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Abstract— The biomedical engineering problem 

addressed in this work is the one of finding a novel 

signal-image content measure called intensity-curvature 

functional making use of all of the second order 

derivatives of the model function fitted to the data. 

Given a signal-image made of a sequel of discrete 

samples and given a model function which embeds the 
property of second order differentiability, it is possible 

to quantify the content of the signal-image through a 

novel approach based on both of the intensity and of the 

total curvature of the signal-image. The signal-image is 

fitted with the model function. The total curvature can 

be calculated through the sum of all of the second order 

derivatives of the Hessian of the model function fitted to 

the data. The intensity-curvature functional is defined as 

the ratio between: (i) the integral of the multiplication 

between the value of the signal modeled through an 

interpolation function and the total curvature of the 

signal-image; both of them at the temporal-spatial 

location of its sampling (the grid nodes) and, (ii) the 

integral of the value of the multiplication between the 

signal modeled through an interpolation function and the 

total curvature of the signal-image; both of them at any 

given temporal-spatial location of its re-sampling (intra-

pixel location). This manuscript shows both of the 

formulae and the qualitative results of: the intensity-

curvature functional and the intensity-curvature 

measures which are conceptually linked to the intensity-

curvature functional. The formulations here presented 

make the engineering innovation. The intensity-
curvature functional depends on both of the model 

function fitting the signal-image and the magnitude of 

re-sampling employed to calculate the second order 

derivatives of the Hessian of the model function. 

 

Index Terms— Model Function, Second Order 

Derivative, Total Curvature, Intensity-Curvature 

Functional, Intensity-Curvature Measure, Signal-Image 

Content 

 

I. INTRODUCTION 

Within the context of optimization of interpolation 

procedures, the literature is rich of measures of the 

signal-image energy (i.e. [1-3]). The literature is missing 

though of an approach which quantifies the content of 

the signal-image through the combined information 

content of the values of both of the signal intensity and 

the total curvature of the signal-image. As far as the total 

curvature is concerned, the literature reports on 

examples of techniques employed to calculate 

derivatives of the signal-image on the basis of 

convolution operators like: the gradient [4], compact 

finite differences [5] and multidimensional derivative 

filters [6], and nonetheless to mention, the Sobel 

operator [7] used to calculate the first order derivative. 
The biomedical problem being addressed in this 

manuscript is that one of defining novel measures of the 

signal-image content which: make use of the total 

curvature of the signal-image; and at the same time 

calculate the total curvature using all of the second order 

derivatives of the Hessian of the model function fitted to 

the data. The engineering innovation provided through 

this manuscript is that one of combining the value of the 

signal with the value of the total curvature. It is therefore 

possible to establish a measure of the intensity-curvature 

content level of the signal, which distinguishes concave 

signals from convex signals, thus obtaining novel local 

properties of the signal-image which are called intensity-

curvature functional and intensity-curvature measure. 

Resent research in signal-image interpolation [8, 9] 

shows the feasibility of the improvement of the 

approximation characteristics of a set of interpolation 

functions (under the same methodological approach) 

through the use of the intensity-curvature functional. 

This manuscript is intended to provide to the reader with 

the math details of the intensity-curvature functional and 

the intensity-curvature measures, as well as with some 

qualitative results obtained with the formulations herein 

reported when studying the bivariate linear, the trivariate 

cubic Lagrange interpolation functions and the mono-

dimensional quadratic and cubic B-Spline and the cubic 

Lagrange polynomials. In section II of this manuscript 

the formulae are presented, in section III the results are 

reported and in section IV the discussion highlights the 

features of the novel content measure of the signal-

image herein described thereby stressing on the 

significance of the results in biomedical image 

processing.  

II. THEORY 

Noteworthy the following two premises: (i) one is that 

the model function needs to have existing and non null 

second order derivatives, and (ii) the other one is that all 

of the second order derivatives of the model function are 

included (with respect to all of the dimensional variables) 

in the calculation of the total curvature. Given a model 
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function f(x), with x = x1, or x = (x1, x2) or x = (x1, x2, x3) 

or more generally: x = (x1, x2…xn), fitting the discrete 

sequel of digital values the signal-image is composed of, 

the intensity-curvature functional is defined as: 

ΔE(x) = { Σij ∫ f(0) · [ (∂2 ( f(x) ) /∂xi∂xj)]x=0  } / 

{ Σij ∫ f(0) · [ (∂2 ( f(x) ) /∂xi∂xj)]x=x  }                            (1)

