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Abstract— Contemporary  image processing based 
applications like medical diagnosis automation and 
analysis of satellite imagery include autonomous image 
segmentation as inevitable facility. The research done 
shows the efficiency of an adaptive evolutionary 
algorithm based on immune system dynamics for the 
task of autonomous image segmentation. The recognition 
dynamics of immune-kernels modeled with infin ite 
Gaussian mixture models exhib it the capability to 
automatically determine appropriate number of segments 
in presence of noise. In  addition, the model using 
representative density-kernel-parameters processes the 
informat ion with much reduced space requirements. 
Experiments conducted with synthetic images as well as 
real images recorded assured convergence and optimal 
autonomous model estimat ion. The segmentation results 
tested in terms  of PBM-index values have been found 
comparable to those of the Fuzzy C-Means (FCM) for 
the same number of segments as generated by our 
algorithm. 

 
Index Terms— grey scale image segmentation, 
autonomous segmentation, Gaussian mixture model, 
non-parametric estimat ion, artificial immune system 
(AIS), Dendrit ic Cell A lgorithm (DCA) 

 

I. INTRODUCTION 

Spatial data mining and particularly the task of image 
segmentation has been largely in focus of research in 
advanced computing applications like computer vision 
[1]. An optimal segmentation of images and 
identification of objectives therein are essential to 
understand an image clearly. Image segmentation 
involves partitioning an image into reg ions with similar 
properties such as gray level, color, and texture etc. The 
highly overlapped pixels and large amount of 
unpredictable and inestimable speckle noise in major 

image applications lead to severe difficu lties. Modern 
data acquisition methods create a huge amount of image 
data for which manual analysis would be prohibitively 
expensive and time-consuming. Automatic segmentation 
of images in medical and geographical image analysis 
applications is a difficult task since these images rarely 
have any simple linear feature. For example in case of 
medical images, the output of segmentation algorithm is 
affected due to several causes namely partial volume 
effect, intensity inhomogeneity, presence of artifacts, and 
closeness in gray  level of different soft tissue [2]. 
Several algorithmic techniques have been developed to 
address the challenges involved in image segmentation. 
A survey is reported in [3]. Profound supervised 
clustering methods facilitating or requiring user 
interaction, fo r example in hierarchical approaches such 
as relevance feedback techniques [4] have been in 
existence. However the purpose of autonomous image 
segmentation essentially emphasizes undertaking 
development of efficient unsupervised learning 
techniques aptly satisfying the concerns raised by 
continuously growing fields of applications. Density 
based clustering methods have been largely harnessed to 
cater to such needs.  

Lately several propositions on application of the 
adaptive and the innate immune dynamics of the 
artificial immune systems (AIS) have been used to solve 
issues related to problems requiring supervised learning 
[5] or unsupervised learning including image 
segmentation. Most of the image segmentation models 
found in literature [6, 7, 8, 9, 10, 11] applied various 
formulat ions of the clonal princip le  of AIS. Such a 
model is computationally expensive and outcome is 
sensitive to the choice of the mutation parameter. The 
Dendritic  Cell Algorithm (DCA) [12, 13] was 
formulated with infin ite Gaussian mixture model in  our 
previous work [14].  The experiments conducted on 
multivariate structured data set had showed the 
capability of the model to perform autonomous 
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exploration of arbitrary shape of clusters. The clustering 
performed and the error rate were found to be 
comparable to those of the tests with same number of 
clusters generated through the standard K-means method. 
Yet the model was observed to be sensitive to 
initialization. The present work demonstrates adaptive-
DCA formulated using the Gaussian mixture, wherein a 
necrosis-pressure gradient threshold has been 
introduced to control the splitting of clusters. This 
controlled splitting represents generation of antibodies 
only on certain  aging of danger signals as per the danger 
theory [15, 16] of immune kinetics. The model was 
applied to the task of autonomous image segmentation. 
To obviate sensitivity to initialization, in itially two 
clusters were generated through K-means applied over 
significant quantiles instead of the entire data. To ensure 
optimal solution several iterations of the EM runs were 
recorded and then the best solution was taken as the 
output. The experiment section details the properties of 
convergence and robustness of the algorithm 
investigated with synthetic as well as real images with 
presence of noise that have been. The segmentation 
quality was compared on basis of the PBM-index. This 
measure represents the proportion of the inter-
cluster/intra-cluster affinit ies. To test the validity of the 
outcome, the Fuzzy C-Means (FCM) was executed over 
the same set of images and for the same number of 
clusters as generated autonomously by the adaptive-
DCA. The high PBM-value generated with FCM in 
respective cases confirm the quality of the results 
generated by the adaptive-DCA. 

