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Abstract — When the length of the filter and 
consequently the number of filter coefficients increase, 
the design of the filter becomes complex and therefore 
the popular NLMS algorithm has been replaced with 
MMax NLMS algorithm. But its performance in terms of 
convergence characteristics reduces to an extent though 
the filter design becomes very easy i.e., convergence 
occurs at a later stage taking too much computational 
time for the processing of the signal. In this paper, a 
proposal for improving the convergence characteristics is 
made without compromising the performance of the 
design and affecting the tap-selection process of the 
MMax NLMS algorithm. With the introduction of the 
concept of variable step-size for the filter coefficients, 
loss in the performance due to MMax NLMS algorithm 
can be effectively lowered and the convergence is better 
achieved in the filter deign. 
 
Index Terms — Adaptive filtering, Performance, MMax 
NLMS algorithm, Variable step-size, Convergence 
chrcteristics. 
 

I.  INTRODUCTION  

Finite impulse response (FIR) with Adaptive filtering 
techniques employs extensive applications in signal 
processing. The use of Multi-Rate (MR) structures for 
adaptive filtering was the main trend in the past as it 
provided the means of successfully overcoming the two 
major problems encountered in adaptive filtering 
applications. 

It was already known in the late 1970s that the echo 
path in communication channels often consists of flat 
delays and dispersive regions. Multiple hybrid 
transformers in the channel cause multiple echoes. A 
typical example of a large flat-delay can be found in the 
satellite-linked communication channel. Coders and 
decoders (CODECs) and asynchronous transfer mode 
(ATM) networks, which are becoming more and more 
common these days, also introduce flat-delays by 
coding/decoding and cell handling. To model such an 
echo path, sparse-tap adaptive FIR filters have been 

known to be effective since the early 1980s. They have a 
smaller number of taps with coefficients than is required 
to span the entire impulse response. They essentially have 
higher potential in reduction of computations than 
recently developed algorithms [1, 4] that update a portion 
of coefficients corresponding to dispersive regions. 
Sparse-tap adaptive filters have a limited number of 
coefficients that are allocated to dispersive regions with a 
significant response. As the positions of flat-delay 
regions and dispersive regions are usually unknown a 
priori and different from a transmission channel to 
another, coefficients must be located adaptively within 
dispersive regions. Sparse-tap adaptive FIR filters can be 
divided into two groups: one realized as cascade 
connection of short-tap adaptive FIR filters and the other 
realized as a floating-tap adaptive FIR filter. The first 
group needs an auxiliary filter to determine the positions 
of the dispersive regions. After convergence of the 
auxiliary filter, the location information of the dispersive 
regions is transferred to a number of short adaptive FIR 
filters. Based on this information, each short filter is 
located along the tapped delay line such that it covers one 
of the dispersive regions. Two realizations of the 
auxiliary filter are known: one as a full-tap adaptive FIR 
filter and the other as an adaptive delay filter. When a 
full-tap adaptive FIR filter is used [5], the initial 
convergence speed is slow as it has a large number of 
taps to cover the whole impulse response. The auxiliary 
filter is operated at a reduced sampling rate. Although its 
computation is reduced thanks to sub sampling, there is 
no difference in terms of the convergence speed. 
Reduction is effective on the number of samples before 
convergence and not on the time needed to converge. For 
the case with an adaptive delay filter, the input signal is 
required to be sufficiently white for correct operation. 
This requirement is satisfied in some applications, and a 
better solution is desirable for other applications. 
Floating-tap adaptive FIR filters detect the dispersive 
regions by themselves, thus requiring no auxiliary filter. 
However, adaptive delay filters [6, 7] are not effective for 
a colored input signal such as speech, as pointed out 
earlier. The detection-guided NLMS algorithm [8] does 
not suffer from this problem. However, it is not suitable 
for unknown channels with a time-varying structure [8]. 
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The use of Multi-Rate (MR) structures for adaptive 
filtering is the main current trend as it provides the means 
of successfully overcoming the two major problems 
encountered in adaptive filtering applications. 

