
I.J. Image, Graphics and Signal Processing, 2013, 12, 26-31
Published Online October 2013 in MECS (http://www.mecs-press.org/)
DOI: 10.5815/ ijigsp.2013.12.04

Copyright © 2013 MECS I.J. Image, Graphics and Signal Processing, 2013, 12, 26-31

Accelerating Cross-correlation Applications via
Parallel Computing

M.I. Khalil

Nuclear Research Center, Atomic Energy Authority, Cairo, Egypt
magdi_nrc@hotmail.com

Abstract — Software dealing with large-scale signal
processing takes long time even on modern hardware.
Cross-correlation applicat ions are mostly algorithms
rather than data-intensive (that is, they are more CPU-
bound than I/O-bound). Parallel implementation of the
cross-correlation execution over the local network, or in
some cases over a Wide Area Network (WAN), helps
reducing the processing time. The aim of this paper is to
discuss the possibility of distributing the cross-
correlation computational process over the available
PCs in the local network. Moreover, the algorithm
portion that is sent to a remote PC, within the LAN, will
be redistributed over the available CPU cores on that
computer yield ing to maximum utilizat ion of all
available cores in the local area network. The load
balancing problem will be addressed as well.

Index Terms — Signal processing, cross-correlation,
parallel computing.

I. INTRODUCTION

Distributed computing is a science which solves a
large problem by giving small parts of the problem to
many computers to solve and then combining the
solutions for the parts into a solution for the problem.
Grid computing (or the use of a computational grid) is
applying the resources of many computers in a network
to a single problem at the same time. “Distributed” or
“grid” computing in general is a special type of parallel
computing that relies on complete computers (with
onboard CPUs, storage, power supplies, network
interfaces, etc.) connected to a network (private, public
or the Internet) by a conventional network interface,
such as Ethernet. Modern Operating Systems (OSs)
today are aware of multip le CPU cores and can
automatically manage parallel processes and send each
to run using a different core, allowing effective
parallelization.

First step in parallel programming is the design of a
parallel algorithm or program for a g iven application
problem. The design starts with the decomposition of
the computations of an application into several parts,
called tasks, which can be computed in parallel on the
cores or processors of the parallel hardware. The
decomposition into tasks can be complicated and
laborious, since there are usually many different
possibilit ies of decomposition for the same application

algorithm. The size of tasks (e.g., in terms of the number
of instructions) is called granularity and there is
typically the possibility of choosing tasks of different
sizes. Defin ing the tasks of an application appropriately
is one of the main intellectual works in the development
of a parallel program and is difficu lt to automate.

With distributed computing, an initiator mach ine
sends processes for parallel execution on other mach ines
connected to the network. These processes will then run
on these machines alongside any other processes
running at the time on the OS, but will run in a special
self-contained virtual environment that completely
emulates the init iator's environment, including installed
applications, file system, registry, and environment. An
important issue of such systems is the efficient
assignment of tasks and utilizat ion of resources,
commonly referred to as load balancing problem. Load
balancing algorithms can be classified into two
categories: static or dynamic. In static algorithms, the
decisions related to load balance are made at compile
time when resource requirements are estimated. A
multicomputer with dynamic load balancing
allocate/reallocate resources at runtime based on no a
priori task information, which may determine when and
whose tasks can be migrated. While machines in a
cluster do not have to be symmetric, load balancing is
more difficult if they are not.

The aim of this paper is to study the possibility of
accelerating the cross-correlation applicat ion through
decomposing its computations into several parts and
distribute these parts among the reachable computers
over the network. After fin ishing execution of these
parts the results are returned to the main caller program.

II. BACKGROUND

A. Distributed Computing
Distributed comput ing is a type o f computing that

deals with app licat ions that run s imultaneous ly on
distributed systems that communicate through computer
network in o rder to so lve mass ive computat ional
p rob lems . Tanenbaum and Steen have defined a
d ist ributed system as “a co llect ion o f independent
computers that appears to its users as a single coherent
system” [1]. The main driving fo rce for the development
of d istributed comput ing is the requ irement for high-
performance computing resources for solving massive

 Accelerating Cross-correlation Applications via Parallel Computing 27

Copyright © 2013 MECS I.J. Image, Graphics and Signal Processing, 2013, 12, 26-31

scientific computational problems, which led to the idea
o f d iv id ing the p rob lems into s maller tas ks to be
 processed in parallel across mult iple computers [2].
The development of computing and high-speed network
infrastructures in the past few years has also made it
possible for distributed computing systems to provide a
coordinated and reliab le access to high performance
computational resources.