In the following, section II presents a brief literature 
survey of related work identifying the issues and scope 
for the p roblem underhand. In section III design and 
algorithm of the Adaptive-DCA is described followed by 
description of the related implementation aspects 
contained in section IV. The results of the experiments 
and analysis of experiments are presented in section V. 
Section VI exp lores scope for improvement. 
 

II. RELATED WORK 

Probabilistic and stochastic modeling of images has 
substantially served in  capturing the intrinsic 
characteristics of images in few parameters and in 
quantitatively specifying natural constraints of the 
phenomenon generating the images. Image modeling and 
analysis based on such methods focuses on the key 
issues of model selection, sampling, parameter 
estimation, and goodness-of-fits [17]. The core works 
that harness the principles of statistics for development 
of robust clustering methods have addressed to 
challenging issues like learning in the presence of 
missing data values and noises as in work by Martin [18], 
and to effectively speedup the learning [19]. The 
execution of image segmentation methods over huge 
pixel in formation is perceivably expensive considering 
the time and space complexities. Data clustering Models 
based on artificial immune systems (AIS) have addressed 
this issue. ARIA [20] demonstrated reduced memory 

usage yet comprehensive computation for extracting the 
inherent clusters. Another formalism blending AIS 
model with  probabilistic distribution mixture model has 
been applied in INDIE [21] for the task of density 
estimation. They have employed the immune network 
metaphor of the AIS, which  was earlier applied for 
clustering in aiNet [22]. The clustering methods applying 
operations over graph like recursive pruning of minimum 
spanning tree (MST) as in aiNet have yielded success in 
determining hierarchical clusters efficiently. However to 
determine optimal g raph components automatically, we 
would have to consider applying such operations across 
several iterat ions to evaluate all possible groupings. A 
litt le effort on counting the candidate groups convinces 
that such formulation for autonomous segmentation 
mechanis m would cause a NP-hard problem and hence 
not computationally viable. Among recent works to 
apply AIS mechanism in image segmentation, the work 
presented in [23] is remarkable. It has used the clonal 
principles of immune dynamics, which  is 
computationally expensive. The method is applicable for 
K-segment determination when the number K of desired 
segments is pre-specified. Successful implementations of 
such models illuminate the pathway for development of 
efficient and robust image segmentation algorithm 
tuning in the probabilistic and stochastic models of 
immune dynamics for efficient autonomous computation 
of image segments. Several adaptations of the clonal 
principles of immune systems have been applied to solve 
optimization problems  [7]. When the solution is 
represented by a vector of attributes imitated as 
antibodies of AIS, the population of candidate solutions 
may contain partial h igh quality solutions to the problem. 
The antibodies in the population might contain partial 
solutions to the global problem, which can be seen as 
building blocks of the clonal-AIS functionality. The 
authors of GAIS [24] observed that affinity maturation 
implemented in tradit ional cloning princip le based AIS 
required cloning fo llowed by the mutation of the newly-
generated cells. Considering that the mutation operator 
cannot discover by itself crucial relationships among the 
variables of the problem, thus pinpointing the lack of 
ability to identify and effectively manipulate building 
blocks of the problem underhand. Bayesian formulation 
of the immune system functions was developed and 
applied to the task of mult i ob jective optimization in 
MOBAIS [8] and was further refined in BAIS [9] for 
effective handling of the build ing blocks which also 
enhance its application to subspace learning problems 
like image segmentations. The model demonstrated in 
BAIS rep laced the traditional mutation operator with a 
probabilistic model representing the probability 
distribution of the promising solutions found so far.  
Successful applicat ion of these models justified  adoption 
of the Bayesian network as the probabilistic model, and 
reemphasized its capability to properly capture the most 
expressive interactions among the variables of the 
problem. Yang’s AIS model [11] for image segmentation 
using fused complementary features of image also 
applied the clonal principle for determining  the optimal 
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segmentation. The method applied pareto-ranking to 
search through the solution space. It can be observed that 
the above image segmentation methods based on clonal-
AIS are computationally  expensive and are h ighly 
sensitive to choice of the mutation parameter. 