The first is related to the computational complexity; 
the second to the need for high convergence speed and 
good tracking performance. The MR Structures generally 
offer a reduction in the complexity, compared to a full-
band configuration, owing to the fact that they adapt at a 
reduced data rate, a number of coefficients that is not 
significantly larger from the length LS of the system 
under modeling as shown in figure 1. The increase in the 
convergence speed they offer owes to the fact that in the 
sub-band domain the signals exhibit lower correlation 
levels, which means that the autocorrelation matrices of 
the input tap vectors of the adaptive algorithms have 
lower Eigen value spread. A classification of the MR 
structures can be made based on the way the system's 
input and output signals are analyzed. One approach is to 
use the same FB to analyze both as for example is 
proposed in [9, 10]. This is maybe the most popular 
approach. A second one is to use different networks for 
the analysis of these signals. The structure proposed in 
[11] is an example. It employed a MD Cosine Modulated 
(CM) FB of Near-Perfect Reconstruction (NPR) type to 
analyze the output signal of the system under modeling. 
Cross-products between adjacent analysis filters and their 
self-products were used to analyze the input signal of the 
system. The dual of this structure was recently presented. 
It was derived in a different way and employed products 
between adjacent analysis and synthesis filters of a CM 
FB, which was used to analyze the output signal of the 
system under modeling. This choice for the analysis 
network resulted in different solutions for the sub-band 
filter coefficients, for whose adaptation a new scheme 
was proposed which improved significantly the 
performance of the structure. The improvement in 
performance the new adaptation scheme offered, 
although substantial, came at no practical expense in the 
computational complexity.  

Partial-update algorithms can be suitable for adaptive 
filtering applications requiring real-time and/or high 
density implementation. Typical examples in 
telecommunications are echo cancellation and 
equalization. In such applications there is a trade-off to 
be made in terms of the choice of the number of taps. The 
adaptive filter should be long enough to model the 
unknown system adequately. However, shorter filters 
normally converge more quickly and are computationally 
less demanding. The use of partial-update algorithms is a 
good approach to this trade-off in which sufficiently long 
filters can be employed but only a subset of the 
coefficients is adapted at each of iterations. Partial-update 
algorithms can be seen to exploit sparseness in two ways. 
When the unknown system's impulse response is sparse, 
such as in echo cancellation for network echo and in 
VoIP, many of the adaptive filter's taps can be 
approximated to zero.  

Several algorithms were proposed to reduce the 
computational cost of the NLMS algorithm. Such 

algorithms include the periodic NLMS algorithm [l] and 
the partial update algorithms [12-14] where only a 
predetermined subset of the coefficients is updated at the 
iteration. Inevitably, the penalty incurred by using these 
algorithms is a lower performance, in terms of 
convergence speed, than the regular NLMS algorithm 
where all coefficients are updated. The decrease in 
convergence speed is proportional to the reduction in 
complexity and can be sometimes a major drawback in 
their implementation in the case of long impulse 
responses. The algorithm proposed here attempts to 
reduce the complexity of the NLMS algorithm while 
preserving a performance close to the regular NLMS 
algorithm. The algorithm is a member of the family of 
adaptive algorithms that updates a portion of their 
coefficients at the iteration, but it selects those 
coefficients adaptively to achieve the most reduction in 
the performance error. The proposed algorithm adds a 
maximum of 2 log2 (N) +2; (N being the adaptive filter 
length) comparison operations over the computational 
overhead of the algorithms in. 
 

