

 

 

 

 

 
 

Fig. 1.  Two-band QMF bank 
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If filter length (N) is selected to be odd, then the above 

equation gives severe amplitude distortion at quadrature 

frequency. Therefore, N must be chosen to be even and 

the condition for exact reconstruction (ER) can be written 

[1]  
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  )    , for all ω.  (8)  

 

After eliminating ALD and PHD completely, we can 

only minimize amplitude distortion [26] rather than 

completely eliminated due to mirror image symmetry 

constraint of (3). If the characteristics of prototype filter 

are assumed ideal in pass-band and stop-band regions then 

|T(ejω)| will be constant in the pass bands of H1 (z) and H2 

(z) and ER condition is automatically satisfied in these 

regions. The main hurdle comes in transition band region. 

Thus, the aim is to find the optimal coefficients for the 

FIR low-pass prototype filter such that the flat exact 

reconstruction condition must be satisfied given in (8). 

This paper proposes an improved technique for the 

design of QMF bank by representing the low-pass 

prototype filter using polyphase structure and 

minimization of a quadratic error function by 

unconstrained iterative method without any matrix 

inversion. In section 2, polyphase representation and 

formulation of design problem are discussed. Section 3 

presents the design algorithm. Section 4 describes the 

simulation results with design examples. Finally, 

conclusions are drawn in section 5.  

 

II. POLYPHASE REPRESENTATION OF QMF BANK 

The polyphase decomposition can be used to 

implement the analysis and synthesis sections of a filter 

bank in a very computationally efficient manner [1, 26]. 

In general, M-fold decimation filter or interpolation filter 

can be implemented with approximately M-fold reduction 

in the number of multiplications per unit time (MPUs) 

and number of additions per unit time (APUs) by using 

the polyphase representation. Polyphase component 

based complete two-channel QMF bank requires only 

about (N-1)/2 MPUs and (N-1)/2 APUs [1], where N is 

the filter length of H1 (z). Type1 polyphase representation 

[1] of analysis filters is given by 
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Equation (5) states that the impulse response h1 (n) of 

the prototype filter H1 (z) is symmetric, this also reflects 

into the polyphase components E1 (z) and E2 (z). Due to 

the symmetry of h1 (n), the impulse response e2 (n) = h1 

(2n+1) is the mirror image of e1 (n) = h1 (2n) for even N 

and if N is odd, then e1 (n) & e2 (n) are symmetric 

sequences [1]. This further impact on computational 

complexity, we obtain a factor of two additional saving in 

multiplication rate. Thus, the polyphase structure of a 

two-fold decimation filter with symmetric impulse 

response requires only about (N−1)/4 MPUs whether N is 

even or odd. The length of filter H1 (z) is taken as even, 

therefore, the relationship between two polyphase 

components can be given as  

 

e1 (n) = e2 ((N─2)/2 ─ n) = e2 (M ─ n)            (12) 

 

where M = (N─2)/2  

then, E2 (z) can be expressed as 
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By using the above concept, the polyphase structure 

for two-channel QMF bank with noble identities 

described in [26] can be modified as depicted in Fig. 2. 
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By substituting E2 (z) from (13) into (9), we obtain  
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The frequency response of prototype filter is given by 

 

  ( 
  )     ( 

   )       (   )  ( 
    )        (15) 

Where 

 

  ( 
   )   

( 2)/

1

2

0

2( )
N

n

j ne en 




                   (16) 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Complete two-band QMF bank using proposed polyphase form 
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Comparing (17) with (6) yields 
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where bn = 2e1(n)and 
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A.  The Objective Function 

The objective function should reflect the stop-band 

energy as well as the accuracy of pass-band and transition 

band. In this paper, the QMF design problem is 

formulated as a multi-objective unconstrained 

optimization problem. A novel objective function is 

formulated as a weighted sum of four terms: 

 

             +       +                      (21) 

 

where α1, α2 , α3 and α4 are real constants, and Ep , Es , Et 

and Em are the pass-band error, stop-band residual energy, 

square error of the T (z) at ω = π/2, and amplitude 

distortion, respectively. For exact reconstruction, the 

|T(ejω)| must be equal to |H1(e
jω)|2 at ω = 0. Consequently, 

at ω = π/2 the exact reconstruction condition of (8) can be 

expressed as 
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where HR (π/2) and HR (0) are the amplitude responses of 

prototype filter at ω = 0 and ω = π/2, respectively. Using 

(19) and (22), the square error Et in transition band can be 

implemented as 
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where vector q is equal to vector c(ω), when it is 

evaluated at ω = π/2, and HR1 = 0.707 bT
c(0). 