 

III. ADAPTIVE-DCA FOR AUTONOMOUS IMAGE 
SEGMENTATION 

The prime goal of the work was to implement a 
program to determine segments in an image without 
need of human intervention. The recognition dynamics 
of the DCA was exp loited to develop a self-adaptive 
segmentation model employing robust information 
exploration capabilities of statistical methods. An 
adaptation of the Dendritic Cell Algorithm (DCA), the 
danger theory based immune dynamics of the Dendritic  
Cells, was implemented as the first component of the 
model. The functional dynamics of the DCA is applied 
for recognition of incoming data; assigning them to one 
of the existing clusters or to create a new cluster in case 
of the danger signal. The second design component 
incorporated is the mixture of exponential family kernels 
to model pixel data in the current ‘window’ with respect 
to the mixture components; each mixture component 
being represented by a parameter-vector indicating 
individual image segments.  In nutshell, an image 
segment is learned by the model as an antibody; which in 
turn would be implemented as a parameter-vector 
corresponding to an appropriately chosen distribution 
function. The stimulat ion level o f an  antibody on 
presentation of a new antigen resembles the posterior 
weights of a segment. The danger signals may  be 
observed to resemble the outliers; memorizing the 
danger signal in  newly created dendritic  cells helps in 
finding out similar antigen (input data) in future input. 
Further splitting of a heavier (guarded by the threshold 
‘eps’) but less dense cell taken in the context of 
clustering avoids over fitting of data. The cluster-
splitting threshold ‘eps’ taken here may be considered as 
the necrosis-pressure gradient threshold which controls 
generation of antibodies only on certain aging of danger 
signals as per the danger theory of immune kinetics.  The 
infinite mixture models representing the components as 
their parameter-sets have been dependably applied in 
several algorithms to handle arbitrary  shapes of clusters 
with reduced need for memory e.g. in [20]. On the other 
hand, the danger signal based splitting and merg ing steps 
of the Dendritic Cells immune function facilitates self 
adaptive learning of the inherent clusters. The learning 
method of the DCA avoids the redundant clone 
formation steps involved in the ‘Clonal Select ion’ 
metaphor of AIS, thus giving quicker results. Moreover 
it avoids the dependency of such algorithm on the choice 
of mutation parameter. The estimation of the optimal 
mixtu re component through appropriately controlled EM 
convergence has largely been strategy of several 
evolutionary optimizat ion algorithms [7, 8, 9, 25]. This 
combination therefore fu lfils the need of effective 

autonomous image segmentation with reduced memory 
requirements. 

 
 

 

 

 

 

 

 

 
 
 

Figure 1. Block diagram of the danger model based 
Autonomous Segmentation Engine 

 

A. Algorithm 
Input : Pixel intensity values of Image to find 

segments  
Output: Antigen Types representing the 

corresponding image segments 

Process:  
1. [Data Input] AG   Input antigens (image p ixel 

values)  
2. [Reduce Noise] AG    Quantile-based noise 

reduction over input data in AG: Filter out the first and 
the last 5th quantiles. 

3. [In itialise ARB with two DCs.]  DCParam   Apply 
effective clustering method, e.g. K-means to determine 
initial representative centers (mean) of the first two DC-
Kernels in the ARB. 

4. ARB    DCKernel (DCParam) [The DCs of ARB 
are implemented in form of the parameter vectors 
(DCParam), supported with corresponding vectors to 
store probabilistic affinity weights assigned to each data 
value in the input ‘Data’, as generated according to 
DCKernel() pdf with the respective DCparam values] 

5. For each Agi ЄAG execute lines 6-11. ## Process 
Further Antigens (Data values) 

6. Find the affin ity value with closest DC (in terms of 
probabilistic affin ity weights for the Agi in existing DCs 
in the ARB) 

7. If affinity < eps (necrosis-pressure gradient 
threshold) [Generate ‘danger signal’] 

8. Create new DC in  ARB (to memorise the danger 
signal), by assigning the new Agi as its centre and other 
essential parameters of the recognizing DCKernel set 
accordingly. 