 
Figure1: Multi-rate Adaptive Filtering Scheme 

 
Partial update NLMS algorithms have been developed 

to identify long FIR systems with reduced computational 
complexity compared to the standard NLMS algorithm [15, 

19]. Best known partial update algorithms include 
periodical and sequential partial update LMS [15], M-Max 
NLMS [16], and selective partial update NLMS 
(SPUNLMS) [17]. Recently proposed Sparse Partial-
update NLMS (SPNLMS) [18] and coefficient and input 
combined selective partial-update NLMS (CIC-SPNLMS) 
[19] incorporate tap weight into partial selection criteria 
and provide very promising results for identifying long, 
sparse systems. These algorithms' performance have been 
analyzed and compared in the above referenced papers. 
However, there has not been a unified theoretical analysis 
on the convergence rates of the various algorithms. This 
paper discusses the general form of partial update 
algorithms' convergence for White Gaussian input and 
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compares their performance in the sense of tap weight 
vector's mean deviation. 

Adaptive filtering, as shown in figure 2, algorithms 
have been widely applied to solve many problems in 
digital communication systems [20-23]. The Least-Mean 
Square (LMS) algorithm has been widely used for 
adaptive filters, due to its simple structure and numerical 
sturdiness. On the other hand, the Normalized LMS 
(NLMS) algorithm is known that it gives better 
convergence characteristics than the LMS, because the 
NLMS uses a variable step-size parameter in which a 
fixed step-size parameter is divided by the input vector 
power at the iteration. However, a critical issue 
associated with both algorithms is the choice of the step-
size parameter that is the trade-off between the steady-
state mis-adjustment and the speed of adaptation. Recent 
theories have thus presented the idea of variable step-size 
NLMS algorithm to remedy this issue. Also, many other 
adaptive algorithms based upon non-mean-square cost 
function can also be defined to improve the adaptation 
performance. For example, the use of the error to the 
power Four has investigated and the Least-Mean-Fourth 
(LMF) adaptive algorithm results. 

The normalized least-mean-square (NLMS) algorithm 
[24, 25] is treated as one of the most popular adaptive 
algorithms in many applications. Since the NLMS 
algorithm requires O(2L) multiply accumulate (MAC) 
operations per sampling period, it is very desirable to 
reduce the computational workload of the processor. 
Partial update adaptive algorithms differ in the criteria 
used for selecting filter coefficients to update at each of 
the iteration. It is found that as the number of filter 
coefficients updated per iteration in a partial update 
adaptive filter is reduced, the computational complexity 
is also reduced but at the expense of some loss in 
performance. The aim of this paper is to propose 
improving the convergence characteristics of adaptive 
algorithm. It has been shown in [29] that the convergence 
performance of MMax-NLMS is dependent on the step-
size. Analysis of the mean-square deviation of MMax-
NLMS is first presented and then a variable step-size in 
order to increase its rate of convergence is derived. The 
simulation results verify that the proposed variable step-
size MMax-NLMS (MMax-NLMSvss) algorithm 
achieves higher rate of convergence with lower 
computational complexity when compared to NLMS for 
white Gaussian noise (WGN). 
 

 
Figure2. Adaptive Filter Scheme 

II. THE MMAX -NLMS ALGORITHM  

The output at the nth iteration, v(n) = uT(n)h(n) where     
u(n) = [u(n),u(n-1),. . . ., u(n − L + 1)]T is the tap-input 
vector while the unknown impulse response     

1( ) [ ( ),....., ( )]T
o Lh n h n h n is of length L. An 

adaptive filter 1
ˆ ˆ ˆ( ) [ ( ),....., ( )]T

o Lh n h n h n which 

assumed [26] to be of equal length to the unknown system 
h(n), is used to estimate h(n) by adaptively minimizing a 
priori error signal e(n) using ˆ( )v n defined by 

 

ˆ( ) ( ) ( ) ( ) ( )Te n u n h n v n g n   (1)

ˆˆ( ) ( ) ( 1)Tv n u n h n                                                  (2) 
 

With g(n) being the measurement noise.  
In the MMax-NLMS algorithm [14], only those taps 

corresponding to the M largest magnitude tap-inputs are 
selected for updating at each iteration with 1 ≤ M ≤L. 
Defining the sub-selected tap-input vector, 

 

ˆ( ) ( ) ( )u n Q n u n                                                       (3) 
 

where Q(n) = diag{q(n)} is an L x L tap selection matrix 
and Q(n) = [q0(n), . . . , qL−1(n)]T element 

qj(n) for j= 0, 1, . . . , L − 1 is given by, 
 

 1 ( ) x ( )
( )