Distributed computing can be classified broadly into
types. The first is high-performance computing on
parallel heavy-duty systems that provide access to large-
scale computational resource and are common for
computationally intensive applications. These resources
involve high investment cost and are usually limited at
few institutions and research centers. Another
distributed computing solution is that is becoming
increasingly popular recently is to perform computations
on clusters of low-cost commodity computers connected
over high speed network. The advances in high-speed
network communications and its inexpensive
availability made this trend more practical over
expensive parallel supercomputers.

The parallel execution time is the time elapsed
between the start of the application on the first processor
and the end of the execution of the application on all
processors. This time is influenced by the distribution of
work to processors or cores, the time for information
exchange or synchronization, and id le times in which a
processor cannot do anything useful but wait for an
event to happen. In general, a smaller parallel execution
time results when the work load is assigned equally to
processors or cores, which is called load balancing, and
when the overhead for information exchange,
synchronization, and id le times is small. Finding a
specific scheduling and mapping strategy which leads to
a good load balance and a small overhead is often
difficult because of many interactions.

B. NET Remoting API
The .NET Remot ing API is the equivalent o f the Java

Remote Method Invocation (RMI) API. Both
frameworks allow objects on a client machine to
communicate with remote objects on a server. The
infrastructure required in .NET appears simpler than in
Java’s RMI. What makes Remoting (or equivalently
RMI) so attractive is that the low-level socket protocol
that the programmer must normally manage is
abstracted out. The programmer is able to operate at a
much higher and simpler level of abstraction. In both
languages there is some overhead in the form of
boilerplate protocols that must be observed in order to
setup the handshaking between the client and server
mach ines. Once this is done, sending a message from a
client mach ine to a server object uses the same syntax as
sending a message to a local ob ject. The metaphor of
object-oriented programming remains central to this
distributed programming [4].

Considering MSDN, .NET remot ing enables building
widely distributed applications easily, whether
application components are all on one computer or
spread out across the entire world. It allows to build

client applicat ions that use objects in other processes on
the same computer or on any other computer that is
reachable over its network. According to this sort of
technology, a simple shape of grid computing with one
manager and some executers connected to the manager
is shown in Fig.1.

Figure 1: Grid computing in LAN

The initiator machine (manager) decomposes the

computations of the application into several parts, called
tasks. The manager invokes these tasks as methods to
the executers on the remote computers. The executer is a
Windows service program, which in turn compiles the
code and executes the created assembly. After fin ishing
executing the method, the executer invokes a manager's
method and sends the results back to it.

C. Cross-correlation
Cross correlation [5-7] is a standard method of

estimating the degree to which two series are correlated.
In signal p rocessing, cross-correlation is a measure of
similarity of two waveforms as a function of a time-lag
applied to one of them. It is commonly used for
searching a long-signal for a shorter, known feature. It
also has applications in pattern recognition, single
particle analysis, electron tomographic averaging,
cryptanalysis, and neurophysiology. For continuous
two 1-D analog signals f and g functions, the cross-
correlation is defined as:

() ()(*) () ()c t tf g def f g t dτ τ τ
∞

−∞
= +∫

Where denotes the cross-correlation lag. Similarly,
for discrete functions, the cross-correlation is defined as:

[] [] [](*)
m

f g n def f m g n m∞

=−∞
+∑

The normalized form of cross correlation r at delay d
between two series is defined as:

[]() []()
[]() []()2 2

*
i

d

i i

x i x y i d y
r

x i x y i d y
=

 − − −

− − −

∑

∑ ∑

 and and are the

means of the corresponding series. The coefficient, r, is
a measurement of the size and direction of the linear
relationship between variables x and y. If these variables

28 Accelerating Cross-correlation Applications via Parallel Computing

Copyright © 2013 MECS I.J. Image, Graphics and Signal Processing, 2013, 12, 26-31

move together, where they both rise at an identical rate,
then r = +1. If the other variable does not budge, then r
= 0. If the other variable falls at an identical rate, then r
= -1. If r is greater than zero, we have positive
correlation. If r is less than zero, we have negative
correlation. The sample non-normalized cross-
correlation o f two input signals requires that r be
computed by a sample-shift (t ime-shift ing) along one of
the input signals. For the numerator, this is called a
sliding dot product or sliding inner product.
If the above is computed for all delays d=0,1,2,...N-1
then it results in a cross correlation series of twice the
length as the original series.