9. Update all DCs’ posterior affinity weights to 
include effects of addition of new cell. 

10. Otherwise, if size of closest DC is bigger than a 
size threshold, split the DC. 

11. Update age of antigens and the danger signals 
12.  Update cell parameters 
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13. Update DCs’ affinity weights for each antigen 
using revised DC-parameters. 

14. Compute likelihood value (Cluster quality) using 
log likelihood. 

15. Repeat through line 4 to obtain maximum 
likelihood estimat ion of clusters. 
 

IV. IMPLEMENTATION ASPECTS OF THE ABOVE 
ALGORITHM 

A. K-means based initialization using quantile-filtered 
data 

EM based learning methods are highly sensitive to 
initial component selection. Several techniques have 
been found in literature for good in itializat ion of cluster 
components in evolutionary heuristics for unsupervised 
model selection problems. The need is satisfied by an 
efficient feature selection method suitable to the 
application. The solution in [11] for segmentation of 
images with fused complementary features employed the 
Gabor filter. Watershed filters have also been used in 
several other solutions. The image segmentation 
mechanis m provided in  [25] used in itial feature selection 
using the histogram properties, as the method used for 
clustering essentially performed grouping of the 
histogram components. In our algorithm the K-means 
based method was applied for in itializat ion of the two 
initial clusters. The dataset was init ially purged using 
quantiles in a way to avoid outliers. 

B. Effect o f the ‘eps’ keeping fixed versus adaptive 
The parameter ‘eps’ guides generation of new cluster 

if certain data values don’t have the affinity to the closest 
segment greater than ‘eps’ threshold. It can be observed 
in the experimental results that setting up a uniform 
value for the parameter ‘eps’, to control splitting of the 
clusters, does not help evolve clusters. Therefore the 
parameter ‘eps was allowed  to adjust as per the current 
minimum affinity value given by (1). 

 
epsnew = min_affinity + (avg_affinity-min_affin ity)/100.
                   (1) 

 
Thus ‘eps’ might increase or decrease with generation 

of clusters and reassignments of the image points. The 
need for such adaptation was felt as the low value of 
‘eps’ set manually to .002 was found sufficient to further 
with the next  iteration but failed to split clusters while 
attempting subsequent iterations, as the update minimum 
affinity immediately after the first iteration was observed 
to be as high as .4014. Adapting the ‘eps’ slightly 
beyond the respective min imum affin ity value with 
appropriate consideration of the range of affinities 
calculated as the difference of the minimum and the 
average values. Theoretically, such adjustment of the 
system parameter simulates the adaptive behavior of 
natural immune system. Such a formulation applied to 
autonomous image segmentation, generated convincing 
results as presented in the experimental result section. It 
might be argued that above adjustment of the ‘eps’ 

parameter might make the iterations caught in infin ite 
generation of clusters if the input image was highly 
degenerate and originally  no significant cluster was 
present; causing the ‘eps’ values to be very low even 
after dynamic adjustments. However, any such image 
would not be of any use either and we may assume with 
a note of practicability that the above formulation 
benefits in the target applications of image segmentation.  

C. Convergence performed using log-likelihood 
computation 

A threshold of 1E-20 for log-likelihood change was 
found sufficient to terminate the learning iterat ions with 
stable model estimation across several tests. The results 
varied across the subsequent conducted tests. The 
experimental result section shows respective outcomes 
with optimal values of the segmentation quality measure. 

One among the alternatives for the loglikelihood 
measure for testing the convergence found in literature 
was the PBM-index [26]. However the PBM-index 
increases monotonically and tends hence its limiting 
behavior for CN (C being the number of clusters 
detected and N is the length of the data set) is non-
convergent [27]. So PBM is not so impressive index for 
controlling convergence of model estimation process. 
Another option proposed in [28] was of a point 
symmetry index (SI), which showed promising 
properties for pixel-wise assignment. But model 
estimation using this measure is computationally 
expensive if it is required  to be computed several times 
during learning iterations. As the task of image 
segmentation does not emphasize exact pixel 
assignments, we find the log-likelihood estimation 
sufficient for our need. 