 The numerator of (1) is called intensity-curvature 

term before interpolation and the denominator of (1) is 

called the intensity-curvature term after interpolation. In 

other words, the term at the numerator calculates both of 

the value of the model function and all of the derivatives 

of the Hessian of the model function at the spatial-

temporal location x = 0, while the term at the 

denominator calculates both of the value of the model 

function and all of the derivatives of the Hessian of the 

model function at the spatial-temporal location x = x 

(intra-pixel location). The intensity-curvature term 

before interpolation [8, 9] is employed to measure the 

intensity-curvature content level of the non-interpolated 

signal (given f(x) as model function). The formulations 

(2) through (4) define the intensity- curvature terms 

before interpolation in 1D, 2D and 3D: 

E0(x) = ∫ [f(0) · (∂2 ( f(x) ) /∂x2)]x=0 dx                           (2) 

E0(x, y) = ∫ ∫ f(0, 0) · [ (∂2 ( f(x, y) ) /∂x2) + (∂2 ( f(x, y) ) 

/∂y2) + (∂2 ( f(x, y) ) /∂x∂y) + (∂2 ( f(x, y) ) /∂y∂x)](x, y) = 

(0, 0)  dx dy                                                                       (3) 

E0(x, y, z) = ∫ ∫ ∫ f(0, 0, 0) · [ (∂2 ( f(x, y, z) ) /∂x2) + (∂2 

( f(x, y, z) ) /∂y2) + (∂2 ( f(x, y, z) ) /∂z2) + (∂2 ( f(x, y, z) ) 

/∂x∂y) + (∂2 ( f(x, y, z) ) /∂y∂x) + (∂2 ( f(x, y, z) ) /∂x∂z) 

+ (∂2 ( f(x, y, z) ) /∂z∂x) + (∂2 ( f(x, y, z) ) /∂y∂z) + (∂2 

( f(x, y, z) ) /∂z∂y)] (x, y, z) = (0, 0, 0)  dx dy dz                     (4) 

The formulations (5) through (7) define the intensity-

curvature terms after interpolation in 1D, 2D and 3D: 

EIN(x) = ∫ [f(x) · (∂2 ( f(x) ) /∂x2)]x=x dx                          (5) 

EIN(x, y) = ∫ ∫ f(x, y) · [ (∂2 ( f(x, y) ) /∂x2) + (∂2 ( f(x, y) ) 

/∂y2) + (∂2 ( f(x, y) ) /∂x∂y) + (∂2 ( f(x, y) ) /∂y∂x)](x, y) = 

(x, y)  dx dy                                                                       (6) 

EIN(x, y, z) = ∫ ∫ ∫ f(x, y, z) · [ (∂2 ( f(x, y, z) ) /∂x2) + (∂2 

( f(x, y, z) ) /∂y2) + (∂2 ( f(x, y, z) ) /∂z2) + (∂2 ( f(x, y, z) ) 
/∂x∂y) + (∂2 ( f(x, y, z) ) /∂y∂x) + (∂2 ( f(x, y, z) ) /∂x∂z) 

+ (∂2 ( f(x, y, z) ) /∂z∂x) + (∂2 ( f(x, y, z) ) /∂y∂z) + (∂2 

( f(x, y, z) ) /∂z∂y)] (x, y, z) = (x, y, z)  dx dy dz                     (7) 

From (1) through (7) the following intensity-curvature 

measures were derived through the works presented in 

[8] using the Sub-pixel Efficacy Region. As far as 

regards the one-dimensional quadratic B-Spline and the 

one-dimensional cubic Lagrange interpolation functions, 

the intensity-curvature measure is: 

EIN(xSRE - x0) / EIN(xSRE)                                                 (8) 

As far as regards the one-dimensional cubic B-Spline, 

the intensity-curvature measure is: 

ΔE(xSRE - x0) / ΔE(xSRE)                                                 (9) 

And, as far as regards the bivariate linear interpolation 

function, the intensity-curvature measure is: 

EIN((xSRE, ySRE) - (x0, y0)) / EIN(xSRE, ySRE)                    (10) 

III. QUALITATIVE RESULTS 

This section reports on the results of the calculation of 
the intensity-curvature measures shown in (1), (8), (9) 

and (10), when re-sampling in one, two and three axial 

dimensions. The quadratic B-Spline, the cubic B-Spline 

and also the cubic Lagrange polynomials are fitted to 2D 

images, when re-sampling in one direction. The 

bivariate linear interpolation function is fitted to a 2D 

image when re-sampling in two axial directions. 

Additionally, results were obtained fitting the trivariate 

cubic Lagrange model function to a 3D image when re-

sampling in three directions. All of the misplacements 

have been used in order to apply virtual shift-rotations to 

the images [9].  