0
j

u n j MMa imaof u n
q n

otherwise

  
                  

(4) 

 
Where 
 

(n) u(n) , .., u( 1)
T

n L      u  

 

Defining
2

. as the squared l2-norm, the MMax-NLMS 

tap-update equation is then 
 

       
2

n e(ˆ nˆ )
1

(n)

µ n
n n

C
  



Q u

u
h h                          (5) 

 

where C is regularization parameter.  
Defining IL×L as the L x L identity matrix, it is noted 

that if Q(n) = IL×L, i.e., with M = L, the update equation 
in (5) is equivalent to the NLMS algorithm. Similar to the 
NLMS algorithm, the step-size μ in (5) controls the 
ability of MMax-NLMS to track the unknown system 
which is reflected by its rate of convergence. To select 
the M maxima of |u(n)|in (4), MMax-NLMS employs the 
SORTLINE algorithm [30] which requires 2log2L sorting 
operations per iteration. The computational complexity in 
terms of multiplications for MMax-NLMS is O(L+M) 
compared to O(2L) for NLMS. The performance of 
MMax-NLMS normally reduces with the number of filter 
coefficients updated per iteration. This tradeoff between 
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complexity and convergence can be shown by first 

defining  n , the normalized misalignment as 

 

 
   

 

2

2

ˆn n
n

n





h h

h
                                         (6) 

 

Fig.3 and Fig.4 shows the variation in convergence 
performance of MMax-NLMS with M for the case of          
L = 128 and μ = 0.1 using a white Gaussian noise (WGN) 
as input. For this illustrative example, WGN g(n) is 
added to achieve a signal-to-noise ratio (SNR) of 15dB. It 
can be seen that the rate of convergence reduces with 
reducing M as expected. 

 

III. MEAN SQUARE DEVIATION OF MMAX-
NLMS 

It has been shown in [29] that the convergence 
performance of MMax- NLMS is dependent on the step-
size μ when identifying a system. Since the aim of this 
paper is to reduce the degradation of convergence 
performance due to partial updating of the filter 
coefficients, from Fig.4 it is clear that the convergence 
performance decreases as M=L/4. Fig.5 shows the 
Normalized misalignment verses Time. 
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Figure 3: Convergence curves of MMax-NLMS for different M. 
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Figure 4: Normalized Misalignment curves for different M. 

The Mean Square Deviation of MMax-NLMS can be 
obtained by first defining the system deviation as 

 

    ( )ˆn n n h h                                                 (7) 

   1 ( 1)ˆn n n   h h                               (8)  

 
Subtracting (8) from (7) and using (5), we obtain 
 

       
 

n e(n)
1

( )T

µ n
n n

n C
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
Q u

ò ò
u u n

                      

(9) 

 

Defining . as the expectation operator and taking 

the mean square of (9), the MSD of MMax-NLMS can be 
expressed iteratively as 

 

          2 2Tφ n φ (n) n φ 1 Φ( )n     ò ò ò ò       (10)  

 
Where 

        22

2 2

2e ( )2 1 e( )
Φ

( )
( )

(n)

T µ n nµ n

n

n

u

n
µ 

 
 

    
  

ò uu

u


        (11) 

 
Assume that the effect of the regularization term Con 

the MSD is small. As can be seen from (10), in order to 
increase the rate of convergence for the MMax-NLMS 

algorithm, step-size μ is chosen such that  Φ( )µ is 

maximized. 
 