Similarly, Ep and Es can be obtained 

 

    
2

0

(0) ( )








p

R R

d
H H                        (25) 

 

                                                                     (26) 

 

where F is symmetric and positive definite matrix, given 

by  
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where G is symmetric and positive definite matrix, 

calculated as 
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Em  can be realized as 
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III. OPTIMIZATION ALGORITHM 

Substituting (24), (26), (29) and (31) into (21) yields 
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Where matrix R is  

 
                                                (33) 

 

and S = qqT 

 

R is a real, symmetric and positive definite matrix and 

objective function E is in quadratic form. So, the 

minimization problem can be formulated to calculate 

optimal b as an eigenvector corresponding to the 

minimum eigenvalue λmin of R. The standard methods for 

finding the eigenvalues of a large matrix are not efficient. 

In this paper a modified Power method without any 

matrix inversion [1] is used to determine minimum 

eigenvalue and corresponding eigenvector in the 

eigenspace for the minimization problem. Power method 

is an iterative method which starts with an initial 

arbitrarily chosen vector p0 and generates a sequence of 

approximations pk to get optimized filter coefficients 

corresponding to λmin of R. 

A step-by-step algorithm for designing the prototype 

low-pass filter based on the principle discussed above is 

as follows: 

 

(1) Select design specifications of H1 (z) such as filter 

length (N), stop-band edge frequency (ωs) and pass- 

band edge frequency (ωp). 

(2) To satisfy the unit energy constraint, initial 

eigenvector of length N/2 is taken as pi = [0, 0, 

0, … ……0, 0, (  )⁄
  ⁄

].  

(3) Assume initial values of α1, α2, α3 and α4. 

(4) Set the iteration number, i = 0. 

(5) Obtain initial vector bi by constraining pi to be unit 

norm vector and compute the matrix R using (33). 

(6) Compute the new eigenvector as pi+1 = [R]. bi. 

(7) Compute bi+1 from pi+1, also compute the 

objective function Ei+1, at the design vector bi+1. If 

Ei+1 < Ei, choose the optimum point as bi, stop the 

procedure and go to step (11). If Ei+1 ≥ Ei. set Ei = 

Ei+1, pi  =  pi+1, bi = bi+1, and i = i+1  and go to 

step (6) until the following condition reached: 

(8)  [R]. bi = [R]. bi+1 =  λmax1. bi+1. 

(9) Compute maximum eigenvalue (λmax1) of matrix R 

from step (7) and define a new matrix A = λmax1.I 

─ R, which is positive semi-definite. 

(10) Again compute the maximum eigenvalue (λmax2) 

for matrix A using same procedure in step (6) and 

step (7) for matrix R. 

(11) Minimum eigenvalue (λmin) for matrix R can be 

calculated by the relation λmax2 = λmax1─ λmin 

without involving any matrix inversion. 

(12) The optimum solution is b = bi+1 and finally 

compute h1(n). 
 

IV. DESIGN EXAMPLES AND DISCUSSION 

In this section, we present MATLAB based computer 

simulations for QMF bank using the above algorithm. A 

desktop computer equipped with Intel Core 2 Duo CPU 

@ 2.10 GHz, 1 GB RAM is used to test the programs. 

The performance and effectiveness of the algorithm is 

evaluated in terms seven significant quantities: Peak 

reconstruction error (PRE) in dB =          (   
      )   

−         (   
      )  , Pass band error (Ep), Stop band 

error (Es), Computational time (CPU time), number of 

iterations (NOI), stop-band edge attenuation (As) = − 20 

log10 (H1(ωs)) and stop-band first lobe attenuation (AL). 

The constants α1, α2, α3 and α4 are selected by trial and 

error method to find the best possible solution. Table 1 

demonstrate the comparison of the proposed method with 

other state-of-art existing method for filter length (N) = 

24 in terms of significant quantities with similar design 

specifications. 

A. Design Examples 

Example 1: For N = 48, ωs = 0.6π, ωp = 0.4π, α1 = 0.95, 

α2 = 0.1, α3 =0.05 and α4 = 10-2, the following filter tap 

weights for the FIR low-pass prototype filter (H1 (z)) 

yields after 12 iterations:  

 

h1(0) = - 0.000030, h1(1) = 0.000069, h1(2) = 0.000157, 

h1(3) = - 0.000357, h1(4) = - 0.000456,  h1(5) =  0.001185, 

h1(6) = 0.000951, h1(7) = - 0.00310119, h1(8) = - 0.00151, 

h1(9) = 0.00689464, h1(10) = 0.001689, h1(11) = - 

0.013591, h1(12) = - 0.000551, h1(13) = 0.024433, h1(14) 

= - 0.003557, h1(15) = - 0.041045, h1(16) = 0.013497, 

h1(17) =  0.066259, h1(18) = - 0.034971, h1(19) = - 

0.107700, h1(20) = 0.084400, h1(21) = 0.199042, h1(22) = 

- 0.261766, h1(23) = - 0.929945. 