D. Quality testing with PBM:  
PBM-index was init ially proposed by Pakhira [26] as a 

discriminant measure for unsupervised classification 
problems and has been used widely [11] for successful 
results in testing quality of clusters generated by 
respective algorithms. The PBM-index is defined as in 
(2).   
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Here n  is the total number of points in the data set, 

U(S) = [μij] c x n  is a  partit ion matrix for the data and vi is 
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the center of the ith cluster. The objective is to maximize 
this index in order to obtain the actual number of clusters. 

 

V. EXPERIMENTAL RESULTS 

The development of the algorithm and its applicat ion 
to autonomous segmentation involved experiments 
conducted in two stages.  

A. First Stage Experiment 
In the first stage, tests over the convergence and 

segmentation properties of the Gaussian and the Poisson 
mixture components were performed; so that an 
appropriate formulation for the DCKernel() function be 
selected to estimate stimulation o f DC on p resentation of 
new antigen (a pixel value). The AIS based adaptive 
model presented in the algorithm above makes use of the 
density based kernels to add more and more clusters on 
finding a danger signal produced due to an antigen not 
activating any of existing antibodies. This adaptive 
model applies an infin ite learn ing model; let  us call the 
variations as the artificial immune Gaussian mixture 
model (AIGMM) and artificial immune Po isson Mixture 
model (AIPMM) respectively.  The models were tested 
with a grey-level satellite image of landscape. The 
convergence of the learning algorithm was tested 
through maximizat ion of log-likelihood of the posterior 
affinity weights, as given in the algorithm above. As 
observed in the visual outcome shown in figure 2, the 
Gaussian model converges earlier than the Poisson 
model; in fact convergence of later could not be achieved 
even until running the models until generation of 5 
segments. As we observe in Figure 2, the segmentation 
achieved through the AIPMM shows slight modification 
in the right half of the image with more number of 
segments in comparison to those of the AIGMM. 
However, due to the difficu lty of non-convergence of the 
AIPMM as compared to the assured convergence of the 
AIGMM, the former is considered an inferior choice for 
the model estimation  purpose. The outcome of the 
AIGMM is comparable to that of the widely used 
segmentation method Fuzzy  C-means (FCM), tested for 
generation of 3 segments. Observing the results of the 
AIGMM and the FCM in comparison with the original 
image, it is found that the AIGMM avoids the 
unnecessary segregation in form of extra b lack patches 
in the middle portion of the right half of image of FCM. 
The observation of the left upper port ion also shows 
better ‘automatic’ segmentation by the AIGMM in 
comparison to FCM used for the same number of 
segments.  

 
 
 
 
 
 
 
 
 

 

 

 

 
 a)  b)   c)  
 
 
 
 
   
 
 
 d)   e)   f) 

Figure 2: Image Segments generated: a) Original Image b) 
AIGMM:1.602sec c)FCM : 0.7836 sec. d) AIPMM: 2.74sec e) 
Log likelihood convergence plot for AIGMM f) Log likelihood 

convergence plots for AIPMM 
 

B. Analysis of performance of Gaussian Mixture vis-à-
vis Poisson Mixture based model estimation  

The results of experiments conducted in the first stage 
indicated the use of the Gaussian mixture components to 
formulate the function DCKernel(); fo r computing the 
affinities of the antigens to the antibodies and guide 
further evolution of optimal sets of antibodies 
representing the image segments. Observed theoretically, 
the estimat ion of the Poisson mixtures uses only single 
parameter µj that is the mean of each mixture component. 
In case two components generated during the evolution 
process have similar µj values, they would in essence 
represent the same feature. If the means become equal, 
the two corresponding components would not be 
identified uniquely. Such evolutions during the learning 
process, would affect the convergence adversely and 
estimation becomes intractable. In such case the data 
points would have equally valid and significant affinity 
to each segment giving high likelihood, while on the 
contrary undesirable segments would be present. In case 
of the Gaussian mixtures variance or std. deviation is 
used as another parameter. A characteristic problem 
related to cluster assignment was argued in [29]. It is 
observed that in case of two  components having close 
means, the component with the larger variance would be 
split. The resulting segment with s maller variance would 
have a higher likelihood so causing it to attract the points 
close to the common mean of the two segments. Thus the 
component with larger variance would contain the points 
farther from the mean, both high and low, although the 
later being disjointed in grey level. We observe that this 
problem of controlling the splitting of component is 
handled appropriately within the framework of the 
adaptive-DCA discussed below wherein the system 
parameter ‘eps’ is used to simulate the process of 
necrosis occurring during the self-adaptive natural 
immune system.  