IV. THE PROPOSED MMAX-NLMS VSS 

ALGORITHM 

Following the approach of [31], differentiating (11) 
with respect to μ and setting the result to zero [32] gives 
the variable step-size as 

 

   
 
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2

( ) e
1 ( )
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

 
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u
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u u

 
 

 
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    
 

ò

ò
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



Where 0 < μmax ≤ 1 limits the maximum of μ (n) and from 
[31]. 
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   
 

2

2

u n
Μ n

u n



                                                   (12)  

 
is the ratio between energies of the sub-selected tap-input 

vector  nu and the complete tap-input vector u(n), 

while  2 2 ( )g g n  . Further numerator of μ(n) can 

be simplified [32], by  

considering       ( )T Tn n n nu u u u  
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  
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 

u u u u

u u u u
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


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μ(n) can be further simplified by letting 
 

         1
n ( )?T Tn n n n n


   P u u u u   

      
(13) 

           1
n ?T Tn n n n n


   P u u u u           (14) 

 
From which it is then shown that 
 

             
12 2T n 1 n 1Tn n n n n


   
 

P u u u   
 

           
12 2

T n 1 n n 1Tn n n

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P u u u   

 
Following the approach in [31], and defining              

0 << α <1 as the smoothing parameter,  nP and 

 nP are estimated iteratively by 

 

            1
1 1 n ( )T

an n n n e n 


      P P u u u  
  

       (15) 

            1
1 1 n e(n)Tn n n n 


      P P u u u          (16)  

 

where       1Tn ne n u  in (16) while the error 

ea(n) due to active filter coefficients  nu in ( 15) is 

given as   
 

          ( 1)ˆ1T T
ae n n n n n n      u u  h h

            
 (17) 

 

It is important to note that since    T nnu h is 

unknown, ea(n) is to be approximated. Defining 

   L Ln n Q I Q as the tap-selection matrix which 

selects the inactive taps [32], we can express 

       ?
T

ie n n n n   Q u  as the error 

contribution due to the inactive filter coefficients such 
that the total error e(n) = ea(n) + ei(n). As explained in 
[29], for 0.5L ≤ M < L, the degradation in M(n) due to 
tap-selection is negligible. The reason for this is due to 
large enough value of M, the elements are small and 
hence the errors ei(n) are small, as is the general 
motivation for MMax tap-selection [28]. Approximating 
ea(n) ≈ e(n) in (15) gives 

 

            1
1 1 n ( )Tn n n n e n 


      P P u u u  

       
(18) 

 
Using (16) and (18), the variable step-size is then 

given as 
 

 
 

   
x 22

2

ma

P n
μ n μ

n n CM


P


                      (19)  

 

Where  2 2n gC M  . Since 
2
g is unknown, it is 

shown that [32] by approximating C by a small constant, 
typically 0.0001 [31]. The computation of (16) and (18) 
each requires M additions. In order to reduce computation 
complexity even further, and because for M large enough 

values, the elements in    nnQ u are small, 

approximating,     22
n P nP  gives  

 

 
 

   

2

max 22

P n
μ n μ

n P n CM







                      (20) 

 
When Q(n) = IL×L, i.e., M = L, MMax-NLMS is 
equivalent to the NLMS algorithm and from (12),       

m(n) = 1 and    
2 2

P n n P . As a consequence, 

the variable step-size μ(n) in (20) is consistent with that 
presented in [31] for M = L.  

 

V. SIMULATION RESULTS 

The performance of MMax-NLMSvss in terms of the 
normalized misalignment is determined and defined in (6) 
using WGN input. With a sampling rate of 8 kHz and a 
reverberation time of 256 ms, the length of the impulse 
response is L = 1024. Similar to [31], C = 0.0001, α = 
0.15are taken, WGN g(n) is added to v(n) to achieve an 
SNR of 15dB.The value of μmax = 1 is taken for MMax-
NLMSvss while step-size μ for the NLMS algorithm is 
adjusted so as to achieve the same steady-state 
performance for all simulations. Fig.6 shows the 
improvement in convergence performance of MMax-
NLMSvss over MMax-NLMS for the cases of M = L/4. 
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Figure 5: Improvement in convergence performance of MMax-
NLMSvss over MMax-NLMS for different M. 
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Figure 6: Comparison curves of Convergence performance of 

MMax-NLMSvss with NLMS and MMax-NLMS. 
 