 

The significant quantities obtained are Ep = 2.725×10-11, 

Es = 7.224×10-12, As = 67.7 dB, AL = 97.65 dB, CPU-time 

= 0.0686 sec., and PRE = 0.0068 dB. For example 1, the 

resulting magnitude response of low-pass prototype filter 

is shown in Fig. 3a. The normalized magnitude plots of 

analysis filters H1 (z) and H2 (z) are displayed in Fig. 3b. 

Figures 3c and 3d depict the reconstruction error (in dB) 

and overall magnitude response of the QMF bank, 

respectively. 

Example 2: For N = 24, ωs = 0.6π, ωp = 0.4π, α1 = 0.61, α2 

= 0.9, α3 = 0.06 and α4 = 10-2, the following filter tap 
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weights for the FIR low-pass prototype filter (H1 (z)) 

yields after 06 iterations: 

 

h1(0) = - 0.002162, h1(1) = 0.006417, h1(2) = 0.003313, 

h1(3) = - 0.020964,  h1(4) = -0.000133, h1(5) = 0.048519, 

h1(6) = - 0.015659, h1(7) = - 0.097246, h1(8) =  0.062790, 

h1(9) = 0.198991, h1(10) = - 0.243114, h1(11) = -

0.940639. 

 

The significant quantities obtained are Ep = 1.9471×10-

7, Es = 9.6599×10-7, As = 34.18 dB, AL = 49.96 dB, CPU-

time = 0.0288 sec., and PRE = 0.0266 dB. For example 2, 

the resulting magnitude response of low-pass prototype 

filter is shown in Fig. 4a. The normalized magnitude 

plots of analysis filters H1 (z) and H2 (z) are displayed in 

Fig. 4b. Figures 4c and 4d depict the reconstruction error 

(in dB) and overall magnitude response of the QMF bank, 

respectively. 

It can be clearly observed from table 1 that the 

performance of the proposed design technique is better 

than all other methods in terms of Es, As, AL, number of 

iteration (NOI) required and the CPU time of the 

processor. The performance in terms of reconstruction 

error is also comparable with other existing methods. 

Consequently, the main advantage of proposed technique 

is reduction in computational burden and it is suitable for 

various engineering fields such as image and speech 

compression. 

 

 

Fig. 3 (a) Magnitude response of low-pass analysis filter for N = 48 (b) Normalized Magnitude responses of analysis filters H1 (z) and H2 (z) (c) 

Reconstruction error in dB (d) Overall magnitude response of the QMF bank 
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Fig. 4 (a) Magnitude response of low-pass analysis filter for N =24 (b) Normalized Magnitude responses of analysis filters H1 (z) and H2 (z) (c) 

Reconstruction error in dB (d) Overall magnitude response of the QMF bank 

Table 1: Performance comparisons of proposed method with state-of-art existing methods for N = 24 

________________________________________________________________________________________________ 
         Methods                                      Es       Ep             PRE (dB)        As (dB)      AL (dB)         NOI      CPU 

                                                                                                                                                           time(s) 

    Ghosh et al. [23]           1.30×10-4  9.14×10-7          0.030   20.11        30.93            -----      ------ 

    (MJADE_pBX algorithm) 

    Upendar et al. [19]           7.99×10-5       1.84 ×10-7              0.019   22.78    34.43        122         1.48 

    PSO [20]                            4.69×10-5       1.28 ×10-7              0.017    28.86    38.8        128         1.69 

    Yue -Dar J. [24]                ---            ---                 0.043               22.05          ---         09          --- 

    Steepest-Descent [21]           7.06×10-5        1.32 ×10-7         0.031   25      34.7         76          0.81 

    A.  Kumar et al. [18]                     1.74×10-5        7.86 ×10-8         0.017   28.31      37         21       0.11      

    Sahu [17]            8.45×10-5        9.23 ×10-8         0.025   23.03     35.83         109        0.64                        

    Proposed Method            9.65×10
-7 

       1.95 ×10
-7 

        0.0266
    

33.18     48.91          06      0.028 

___________________________________________________________________________________________________________ 

 

V. CONCLUSION  

A computational efficient method for designing of 

two-channel QMF bank has been presented in this paper. 

The prototype filter for the filter bank was designed using 

polyphase concept to reduce the CPU time. The objective 

function for the design problem also includes the 

amplitude distortion term for better results. The improved 

eigenvalue-eigenvector approach was used for 

optimization that does not require any matrix inversion 

which generally affects the effectiveness. The 

computational burden is very little for the proposed 

technique in comparison of other state-of-art existing 

techniques. The proposed method is also very effective 

for higher filter orders. The extension of this approach for 

designing more than two-band QMF bank is under 

investigation. This type of design methods may be 

suitable various engineering fields such as image and 

speech compression.  
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