[]() []()
[]() []()2 2

*
() i

i i

x i x y i d y
r d

x i x y i d y
=

 − − −

− − −

∑

∑ ∑

There is the issue of what to do when the index into

the series is less than 0 or greater than or equal to the
number of points. (i-d < 0 or i-d >= N) The most
common approaches are to either ignore these points or
assuming the series x and y are zero for i < 0 and i >= N.
In many signal processing applications the series is
assumed to be circular in which case the out of range
indexes are "wrapped" back within range, i.e :
x(-1) = x(N-1), x(N+5) = x(5) etc.

III. EXPERIMENTAL MEASUREMENTS AND
RESULTS ANALYSIS

This section is dedicated to present and analyze
performance measurements of the following three
implementations:

- Running the cross-correlation algorithm as a
standalone application on different three independent
platforms (different hardware and operating systems).
The times of processing t1, t2 and t3 are recorded for
the three platforms respectively.

- Modify the cross-correlation computing application to
be distributed and performed simultaneously on the
prescribed three different platforms. The computing
procedure will be part itioned equally and invoked
remotely to the three platforms.

- Modify the last application once again to address the
load balancing problem; the computing procedure will
be partitioned to different three pieces. The size
partitioning rat ios are p roportional inversely with the
times of processing of the three platforms (t1, t2 and
t3).

A. Standalone Implementation
The mach ines used to perform the benchmarking

were:

- FUJITSU Intel® Celeron® Processor B800 (2M

Cache, 1.50 GHz), 2 GB RAM.

- Sony VAIO, VGN-CS26M, Intel® Core™2 Duo
Processor P8600 (2.40 GHz), 3 GB RAM.

- Lenovo with Intel® Core™ i7 CPU L620 @ 2.00
GHz, installed memory (RAM): 4 GB.

Operating system: Windows 7.

The algorithm of the cross-correlation is shown in
List-1:

List-1:

// compute the following cross-correlation function

//

[]() []()
[]() []()2 2

*
() i

i i

x i x y i d y
r d

x i x y i d y
=

 − − −

− − −

∑

∑ ∑

as following:
stopwatch.Start();
startTime = DateTime.Now;
generate_signal(x);
generate_signal(y);
compute = mean_value of signal_x;
compute = mean_value of signal_y;

//compute the denominator denom =

// []() []()2 2

i i
x i x y i d y− − −∑ ∑ as

following
for (i = 0; i < length_of_signal; i++)
 {
 s x += (x[i] -) ^2
 sy += (y[i] -) ^2
 }
denom = Math.Sqrt(s x * sy);

// perform the cross-correlation
//Compute

[]() []()*
() i

x i x y i d y
r d

denom

 − − − =
∑ as:

for (delay = -maxdelay; delay < maxdelay; delay++)
 {
 s xy = 0;
 fo r (i = 0; i < length_of_signal; i++)
 {
 j = i + delay;
 if (j < 0 || j >= length_of_signal)
 continue;
 e lse
 s xy += (x[i] -) * (y[j] -);
 }
 r[d] = s xy / denom;
 d++;
 }

stopwatch.Stop();

http://syndication.intel.com/DistributeModule.aspx?id=6273�
http://syndication.intel.com/DistributeModule.aspx?id=6273�

 Accelerating Cross-correlation Applications via Parallel Computing 29

Copyright © 2013 MECS I.J. Image, Graphics and Signal Processing, 2013, 12, 26-31

Figure 2: Algorithm processing at standalone machines

Figure 3: Comparing time of processing for different data
lengths at standalone machines

The algorithm is performed for the two signals x[], y[]

having the same length. The processing times have
been recorded as in Fig.2, Fig.3. The figures compare
the performance of the three platforms when executing
the same prescribed cross-correlation algorithm.

B. Uniform Partitioned Cross-Correlation
One issue that can complicate development effo rts in

building a parallel computing architecture is the
application's suitability for "slicing" into mult iple,
independently executable parts that can run in parallel.
The algorithm prescribed in list-1 has been modified and
uniformly partitioned to be run remotely on the same
three mach ines. The “length_of_signal” is divided
equally into three parts between the three machines:

part_size = (int)(length_of_signal / (no_of_pcs));
where “no_of_pcs” is number of machines. For the first
mach ine, the cross_correlation loop starts from
location=0 for size = part_size. For the second machine,
the loop starts from location = part_size for size =
part_size. For the last mach ine, the loop starts from
location = 2*part_size fo r size = part_size.