C. Second Stage Experiment 
In the second stage experiments were conducted to 

test the image segmentation efficiency and other relevant 
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properties of our algorithm. The quality of segmentation 
performed autonomously by our algorithm were then 
compared with those of the FCM executed for the same 
number of components as generated by the former, 
contrasted on the basis of the PBM measure. The results 
of experiments presented in subsequent section 
convincingly support viability of the proposition. 

When tested for the synthetic data with Gaussian noise, 
as used above, setting up a uniform splitting threshold 
resulted into very few clusters when low and when set to 
a high value, it created numerous segments, impractical 
for acceptance. Fo llowing are the typical results 
representing outcomes of several executions for 
threshold value 0.002 with the five-segment image. 
When observed, the minimum probabilistic-affinity 
value was around .4 after the iterat ion progressed with 
the two resulting segments. Quite perceivably the 
subsequent iterations did not split segments beyond two.   

 
 

 

 
 
 
     a)    b)     c) 
 
 
 
 
 
 
 
 
    d)       e)  f) 

Figure 3. Segmentation with DCA without the necrosis-
pressure-gradient applied over synthetic  five segment image : 
a) Image with Gaussian Noise, b) Corresponding histogram, c) 
Image after segmentation d) Corresponding histogram, e) Log-

likelihood convergence  plot, f) Q-Q plot 
 
 
 
 
 
 
 
 

   a)     b)         c)  
 
 
 
 
 
 
 

   d)       e)          f) 
Figure 4.  Segmentation with DCA without the necrosis-
pressure-gradient applied over Landscape SAR Image: a) 

Image without Noise, b) Corresponding histogram, c) Image 
after segmentation d) Corresponding histogram, e) Log-

likelihood convergence plot for EM, f) Q-Q plot 
 
 
 
 

 
 
 
  
 
 
 
 
 a)    b)     c)  
 
 
 
 
 
 
 
    d)       e)          f) 

Figure 5. Segmentation with DCA having the necrosis-
pressure-gradient applied over synthetic data with five 

segments: a) Image without Noise, b) Corresponding histogram, 
c) Image after segmentation d) Corresponding histogram, e) 

Log-likelihood convergence  plot, f) Q-Q plot 
 

 
 
 
 
 
 
 
 
 
 a)    b)     c)  
 
 
 
 
 
 
 
  
   d)       e)          f) 

Figure 6.  Segmentation with DCA having the necrosis-
pressure-gradient applied over synthetic data with four 

segments: a) Image with Gaussian Noise, b) Corresponding 
histogram, c) Image after segmentation d) Corresponding 

histogram, e) Log-likelihood convergence  plot, f) Q-Q plot 
 
 
 
 
 
 
 
 
 

 a)    b)     c)  
 
 
 
 
 
 
 
 

   d)       e)          f) 
Figure 7.  Segmentation with DCA having the necrosis-

pressure-gradient applied over Brain MRI image: a) Image 
with Gaussian Noise, b) Corresponding histogram, c) Image 

after segmentation d) Corresponding histogram, e) Log-
likelihood convergence  plot,           f) Q-Q plot 
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 a)    b)     c) 
    

 
 
 
 
 
 
 

    d)       e)          f) 
Figure 8. Segmentation with DCA having the necrosis-

pressure-gradient applied over Landscape SAR Image: a) 
Image without Noise, b) Corresponding histogram, c) Image 

after segmentation d) Corresponding histogram, e) Log-
likelihood convergence 

 
 
 
 

 plot, f) Q-Q plot 
 

 
 

a)    b)     c) 
 
 
 