An 139 × 139 pixels image with pixel size 1.0 mm × 

1.0 mm is shown in Fig. 1(a), whereas in (b), (c) and (d) 

of Fig. 1 is shown the intensity-curvature measure (8) 

obtained with a parametric quadratic B-Spline 

polynomial (see (b)), the intensity-curvature measure (9) 

obtained with a cubic B-Spline polynomial (see (c)), and 

the intensity-curvature measure (8) obtained with a 

cubic Lagrange polynomial (see (d)). Figs. 1(b), 1(c) and 

1(d) are different, showing that the intensity-curvature 

measure is not the same across the three images. Re-

sampling was of a misplacement of 0.1 mm in all of Figs. 

1(b), 1(c) and 1(d).   

This result is suggestive that the model function fitted 

to the signal-image is a determinant of the intensity-

curvature content which is detectable through the 

intensity-curvature measure. Fig. 2 shows in (a), (b) and 

(c) the intensity-curvature measure (8) obtained when 

fitting to the image seen in Fig. 1(a), the quadratic one-

dimensional B-Spline (a), the intensity-curvature 

measures (9) and (8) obtained when fitting the one-

dimensional cubic B-Spline (b) and the one-dimensional 

cubic Lagrange (c) respectively, when re-sampling in 

one axial direction with a misplacement of 0.3 mm.  

In one of the two cases shown in Fig. 3, the 

magnitude of the misplacement does have an effect on 

the map of the intensity-curvature measures (8) and (9) 

when re-sampling with the one-dimensional cubic 

Lagrange and the one-dimensional cubic B-Spline 

interpolation functions respectively. The intensity-

curvature image content is not measured to be the same 

(see (b) versus (d)). The model function is the one-

dimensional cubic B-Spline in (b) and the one-

dimensional cubic Lagrange in (c). Re-sampling is of the 

misplacement of 0.3 mm in (d) where the model 

function is the one-dimensional cubic B-Spline, and in 

(e) where the model function is the one-dimensional 

cubic Lagrange. 

Data seen in Fig. 4 are from the portion of the MRI 

volume comprising of 6 slices and the intensity-
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curvature functional was obtained through the use of the 

trivariate cubic Lagrange function employed to fit the 

three-dimensional image. The value of the misplacement 

where the signal is re-sampled is 0.1 mm along all of x, y 

and z axis. Data seen in Fig. 5 were obtained through the 

use of the intensity-curvature measure (10) when fitting 

the bivariate linear interpolation function to the image 

data. Two MRI images are shown in (a) and (d); and in 

(b) and (c) are shown the corresponding intensity-

curvature measures (10) when re-sampling a 

misplacement of 0.1 mm and 0.3 mm respectively along 

both of the x and y axis.  

 
(a)                                   (b) 

 
(c)                                   (d) 

Figure 1. In (a), a two-dimensional image 139 × 139 pixels (1.0 mm × 

1.0 mm) padded with 5 pixels along the 4 edges, in (b), in (c) and in (d) 
the intensity-curvature measures calculated when fitting the one-
dimensional quadratic B-Spline and using (8) (see (b)), the one-
dimensional cubic B-Spline and using (9) (see (c)), and the one-

dimensional cubic Lagrange and using (8) (see (d)), when re-sampling 
a misplacement of 0.1 mm along the x axis (horizontal). The formulae 

of the aforementioned polynomials are found in [8]. 

Similarly in (e) and in (f) are shown the intensity- 

curvature functional of the image seen in (d) for a 

misplacement of 0.1 mm (e) and 0.3 mm (f) respectively 

along both of the x and y axis. In the two cases shown in 

Fig. 5, the magnitude of the misplacement does not have 

an effect on the map of the intensity-curvature measure 

and so the intensity-curvature content is measured to be 

the same in both of the cases presented (re-sampling of 

0.1 mm and 0.3 mm).  

 

Figure 2. Two-dimensional intensity-curvature measures of the image 

seen in Fig. 1(a). The intensity-curvature measures are obtained with 
one-dimensional model functions: quadratic B-Spline and using (8) 

(shown in (a)), cubic B-Spline and using (9) (shown in (b)), and cubic 
Lagrange and using (8) (shown in (c)); when re-sampling the image in 

Fig. 1(a) of a misplacement of 0.3 mm along the x axis. 