The step-size of NLMS has been adjusted in order to 
achieve the same steady-state normalized misalignment. 
This corresponds to μ = 0.1. More importantly, the 
proposed MMax-NLMSvss algorithm outperforms NLMS 
even with lower complexity when M =256. This 
improvement in normalized misalignment of 7 dB 
(together with a reduction of 25% in terms of 
multiplications) over NLMS is due to variable step-size 
for MMax-NLMSvss. The MMax-NLMSvss achieves the 
same convergence performance as the NLMSvss [8] when 
M = L. In order to illustrate the benefits of the proposed 
algorithm, M = 256 taken for both MMax-NLMS and 
MMax-NLMSvss. This gives a 25% savings in 
multiplications per iteration for MMax-NLMSvss over 
NLMS. As can be seen, even with this computational 
savings, the proposed MMax-NLMSvss algorithm 
achieves an improvement of 1.5 dB in terms of 
normalized misalignment over NLMS. 

 

VI. CONCLUSION 

By analyzing the mean-square deviation of MMax-
NLMS we can derive a partial update MMax-NLMS 
algorithm with a variable step-size during adaptation for 
improvement of convergence characteristics. 

Computation of (18), computations of   2
P n for (20) 

require M multiplications each. The computation of 

  2
u n  and   2

u n  for M(n) in (12) requires 2 

multiplications and a division using recursive means. 

Since the term       1
n ( )Tn n e n


  u u u is already 

computed in      (18), no multiplications are now required 
for the update equation in (5).Hence including the 

computation of ˆ( ) ( 1)Tu n h n  for e(n), MMax-

NLMSvss requires          O(L + 2M) multiplications per 
sample period compared to O(2L) for NLMS. The 
number of multiplications required for MMax-NLMSvss 
is thus less than NLMS when M < L/2.Although MMax-
NLMSvss requires an additional 2 log2 L sorting 
operations per iteration using the SORTLINE algorithm 
[30], its complexity is still lower than NLMS. As with 
MMax-NLMS, we would expect the convergence 
performance for MMax-NLMSvss to degrade with 
reducing M. However, simulation results show that any 
such degradation is offset by the improvement in 
convergence rate due to μ(n).In terms of convergence 
performance, the proposed MMax-NLMSvss algorithm 
achieves approximately 3 dB improvement in normalized 
misalignment over NLMS for WGN input. More 
importantly, the proposed algorithm can achieve higher 
rate of convergence with lower computational complexity 
compared to NLMS. 

 

ACKNOWLEDGMENT 

We thank anonymous referees for their constructive 
comments. This research is supported by the Department 
of Electronics and Communication Engineering at School 
of Electronics, Vignan University, India with special 
focus on research. Special thanks to Mr. M. Ajay Kumar 
Research Scholar at IIT Guwahati, India for his technical 
support in writing this paper. 

 

REFERENCES 

[1] T. Aboulnasr and K. Mayyas, “Complexity 
reduction of the NLMS algorithm via selective 
coefficient update,”   IEEE Trans. Signal Processing, 
vol. 47, pp. 1421–1424,   May 1999. 

[2] D. L. Duttweiler, “Proportionate normalized least-
mean-squares adaptation in echo cancellers,” IEEE 
Trans. Speech Audio Processing, vol. 8, pp. 508–518, 
Sept. 2000. 

[3] S. L. Gay, “An efficient, fast converging adaptive 
filter for network echo cancellation,” in Proc. 
Asilomar Conf., Nov. 1998. 

[4] T. Gänsler, J. Benesty,M.M. Sondhi, and S. L. Gay, 
“Dynamic resource allocation for network echo 
cancellation,” in Proc. ICASSP, May 2001, pp. 
3233–3236.

