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Abstract— Residue number system is a non-weighted 

integer number system which uses the residues of 
division of ordinary numbers by some modules for 

representing that ordinary numbers. In this paper, the 

general three moduli set }2
n
-1,2

n
+1,2

pn+1
-1} based on 

CRT algorithm  is proposed in which ―p‖ is an even 

number greater than zero. The special case of this set 

for p=2 which is }2
n
-1,2

n
+1,2

2n+1
-1{ is also described in 

this paper. Since the dynamic range of this set is odd, 

some difficult problems in RNS can be easily solved 

based on this set using parity checking. The proposed 

reverse converter is better in speed and hardware in 

comparison to reverse converters in similar dynamic 

range. Moreover, from the complexity point of view, 

the internal arithmetic circuits of this moduli set is 

improved and is less complex than the other sets in 

similar dynamic range.  

 

Index Terms— Reverse Converter, Moduli Set, 
Dynamic Range, Residue Number System 

 

I. INTRODUCTION 

Residue number system is a non-weighted number 

system which is specified with a muduli set 

{m1,m2,…,mn} in which an integer number X is 

represented as  (x1,x2,…,xn) that xi=x mod mi. 

Arithmetic operations on residues can be performed in 

each moduli in parallel without carry propagation 

between them. The RNS has been widely considered for 

efficient hardware implementation of digital signal 

processing (DSP) [3], and for the implementation of 

high-speed FIR filters [4]. Moreover, RNS has 

applications in image processing systems, especially 

RNS image coding which can offer high-speed VLSI 

implementation of secure image processing algorithms 

[5]. 

Because of the carry free property of some operations 

like addition, subtraction and multiplication, 

implementation of these operations are easy and fast. 

Some operations like sign determination, number 

comparison, and overflow detection cannot be 

accomplish free of carry between muduli, so they are 

considered as fundamental problems in RNS. Different 

solutions are proposed to accomplish these operations. 

One of them is parity checking where parity means the 

residue in redundant modulo 2. But this solution is 

easily to implement only when the dynamic range is odd.  

Moduli set selection and reverse conversion design is 

very significant in RNS. Reverse conversion is mainly 

implemented with one of the algorithms of Chinese 

reminder theorem and mixed-radix conversion or a 

combination of these two.  

One of the most popular moduli sets is }2
n
-1,2

n
,2

n
+1{. 

But today its dynamic range is not sufficient for many 

applications. So moduli sets with larger dynamic range 

and sets with more moduli for increasing parallelism are 

mostly proposed. The modulo 2
n
 looks an appropriate 

modulo with respect to hardware cost and delay of 

arithmetic circuits and converters. But this modulo is 

even therefore the dynamic range will be even, so we 

would not be able to use parity checking as a solution 

for the fundamental problems in RNS.  

Few moduli sets with odd dynamic ranges were also 

proposed, like: {2
n
-1,2

n
-3, 2

n
+3, 2

n
+1}[6], {2

n
-

1,2
n
+1,2

2n
-2,2

2n+1
-3}[7], {2

n
-1,2

n
+1,2

2n
+1} [8], {2

n/2
-

1,2
n/2

+1,2
n
+1,2

2n+1
-1}[16]. Because of using 2

n
-2 and 

2
n
+3 moduli, complexity of internal arithmetic circuits 

for [6], [7] is high. In comparison to our reverse 

converter, since in moduli set {2
n
-1, 2

n
+1, 2

2n
+1} the 

third modulo is a multiple of the other moduli, the 

reverse converter has a better performance. But the 

arithmetic circuits for moduli in the form of 2
n
+1 are 

complex and unfortunately two of them are in this 

moduli set, so the performance has decreased in the 

overall RNS. In moduli set {2
n/2

-1,2
n/2

+1,2
n
+1,2

2n+1
-1}, 

the parallelism is increased but there are unbalance 

moduli and also two moduli in the form of 2
n
+1 which 

lead to decrease in the performance of overall RNS. 

In this paper the reverse converter for the general 

three odd moduli set is proposed based on CRT 

algorithm in which p is an even number greater than 

zero. Taking p as a variant we can have the appropriate 

dynamic range. Therefore, the dynamic range is odd, 

and consequently the proposed set is amenable to solve 

difficult RNS problems using parity checking. 

In the rest of the paper we will see a brief introduction 

of RNS (Section II), design of proposed converter for 
the general case and then for the special case (section III) 

and at the end of the paper we will review the 

performance evaluation and finally the conclusion. 