   
(a)                (b)             (c) 

   
(d)                (e) 

Figure 3. The calculation of the intensity-curvature measure with 

changing misplacements. In (a) a two-dimensional light source image 
65 × 65 pixels (1.0 mm × 1.0 mm), in (b) and (c) the intensity-

curvature measure obtained when re-sampling the image in (a) of a 

misplacement of 0.1 mm along the x axis with the one-dimensional 
cubic B-Spline and using (9) (see (b)); and the one-dimensional cubic 

Lagrange and using (8) (see (c)). The intensity-curvature measure 
calculated with (9) when re-sampling the image in (a) of a 

misplacement of 0.3 mm is shown in (d) (cubic B-Spline). And in (e) 
(cubic Lagrange) is shown the intensity-curvature measure obtained 

using (8).

 

 
(a)                                    (b)                                     (c)                              (d) 

(b) 

(a) (b) 

(c) 
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(e)                                    (f)                                     (g)                              (h) 

 

 
(i)                                    (j)                                     (k)                              (l) 

Figure 4. The  Magnetic  Resonance Imaging (MRI) three dimensional volume shown in (a), (c), (e), (g), (i), (k) belongs to the OASIS database: 

www.oasis-brains. org [13-18]. And the corresponding intensity-curvature functional slice by slice are shown in (b), (d), (f), (h), (j), (l). Voxels are 
1.0 mm × 1.0 mm × 1.00 mm along the edges: x, y and z respectively. The matrix size on the 2D plane is 176 × 208 pixels. The intensity-curvature 

functional images were calculated with the trivariate cubic Lagrange formula [9]. 

Even though the model function introduces bias 

because of its arbitrary choice; it is true that the same 

proposed approach is extendible to any model function 

given the constraint property of second order 

differentiability of the math model.  

Observation of the images in Fig. 1 through Fig. 5 

yields the following major results. Figs. 1, 2 and 3 

provides with a practical demonstration of the change in 

intensity-curvature content consistently with the change 

in the re-sampling location, given that is it observed a 

change in the values of the intensity-curvature measure 

for example when looking at the difference between Fig. 

3(b) (re-sampling of 0.1 mm) and Fig. 3(d) (re-sampling 

of 0.3 mm). Similar results are observable when 

comparing the intensity-curvature measure maps in Figs. 

1 and 2. It is worth noting the consistency observable in 

Fig. 3 in that the intensity-curvature measure is zero 

when the signal is zero whereas it provides with an 

evidence of non null values otherwise. 

Additionally, in Figs. 1(b), 1(c), and 1(d), 2(a), 2(b) 

and 2(c), the quadratic and cubic B-Splines as well as 

the cubic Lagrange polynomials allows the calculation 

of an intensity-curvature measure map which is well 

correlated with the image features shown in Fig. 1(a). 

This is also remarkably seen in Fig. 4 (intensity-

curvature functional) and Fig. 5 (intensity-curvature 

measure). Additionally, in Figs. 1(b), 1(c), and 1(d), 2(a), 

2(b) and 2(c), it is observable that the values of the 

intensity-curvature measure follow the patterns of signal 

intensity observed in the original image seen in Fig. 1(a). 

A similar observation can be made for Figs. 5(b), 5(d), 

5(e), 5(f) in relationship to the MRI seen in Figs. 5(a) 

and 5(d). 

IV. DISCUSSION AND CONCLUSION 

Only in recent years adaptive re-sampling has been 

recognized as the mean to progress in signal-image 

interpolation to the extent of generating novel 

approximation paradigms with optimized interpolation 

error [10-12]. The specific reason why the intensity-
curvature functional comprises of the total curvature of 

the model function descends from the intent of the 

unifying theory [8].  
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(a)                                   (b)                                    (c) 

   
(d)                                   (e)                                    (f) 

Figure 5. The images in (a) and (d) are the original MRI with a 176 × 208 pixels' matrix which pixel size is 1.0 mm × 1.0 mm (OASIS database: 

www.oasis-brains.org [13-18]). The images in (b) and (e) are the two intensity-curvature measure (10) obtained when re-sampling the misplacement 
of 0.1 mm along both of x and y axis, whereas the images in (c) and (f) are the two intensity-curvature measure (10) obtained when re-sampling the 

misplacement of 0.3 mm along both of x and y axis. The four intensity-curvature measure images were obtained when fitting the bivariate linear 
interpolation function to the original images shown in (a) and (d). 

A. The Philosophy of Thought 

The philosophy of thought upon which the conception 

of the intensity-curvature functional descends from, 

addresses the general problem of discontinuity (digital) 

versus continuity (mathematics). Given a discrete sequel 

of samples obtained at a given sampling frequency, the 

problem consists in that of bringing continuity to the 

samples which otherwise would remain discontinuous in 

their nature. Within the aforementioned extent, the use 

of a model formula like the B-Spline, for instance, to 

model the signal-image data on a pixel-by-pixel basis, 

brings continuity to the discrete sequel of samples. 