List-2:
// Assign and send part of the cross-correlation to each
// machine in the local area network.
for (delay = -maxdelay + location; delay < - maxdelay
+ location + part_size; delay++)
 {
 double sxy = 0;
 for (i = 0; i < length_of_signal; i++)
 {
 j = i + delay;
 if (j < 0 || j >= length_of_signal)

 continue;
 else
 s xy += (x5[i, 1] - mx) * (y5[j, 1] - my);
 }
 r[d] = s xy / denom;
 d++;
 }
// upon completing the dedicated part of the cross-
correlation
// procedure on a certain machine, the returned results
are
// placed in the correct place of the main output array.

Fig.4, Fig.5 compare the performance o f the three

platforms when executing the assigned part of the cross-
correlation algorithm (list-2). It can be noticed that
each machine fin ishes the execution of the assigned part
at different time. The overall processing time is the
higher time:

overall_processing time = max (machine_time1,

mach ine_time2, machine_time3).
Where machine_time1, mach ine_time2 and
mach ine_time3 are the processing times at machines m1,
m2 and m3 respectively.

Choosing signal of length = 10 x 104 samples as a

comparison case, the processing times at m1, m2 and
m3 machines are 18, 35 and 50 seconds respectively.
Accordingly, the overall processing time = max(18, 35,
50) = 50 seconds. Inspecting Fig.2, the signal with the
same length (10 x 104 samples) needs 51.5, 155 and 183
seconds to be completed separately on machine m1, m2
and m3 respectively.

Figure 4: Algorithm processing remotely with equal loads

Figure 5: Comparing time of processing for different data

lengths remotely with equal load

30 Accelerating Cross-correlation Applications via Parallel Computing

Copyright © 2013 MECS I.J. Image, Graphics and Signal Processing, 2013, 12, 26-31

C. Balanced Load Grid-computing Implementation
The algorithm prescribed in List-2 has been further

modified. The algorithm, in its new form, distributes the
cross-correlation processing load between the available
remote PCs in the LAN. The load is d istributed
according the speed of each PC’s processor depending
on the results obtained in List-1:

Assuming that the same task o f load L has executed
on n computers PC1, PC2, PC3,…., and PCn, yielding
to processing times T1, T2,.., …, and Tn respectively.
Accordingly, the ratio between the corresponding speeds
S1, S2, …. , and Sn can be computed as:

1 2
1 2

: : ... : : ...n
n

L L Ls s s
T T T

= (1)

1 2
1 2

1 1 1: : ... : : ...n
n

s s s
T T T

= (2)

Now, assume the task L is to be partit ioned over the

computers PC1, PC2, PC3, …. , and PCn. The goal is
to find the share Li of each computer such that:

1 2 ... nL L L L= + + + , and (3)

The time of processing at PCi is and the overall
time T = max (). It is desirable to
minimize T such that:

1 2 ... : nt t t= = = (4)

The ratio between loads is:

1 2 1 1 2 2: : ... : : : ...n n nL L L t S t S t S= (5)

From 2, 4 and 5:

1 2 1 2
1 2

: : ... : : : ...n n
n

L L LL L L t t t
T T T

=

1 2
1 2

1 1 1: : ... : : : ...n
n

L L L
T T T

= (6)

Consequently, to achieve min imum t ime of

processing the total load L should be partitioned
between the available PCs in the same rat io of t imes of
processing when the same load L is executed separately
on each PC. The above described algorithm is
practically implemented as following:

List-3:
//to determine the size and start position of every part
int current_location = 0;
for (i = 0; i < no_of_pcs; i++)
 {
 sizes[i] = (length_of_signal * ratios[i] / 100);

 locations[i] = current_location;
 current_location = current_location + sizes[i];
 }

Then, the task is invoked to each PC and both the
part_size and location are passed as parameters.
// Assign and send part of the cross-correlation to each
// machine in the local area network.

for (delay = -maxdelay + location; delay < - maxdelay
+ location + part_size; delay++)
 {
 double sxy = 0;
 for (i = 0; i < length_of_signal; i++)
 {
 j = i + delay;
 if (j < 0 || j >= length_of_signal)
 continue;
 else
 s xy += (x5[i, 1] - mx) * (y5[j, 1] - my);
 }
 r[d] = s xy / denom;
 d++;
 }
// upon completing the dedicated part of the cross-
correlation
// procedure on a certain machine, the returned results
are
// placed in the correct place of the main output array.