38 Effective Reverse Converter for General Three Moduli Set{2
n
-1,2

n
+1,2

pn+1
-1} 

Copyright © 2012 MECS                                                        I.J. Image, Graphics and Signal Processing, 2012, 9, 37-43 

II. BACKGROUND  

A residue number system is defined in terms of 

relatively prime moduli set {P1,P2, …,Pn} that is gcd 

(Pi,Pj) = 1 for i≠j, where gcd (Pi,Pj) denotes the greatest 

common divisor of P i and Pj.  

Weighted number X can be represented as 

X=(x1,x2, … ,xn), where xi = X mod Pi=XPi , 0≤xi <Pi. 

Such a representation is unique for any integer X in 

the range [0,M-1], where M=P1P2…Pn is the dynamic 

range of  the moduli set {P1,P2, …,Pn}. 

The residue number system (RNS) is a carry-free 

number system which can support parallel and high-

speed arithmetic. In this system, a weighted number is 

converted into a set of small Residues and arithmetic 

operations can be performed in parallel on each modulo. 

Since arithmetic operations can be performed without 

carry propagation between residues, RNS leads to high-

speed addition, subtraction and multiplication. 

In order to perform some arithmetic operations on a 

weighted number In an RNS system, a converter is 

needed to decompose a weighted binary number into a 
residue represented number, with regard to the moduli 

set. That converter is a binary to residue converter 

(forward converter). After forward conversion, 

arithmetic operations can be performed on each modulo 

independently and simultaneously and without carry 

propagation between residues. In order to use the result 

of arithmetic operations in the form of a weighted 

number, the resulted RNS number must be converted 

into its equivalent weighted binary number by residue to 

binary conversion (reverse conversion).  

Binary to residue conversion can be implemented 
with multi-operand modular adders simply. The 

arithmetic unit includes modular arithmetic circuits for 

each modulo channel. Reverse conversion involves a 

significant degree of complexity.  

The algorithms of residue to binary conversion are 

mainly based on chinese remainder theorem (CRT) and 

mixed-radix conversion (MRC).  

In CRT [1],  the residue number (x1,x2,…,xn) with 

moduli set {m1,m2,…,mn} is obtained as follow: 

 
i

L

i i im

M

X X N M

                                                   (1) 

1

L

i

i

M m



                                                                    (2) 

Where Mi=M/mi and Ni =|Mi
-1

|Pi is the multiplicative 

inverse of Mi modulo mi for i=1,2,…,l . 

By MRC algorithm [1], the residue represented 

number (x1,x2,…,xn) can be converted into the weighted 

number X with moduli set {m1,m2,…,mn}  as follow: 

2 1 1

1

...


   
L

n i

i

X a m a m a

                                       (3) 

The cofficients ais can be obtained from the residues 

by 

1 1 1

1 1 2 2 1 1((( ) ) ... )  

     
n n n

n

n n n nm m m
m

a x a m a m a m

     (4) 

Where  n>1 and a1=x1. 

The RNS has many applications in digital signal 

processing (DSP) , image processing, RSA algorithm 

and communication systems. Also, RNS offers new 

approaches to the design of the error detection and error 

correction codes. The basic arithmetic components in 

arithmetic logic unit (ALU) and DSP systems, such as 

number comparison, parity checking, base extension, 

sign determination, and overflow detection, turn to a 

tough obstacle in RNS, which limit many RNS based 

applications. 

Some difficult problems in RNS like number 

comparison, sign determination, and overflow detection, 

can be solved based on parity checking. Moreover, 

parity checking is also one of the fundamental issues for 

the division and scaling in RNS. For the odd moduli set, 

the parity checking is one of the fundamental issues [9]. 

Each RNS system is based on a moduli set which 

consist of a set of relatively prime integers. The majority 

of the algorithms for performing these difficult 

operations are based on reverse conversion. Hence, an 
efficient design of reverse converter greatly simplify the 

hardware implementation of these difficult operations. 

The complexity of the residue to binary converter and 

also the speed of the RNS arithmetic  circuits are mainly 

based on the form and the quantity of the moduli in a 

moduli set. 

The most used moduli set is {2
n
−1, 2

n
, 2

n
+1} [10]. 

The implementation of reverse conversion, modular 

addition, and multiplication of this moduli set are not 

complex generally, but number comparison, sign 

determination, and overflow detection cannot be 

accomplished based on parity checking because the 

dynamic range is even. In this case, we would not be 

able to use parity checking as a solution for the 

fundamental problems in RNS.  

III. DESIGN OF REVERSE CONVERTER  

A. Design of Reverse Converter for General Three 

Moduli Set {2
n
-1,2

n
+1,2

pn+1
-1}  

For design of the reverse converter we use CRT 

algorithm. Theorems, properties and lemmas are used in 

the design. 