Logically, one implication of the continuity in the 

signal-image is that local properties of the signal-image 

can be formulated. The locality of the property brings 

the advantage of its mathematical definition and 
characterization for each value of the real numbers 

where the model function is defined. Specifically, the 

math definition and characterization is possible in the 

entire interval where the model function is defined. In 

this paper the intensity-curvature functional and the 

intensity-curvature measures are the properties which 

are presented, and such properties embed, under the 

fulfilled assumption of second order differentiability of 

the model function, the capability to be local to the 

model function and thus local to the signal-image 

(defined for each x belonging to the interval of 

definition of the model function). 

The intensity-curvature functional and the 

consequential intensity-curvature measures are therefore 

local properties of the signal-image and as such they are 

continuous in the interval of definition of the model 

function fitted to the signal-image. Having clarified the 

mathematical nature of the philosophy of thought (the 

descending properties and implications will be addressed 

in the next section), it is here reinforced what already 

presented in other venue [9]. Indeed, another very basic 

property of the signal-image made continuous through 

fitting a model function, is the total curvature calculated 

through the sum of all of the second-order derivatives of 

the Hessian of the model function fitted to the signal-

image. However, the discussion of the properties of the 

total curvature is beyond the scope of the present 

manuscript.  

Before the concluding remarks, it is worth noting that 

the intensity-curvature functional has been earlier 

invented [19] when reporting on the approximate nature 

of the bivariate linear interpolation function. It is also 

worth recalling that the improvements of the 

approximation properties of several mathematical 

functions of diverse degree and dimensionality have 

been reported and studied extensively in [8] and such 

improvements were obtained through the use of the 

intensity-curvature functional. 

B. Significance of the Intensity-Curvature  Functional 

On the basis of the total curvature of the model 

function, the intent is that one of re-mapping the 

relationship existing between the dependent and the 

independent variables of the model function. There are 

two facts of relevance worth mentioning in relationship 

http://www.oasis-brains.org/


20 On the Signal-Image Intensity-Curvature Content  

Copyright © 2013 MECS                                                        I.J. Image, Graphics and Signal Processing, 2013, 5, 15-21 

to the significance of the intensity-curvature functional. 

One is that novel interpolation paradigms called SRE-

based interpolation functions have been devised through 

the use of the intensity-curvature functional [8]. And the 

other fact is that through the intensity-curvature 

functional it is possible to derive additional novel classes 

of interpolation functions called: (i) resilient-curvature 

and (ii) classic-resilient-curvature (hybrid) interpolation 

functions [9]. The aforementioned two facts provide 

with the significance of the engineering solution herein 

presented which has implications in the realm of 

biomedical engineering. The signal-image intensity-

curvature content introduced in this paper: the intensity-

curvature functional and the intensity-curvature 

measures, are calculated in the image space on the basis 

of the ratio between terms which are made of the 
multiplication of the signal-image times the total 

curvature. The term at the numerator of the intensity-

curvature functional is calculated at the grid point in 

absence of re-sampling, whereas the term of the 

intensity-curvature functional at the denominator is 

calculated at the misplacement where the signal is re-

sampled with the model function chosen in order to fit 

the data.  

On the basis of the images of the intensity-curvature 

functional and the intensity-curvature measures 

presented here, two major results can be highlighted. 

One is that the intensity-curvature functional and the 
intensity-curvature measures are dependent on the math 

of the function fitting the data. And the other one is that 

both of the intensity-curvature functional and the 

intensity-curvature measures are dependent on the re-

sampling location where they are calculated. To an 

observer though, the intensity-curvature functional and 

the intensity-curvature measures demand the unit 

analysis. The following explanation is in order. Both of 

intensity-curvature terms before and after interpolation 

are measurable through the unit made through the 

multiplication between: (i) the unit associated with the 

signal-image intensity and (ii) radians (since the total 

curvature is geometrically the arctangent of the angle 

formed by the tangent-line to the first order derivative of 

the model function). Therefore the intensity-curvature 

functional is a dimensionless quantity (it is a pure 

number). 

C. Conclusion 

In conclusion it is herein presented a novel method to 

measure the content of a signal-image through the use of 

the discrete samples and the total curvature of the math 

model fitted to the data. The biomedical engineering 

problem of formulating a novel measure of signal-image 

content is thus solved through the intensity-curvature 

functional and the intensity-curvature measures, which 

make the engineering innovative solution to the problem 

herein stated.  

The significance of the results is to the extent of the 

application of the intensity-curvature functional and the 

intensity-curvature measures to the improvement of the 

approximation properties of the interpolation functions 

[8, 9]. 
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