Fig.6, Fig.7 demonstrate the times of processing for

different signals lengths. It is clear that the processing
at the different plat forms had been completed almost at
the same time. A lso, for the signal length of 10x104 the
overall time has been reduced to 35 seconds compared
to 50 seconds when performing the same task but with
distributing it equally on the same platforms (section
List-2).

Figure 6: Algorithm processing remotely with balanced loads

Figure 7: Comparing time of processing for different data
lengths remotely with balanced loads

 Accelerating Cross-correlation Applications via Parallel Computing 31

Copyright © 2013 MECS I.J. Image, Graphics and Signal Processing, 2013, 12, 26-31

IV. CONCLUSION

The cross-correlation computing algorithm has been
executed using three different scenarios. In the first one,
the algorithm has been executed separately on three
different hardware platforms using different signal
lengths as test data. The processing times obtained from
this scenario has been used as a reference for
comparison in the other two scenarios. In the second
scenario, the same algorithm has been partitioned into
three equal parts and invoked remotely to the same
platforms to be executed there. The results are gathered
upon finishing the execution of the three processes. The
overall t ime was greater than that obtained in the first
scenario because some processes will finish while others
still busy. In the last scenario, the times of processing
obtained from the first scenario have been used as a
guide to determine the size of each algorithm partit ion.
These partitions have been invoked remotely to the
same platforms to be executed there. The overall time
has been greatly reduced compared with the overall time
obtained from the other two scenarios. The end result is
the successful implementation of the cross-correlation
algorithm on a distributed environment which
demonstrates the possibility of performing more
complex computational problems within min imum time.

REFERENCES

[1] Tanenbaum & Van Steen, Distributed Systems:
Principles and Paradigms, 2e, (c) 2007 Prentice-
Hall, Inc.

[2] Parallel programming in Grid: Using MPIISBN
978-952-5726-11-4, Proceedings of the Third
International Symposium on Electronic Commerce
and Security Workshops(ISECS ’10) , Guangzhou,
P. R. China, 29-31,July 2010, pp. 136-138

[3] Fran Berman, Geoffrey Fox, Anthony J.G. Hey,
Grid Computing: Making the Global In frastructure
a Reality. W iley, 2008.

[4] http://msdn.microsoft.com/en-
us/library/kwdt6w2k(v=vs.71).aspx.

[5] Bracewell, R. "Pentagram Notation for Cross
Correlation." The Fourier Transform and Its
Applications. New York: McGraw-Hill, pp. 46 and
243, 1965.

[6] P. J. Burt , C. Yen, X. Xu, ``Local Correlation
Measures for Motion Analysis: a Comparitive
Study'', IEEE Conf. Pattern Recognition Image
Processing 1982, pp. 269-274.

[7] A. Goshtasby, S. H. Gage, and J. F. Bartholic, ``A
Two-Stage Cross-Correlat ion Approach to
Template Matching'', IEEE Trans. Pattern Analysis
and Machine Intelligence, vol. 6, no. 3, pp. 374-
378, 1984.

Magdi Ibrahim Khalil El-Sharkawy, male, received
his B.Sc degree in Computer and Automatic Control
Engineering from Ain Shams University, Cairo, Egypt,
in 1983, M.Sc degree in Computer Engineering from
Tanta University,Tanta, Egypt, in 2003 and Ph.D degree
in Computer System Engineering from Benha
University, Cairo, Egypt, in 2005. He is currently
working as Associate Professor in Department of
Networking and Communication systems at the Faculty
of Computer and Information Sciences, Princess Noura
Bent Abdulrahman University, Riyadh, KSA. He has 15
years of previous experience at the Reactor physics
Department, Nuclear Research Center, Cairo, Egypt in
the field of Data Acquisition and Interface Design. His
area of interest includes image processing and digital
signal processing.

	I. INTRODUCTION
	II. BACKGROUND
	A. Distributed Computing
	B. NET Remoting API
	C. Cross-correlation

	III. EXPERIMENTAL MEASUREMENTS AND RESULTS ANALYSIS
	A. Standalone Implementation
	B. Uniform Partitioned Cross-Correlation
	C. Balanced Load Grid-computing Implementation

	IV. CONCLUSION
	REFERENCES