Theorem1: 2
n
-1, 2

n
+1, 2

pn+1
-1 are pair-wise relatively 

prime numbers. 

Proof: based on Euclid's Theorem gcd(a,b) = gcd(b,a 

mod b) in which gcd(a,b) represent greater common 

devisor between a ,b.  if a and b are relatively prime to 

each other, their greater common divisor is equal to one.  
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gcd(2pn+1-1,2n-1)=gcd(2n-1,1)=1                                (5) 

gcd(2pn+1-1,2n+1)=gcd(2n+1,1)=1                              (6) 

as 2
n
-1, 2

n
+1 are prime relative to 2

pn+1
-1 and gcd(2

n
+1, 

2
n
-1)=1, so we can conclude that all three moduli are 

relatively prime to each other. 

Lemma 1: the multiplicative inverse of (2
n
+1)×(2

pn+1
-

1) modulo 2
n
-1 is 2

n
-1. 

Proof: since we have 

n

n

2 -1

pn+1

n2 -1
n

n

2 -1

p

= - = =2 -1 2? 2 -1+1)? ..? 2 -1+1) 1 2-1 1

   (7) 

With replacing above result in equation (8), we have: 

   
   (    )  (       )        

       
         

                                                             (8) 

Lemma 2: the multiplicative inverse of (2
n
-1)×(2

pn+1
-1) 

modulo 2
n
+1 is 2

n
-1. 

Proof: since p is an even number, we have: 

p

nn

n

pn+1 n n

2 +12 +1

2 +1

= -1 = -1 12 -1 2? 2 +1-1)? ..? 2 +1-1) 2 =

     (9) 

Replacing above result in equation (10), we have:. 

1 n

n n n

-1 n pn+1 n-1

2 2 +1 2 +1 2 +1
M ? 2 - 1)? 2 - 1) = 2 ? -2 )? = -2 = 1

  (10) 

Lemma 3: the multiplicative inverse of (2
n
-1)×( 2

n
+1) 

modulo 2
Pn+1

-1 is 
(p-2)n+1 (p-4)n+1 2n+1

-(2 + 2 +...+ 2 + 2) . 

By substituting above result in equation (11), we have: 

pn+1

-1 n n (p-2)n +1 (p-4)n +1 2n +1 2n

3 2 -1
pn+1

2 -1
M ? 2 -1) ? 2 + 1) = (-2 - 2 - ... - 2 - 2) ? 2 -1) =

pn+1

pn+1 (p-2)n+1 2n+1 (p-2)n+1 (p-4)n+1 2n+1

2 -1
(-2 - 2 -... - 2 ) + (2 + 2 +...+ 2 + 2) =

pn+1

pn+1

2 -1
-(2 -1) +1 = 1

                                                   (11)  

Property 1: the multiplication of residue number v by 

2
P
 in modulo 2

n
-1 is equivalent to p bit circular left 

shifting, where p is a natural number. The proof is 

mentioned in [1]. 

Property 2: the negative residue number (-v) in 

modulo 2
n
-1, is equal to the one's complement of v 

where 0 ≤ v < 2
n
-1.  The proof is mentioned in [1]. 

Based on CRT algorithm, the residue number 
(x1,x2,…,xn) with moduli set {m1,m2,…,mn} , is obtained 

as follow:  

 
i

L

i i im

M

X X N M

                                                 (12) 

1

L

i

i

M m



                                                                  (13) 

 

Mi=M/mi and where Ni =|Mi
-1

|Pi is the multiplicative 

inverse of Mi modulo mi for i=1,2,…,l . 

So for the  moduli set we have 

              
              

      
        

                                                             (14) 

Since 

        
  

 (     )  (  (   )     (   )             ) 
pn+1 (p-2)n+1 2n+1 (p-2)n+1 (p-4)n+1 2n+1

= (-2 - 2 - ...- 2 )+(2 + 2 +...+ 2 + 2)=
pn+1

3
m-(2 - 1)+1= - +1

                                                    (15) 

By substituting the above result in (14), we have: 

              
              

      
(     )                                                                          (16) 

According to [1], we can consider X as follow:  

  [
 

  
]                                                                    (17) 

[
 

  
]           

           
           

    (18) 

 
 
 

n n-1 n n-1

1 2 3

3

2n2 -1

X
= x ? 2 +1)? + x ? 2 -1)? - x =

m  

n-1 n-1 n

1 1 2 2 3 1 2 3 4 2n2n 2 -12 -1
2 (x x )+2 (2 x - x ) - x = v +v +v +v

       (19) 

With respect to moduli set{2
n
-1,2

n
+1,2

pn+1
-1}, the 

residues (x1,x2,x3) has representations in binary form as 

follow: 