0 1 2 3 4 5 6
-30

-25

-20

-15

-10

-5

0

Time(s)

N
or

m
al

iz
ed

 M
is

al
ig

nm
en

t(
dB

)

MMax-NLMS
M=L/4

MMax-NLMS
M=L/2

MMax-NLMSvss
M=L/4



24 Adaptive Signal Processing for Improvement of Convergence Characteristics of FIR Filter  

Copyright © 2013 MECS                                                      I.J. Image, Graphics and Signal Processing, 2013, 12, 18-25 

[5] P. C. Yip and D. M. Etter, “An adaptive multiple 
echo canceller for slowly time-varying echo paths,” 
IEEE Trans. Commun., vol. 38, pp. 1693–1698, 
AUTHOR: IN WHAT MONTHWAS THIS 
PUBLISHED 1990. 

[6] Y.-F. Cheng and D. M. Etter, “Analysis of an 
adaptive technique for modeling sparse systems,” 
IEEE Trans. Acoust., Speech Signal Processing, vol. 
37, pp. 254–264, Feb 1989 

[7] J. Homer, L. M. Y. Mareels, R. R. Bitmead, B. 
Wahlberg, and F. Gustafsson, “LMS estimation via 
structural detection,” IEEE Trans. Signal Processing, 
vol. 46, pp. 2651–2663, Oct. 1998. 

[8] J. Homer, “Detection guided NLMS estimation of 
sparsely parameterized channels,” IEEE Trans. 
Circuit Syst. II, vol. 47, pp. 1437–1442, Dec. 2000. 

[9] A. Gilloire and M. Vetterli, "Adaptive Filtekg in 
Subbands with Critical Sampling: Analysis, 
Enpeiments, and Application to Acoustic Echo 
Cancellation". IEEE Trans. Signal Processing, Vol. 
40, No. 8, Aug. 1992. 

[10]  S. S. Pradhan and V. U. Reddy, "A New Approach 
to Sub band Adaptive Filtering" BEE Trans. Signal 
Processing, Vol. 47, No. 3, Mar.1999 

[11]  M. R. Petraglia, R. G. Alves and P. S. R. Diniz, 
"New Structures for Adaptive Filteing in Subbands 
with Critical Sampling". IEEE Trans. Signal 
Pmcessing, Vol. 48, NO. 12, Dec. 2000. 

[12] D. Messerschmitt et al., Digital Voice Echo 
Canceler with TMS32020, Digital Signal Processing 
Applications with the TMS3C20 Family, Texas 
Instrum., Inc. Dallas, TX, 1986. 

[13] S. M. Kuo and J. Chen, “Multiple microphone 
acoustic echo cancellation system with the partial 
adaptive process,” Digital Signal Process. vol. 3, pp. 
54–63, 1993 

[14] S. C. Douglas, “Adaptive filters employing partial 
updates,” IEEE Trans. Circuits Syst. II, vol. 44, pp. 
209–216, Mar. 1997. 

[15] S. Douglas, "Adaptive Filters Employing Partial 
Update," IEEE Trans. Circuits Syst. II, Analog Digit. 
Signal Process, vol. 44, no.3, pp. 209-216, Mar. 1997. 

[16] T. Aboulnasr and K. Mayyas, "Complexity 
Reduction of the NLMS algorithm via Selective 
coefficient Update," IEEE Trans Signal Process., vol. 
47, no. 5, pp. 1421-1424, May 1999 

[17] K. Dogancay and O. Tanrikulu, "Adaptive Filtering 
Algorithms with Selective Partial Updates," IEEE 
Trans. Circuits Syst. II, Analog Digit Signal Process, 
vol. 48, no. 8, pp. 762-769, Aug. 2001. 

[18] H. Deng and M. Doroslovacki, "New Sparse 
Adaptive Algorithms using partial update," in Proc. 
IEEE Int. Conf Acoust., Speech, Signal Process., 
May 2004, vol. 2 pp. 845-848. 

[19]  J. Wu and M. Doroslovacki, "Coefficient and Input 
Combined Selective Partial Update NLMS for 
Network Echo Cancellation," Technical Report, Dept. 
of Electrical and Computer Engineering, The George 
Washington University, July 2006. 