 
 
 
 

  d)       e)          f) 
 

Figure 9. Segmentation with DCA having the necrosis-
pressure-gradient applied over Landscape SAR Image: a) 

Image with Gaussian Noise, b) Corresponding histogram, c) 
Image after segmentation d) Corresponding histogram, e) Log-

likelihood convergence  plot, f) Q-Q plot 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

               a)                            b)                 c)             
 
 
 
 
 
 
 
 
  d)      e)                       f)                 
   
 
 
 
 
 
 
   g)                   h) 
Figure 10. Segmentation with FCM for K=4 to match with the 
result through the adaptive-DCA:  a) Landscape SAR Image 
without noise b) segmented image c) Landscape SAR Image 
with Gaussian noise d) segmented image e) Brain MRI image 
without  noise f) segmented image g) Brain MRI image with 

Gaussian noise h) segmented image 
 

D. Analysis of autonomous model estimation with 
Gaussian mixture model employing adaptive splitting 
threshold for the DCA 

As can be observed in the figures 5.c and 6.c, a stable 
solution typically  detects 4 segments in both the 
synthetic images presented with Gaussian noise. 
Although the image reported in  the first column was 
originally created with 5 segments; however, the 
histogram corresponding to the gray scale image shows 
that 4 modes dominate the distribution of pixel 
intensities. The two modes occurring in the middle of the 
histograms in figures 5.b and 6.b are less distinct though. 
Similar observation is drawn from the figures 7 and 8. 
The log-likelihood convergence graphs shown in figures 
(3-9).e and corresponding values in Table I in respective 
columns show the convergence of the algorithm.  The 
quantile-quantile plots (Q-Q plots) between the actual 
data and the estimated mixture model, given in figures 
(3-9).f represent the segmentation quality. In case one or 
more plotted quantile-points deviate significantly beyond 
the diagonal, each case indicates a classification error. 
The respective Q-Q p lots shown in figure (5-9).e are 
identical and quantiles fall closely along the diagonal. 
The outlying points in top right corners each indicate 
litt le classificat ion error. The high PBM scores of the 
resulting model components corresponding to figures 5-9, 
as given in Table I indicate acceptability of the estimated 
segmentation.  
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TABLE I. LOG-LIKELIHOOD VALUES OBTAINED DURING CONSEQUENT PASSES AS REPRESENTED IN  EM  CONVERGENCE PLOTS IN 
RESPECTIVE REFERENCE FIGURES AND THE CORRESPONDING PBM  VALUES REPRESENTING SEGMENTATION QUALITY.  NUMBERS WITHIN 
PARENTHESIS ALONG WITH EACH LOGLIKELIHOOD VALUE REPRESENT THE CORRESPONDING COMPONENT COUNTS; THE OPTIMAL VALUES 

ARE SHOWN IN BOLD LETTERS. THE PBM  VALUES SHOWN ARE THE TYPICAL AVERAGE VALUES ACROSS 10 EXECU TIONS OF THE 
SEGMENTATION ESTIMA TION. 

Reference 
FigureNo. 

Algorithm model Data Set Loglikelihood Value  
(Number of Components) 

PBM Value 

Figure 3 DCA without the necrosis-
pressure-gradient 

synthetic data- five segment -1.6535e+004(2),-5.8731e-14(2),  
-3.0420e-014(2),-1.8541e-14(2),     
-1.9318e-014(2) 

83.983 

Figure 4 -do- Landscape SAR Image -3.3070e+004(2),-7.7827e-14(2),    
 -7.6050e-014(2),-1.1124e-013(2) 

3.6974 

Figure 5 Adaptive-DCA with the necrosis-
pressure-gradient 

synthetic data- five segment 
with Gaussian noise 

-1.6535e+004(2),-6.0840e-14(2),     
-2.3315e-015(3),3.7303e-014(4),  
8.1046e-015(5) 

1.1246e+003 

Figure 6 -do- synthetic image- four 
segment 

-2.7048e+004(2),-1.1258e-13(2),     
-6.9167e-014(3),-1.8541e-14(4),      
-8.9928e-014 (5) 