[20] C.F.N.Cowan and P.M.Grant, Adaptive Filters, 
(Prentice Hall, Englewood Cliffs, 1985). 

[21] B.Widrow and S.D.Stearns, Adaptive Signal 
Processing, (Prentice Hall, Englewood Cliffs, NJ, 
1988). 

[22] J. A. Chambers, O. Tanrikulu, and A. G. 
Constantinides, Lease mean mixed-norm adaptive 
filtering, IEE Electronic Letters, Vol. 30, No. 9, 1994. 

[23] O. Tanrikulu and J. A. Chambers, Convergence and 
steady-state properties of the lease-mean mixed-
norm (LMMN) adaptive algorithm, IEE proceedings 
on Vision, Image and Signal Processing, Vol. 143, 
No. 3, 137-142, 1996. 

[24] B. Widrow, “Thinking about thinking: the 
discovery of the LMS algorithm,” IEEE Signal 
Processing Mag., vol. 22, no. 1, pp. 100–106, 
Jan.2005. 

[25] S. Haykin, Adaptive Filter Theory, 4th ed., ser. 
Information and System Science, Prentice Hall, 2002. 

[26] E. H¨ansler, “Hands-free telephones- joint control 
of echo cancellation and post filtering,” Signal 
Processing, vol. 80, no. 11, pp. 2295–2305, Nov. 
2000. 

[27] T. Aboulnasr and K. Mayyas, “Selective coefficient 
update of gradient based adaptive algorithms,” in 
Proc. IEEE Int. Conf. Acoustics Speech Signal 
Processing, vol. 3, 1997, pp. 1929–1932. 

[28] “MSE analysis of the M-Max NLMS adaptive 
algorithm,” in Proc. IEEE Int. Conf. Acoustics 
Speech Signal Processing, vol. 3, 1998, pp. 1669–
1672. 

[29] A.W. H. Khong and P. A. Naylor, “Selective-tap 
adaptive filtering with performance analysis for 
identification of time-varying systems,” IEEE Trans. 
Audio Speech Language Processing, vol. 15, no. 5, 
pp. 1681 – 1695, Jul. 2007. 

[30] Pitas, “Fast algorithms for running ordering and 
max/min calculation,” IEEE Trans. Circuits Syst., 
vol. 36, no. 6, pp. 795–804, Jun. 1989.  

[31] H.-C. Shin, A. Sayed, and W.-J. Song, “Variable 
step-size NLMS and affine projection algorithms,” 
IEEE Signal Processing Lett., vol. 11,no. 2, pp. 132–
135, Feb. 2004. 

[32] Khong A.W.H, Woon-SengGan, Naylor, P.A., and 
Mike Brookes, M. “A Low Complexity Fast 
Converging Partial Update Adaptive Algorithm 
Employing Variable Step-size For Acoustic Echo 
Cancellation”, IEEE International Conference on 
Acoustic, speech and signal processing, 2008 pp. 
237-240,  May 2008.  

 
 
 

USN Rao, male, obtained his B. Tech 
from Jawaharlal Nehru Technological 
University, Hyderabad and M. Tech 
from National Institute of Technology, 
Bhopal. He is currently as Asst. 
Professor at the School of Electronics, 
Vignan University. His research 



 Adaptive Signal Processing for Improvement of Convergence Characteristics of FIR Filter 25 

Copyright © 2013 MECS                                                      I.J. Image, Graphics and Signal Processing, 2013, 12, 18-25 

interests include Digital Signal Processing, Adaptive 
Filter Techniques, and Power Electronics. 
 

B Raja Ramesh, male, received B. 
Tech degree in Electronics and 
Communication Engineering from 
Jawaharlal Nehru Technological 
University, Hyderabad and M. Tech 
in Systems and Signal Processing 
from Jawaharlal Nehru Technological 
University, Hyderabad, presently 

working as Associate Professor in the department of 
Electronics and Communication Engineering, Adams 
Engineering College, Paloncha, India. His research 
interests include Signal Processing, Broadband, 
Multiband and UWB Antennas. 

 