1.3884e+003 

Figure 7 -do- Brain MRI with Gaussian 
Noise 

-8.1866e+005(2),-4.2510e-12(2),    
 -1.9548e-012(3),-9.1649e-13(4),   
 -2.4718e-012(5) 

835.4234 

Figure 8 -do- Landscape SAR image 
without noise 

-3.3070e+004(2),-7.7827e-14(2),    
-7.1831e-014(3),-1.3434e-14(4), 
-2.4758e-014(5) 

2.0362e+003 

Figure 9 -do- Landscape SAR image with 
Gaussian Noise 

-3.3915e+004(2),-7.8160e-14(2),    
-1.3278e-013(3) 

2.8179e+003 
 

 
TABLE II. PBM  VALUES CORRESPONDING TO THE TEST RUNS WITH FCM  PRESENTED IN FIGURE 10. 
Reference 
Figure  
No. 

Image used for testing the segmentation with FCM PBM value after 
segmentation 

Figure 10.a-b) Landscape SAR image without noise 298.5766 

Figure 10.c-d) Landscape SAR image with Gaussian noise 730.1843 

Figure 10.e-f) Brain MRI image without noise 1.7171e+003 

Figure 10.g-h) Brain MRI image with Gaussian noise 824.1533 

 
Limitation of the algorithm in filtering the noise is 

apparent in figure 9; however it may also be observed 
that the boundaries of intensity changes have been aptly 
identified. That is what may be qualified as the strength 
of the algorithm that even in presence of noise the 
characteristic image segments are automatically 
determined. Although exact  pixel assignments are not 
emphasized, it still fulfills our need since the purpose of 
the task of image segmentation, for example, is to detect 
the dominating groups within  the image serving the 
needs of identify ing organ conditions in medical imaging 
applications and that of detecting landscapes or 
geographical features in a remote sensing image 
processing application. 

The results were compared with the Fuzzy C-Means 
method executed for the same input image and the C- 
value set to the one determined  automatically  by the 
execution of our algorithm. As shown in Figure 10 and 
Table II, the corresponding high PBM values of the 
output of FCM for the given number of segments 
reemphasize optimality of the components automatically 
detected by our algorithm. The limitat ions related to 
perfection of outcomes explored in the above results may 
be analyzed by considering the fact that the model 
implemented and tested here employed the Gaussian 

mixture. Gaussian process (GP) models comprise one of 
the most popular Bayesian methods in the field of 
mach ine learning for regression, function approximat ion, 
and predictive density estimat ion [30]. Despite their 
significant flexib ility and success in many application 
domains, GP models face difficu lties in dealing with 
tasks entailing non-stationary covariance functions, 
multi-modal output, or discontinuities [31]. 
 

VI. CONCLUSION AND FUTURE SCOPE 

The results show that proper blending of the DCA 
recognition dynamics modeled with probabilistic density 
distribution based learning and added adaptive splitting 
parameter effectively performs autonomous detection of 
segments. Such model takes a theoretically apparent 
advantage over the AIS models based on clonal 
principles as the later goes through computationally 
expensive generative operations and are highly sensitive 
to choice of mutation parameters. The experimental 
results exh ibit  the autonomous model estimation 
capability of the adaptive extension of the DCA immune 
dynamics, which in  itself has been known for its 
application to reduced-memory unsupervised learning 
strength. The limitation of the current formulat ion in 
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handling noise appropriately was observed, and need for 
undertaking further model development using more 
intricate statistical mathematical formulations was 
indicated. St ill the results convince the applicability of 
the present model to image with moderate noise. As 
argued in the discussions in experimental results, the 
autonomous model estimat ion facility of the 
implementation counts to the strength of the model 
developed; as it satisfactorily caters to the intended 
needs of the applications employing such tools; the goal 
is to identify the dominating blocks in the image 
automatically, rather than determining exact pixel 
belongingness. Given the conditions of image 
applications tested in our experiments, the GP based 
learning model with the adjustment parameters within 
DCA framework handled the segmentation sufficiently 
except in case of moderate noise conditions. The model 
presented above performs segmentation only on basis of 
pixel intensity values in gray-scale and does not include 
spatial dependency information. Such limitations 
explored open way for taking up development of 
methods with more robust mathematical and statistical 
approaches.  
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