1 1,n 1 1,n 2 1,0
x (x x ...x )

 


                                                 (20) 

2 2,n 2,n 1 2,0x (x x ...x )
                                                 (21) 

3 3,pn 3,pn 1 3,0x (x x ...x )
                                                 (22) 

We can write equation (17) in the form of 

X=Y×m3+x3, in which Y=|v1+v2+v3+v4|2
2n

-1. 

n-1

1 1,0 1,n-1 1,n-2 1,0 1,n-1 1,n-2 1,1

2n
2n2 -1

= 2 ( ) = ( ... ... )
1 1

v x x x x x x x x x

  (23) 

2n-1

2 2 2,0 2,n 2,n -1 2,1

n -1 n -1
n +1

2n2 -1

= 2 (0...0 ) = ( 0...0 ... )v x x x x x

        (24) 

n-1

3 2 2,n 2,n -1 2,0

n -1 n -1
n +1

2n2 -1

= -2 (0...0 ) = ( ... 1...1)v x x x x

                     (25) 

2n4 3,pn 3,pn -1 3,0 2 -1
= -( ... )v x x x =

 

2n

pn (p-2)n 2n

3,pn 3,pn-1 3,(p-2)n 3,4n-1 3,2n 3,2n-1 3,0 2 -1
-2 - 2 ( ... ) - ... - 2 ( ... ) - ( ... )x x x x x x x

  (26) 

(

7) 

(

9) 

(

11) 

(

12) 

(

13) 

(

14) 

(

15) 
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4 4,1 4,2 4.(p/2)+1
= + + ... +v v v v

                             (27) 

4,1 3,pn

2n -1

= (1...1 )v x

                                                         (28) 

4,2 3,pn -1 3,pn -2 3,(p-2)n
= ( ... )v x x x

                                           (29) 

4.(p/2)+1 3,2n-1 3,2n -2 3,0
= ( ... )v x x x

                                          (30) 

Since 
2n

2n

2n

2n
2 -1

2 -1

(1...1) = (2 -1) = 0

,we can simplify 
v3 and v4,1 to one vector that is introduce as v' in 

equation (31). 

'

3 4,1 2,n 2,n -1 2,0 3,pn

n -1 2n -1

2,n 2,n -1 2,0 3,pn 2,n 2,n -1 2,0 3,pn

2n
n +1 n +1n -1 n -1

= + = ( ... 1...1) + (1...1 ) =

(1...1) + ( ... 1...1 ) = ( ... 1...1 )

v v v x x x x

x x x x x x x x

  (31) 

By substituting above result in equation (17), the 

value of X is calculated as follow in which Yx3 is 

calculated by concatenation of Y and x3, so we don't 

need any additional hardware.  

pn+1

3
X = Y ? 2 - 1)+ x

                                             (32) 

pn+1

3 3
X = 2 Y - Y + x = Yx +Y +1

                                       (33) 

Example: 

For moduli set {2
n
-1,2

n
+1,2

pn+1
-1}for p=2 and n=3 we 

have the moduli set {7,9,127}. We calculate X by 

residue representation (4,4,3) as follow: 

x1=4=(100)2 

x2=4=(0100)2 

x3=3=(0000011)2 

With respect to equations 23,24,29,31,33, we have: 

v1=(010010)2=18 

v2=(000010)2=2 

v'=(101111)2=47 

v4,2=(111100)2=60 

Y=|18+2+47+60|63=|127|63=1 

X=128×1-1+3=130 

If we consider above results, we can see that the 

residue representation X=130, with respect to moduli set 

{7,9,127} is (4,4,3), which is truly calculated. 

Hardware architecture of proposed reverse converter 

is shown in figure 1. For the hardware implementation 

we use modular adders and logic gates. In this structure 

the residue number )x1,x2,x3( is changed to ((P/2)+4)-vi 

vectors by operation preparation1(O.P.1), which is 

compose of (n+2)-bit not gates. We use a (2n)-bit CSA 

with EAC tree For calculating Y, in which first module 

adds the three v1,v2,v' vectors.  

Since v2 in equation (24) has n-1bits of "0", so n-1 

F.As replace with n-1 H.As. v' in equation (31) contains 

n-2 bits of "1", so n-2  F.As replace n-2 XNOR/OR pairs. 

The other vectors also sequentially add with the result of 

previous module. The worst case is when we need 
(p/2)+1 addition modules and the best situation is when 

p/2 is a multiplication of three. In this case the delay 

will decrease.  Here we have considered the worse 

scenario. The delay of each CSA is equal to the delay of  

one FA.  

In the worst case, CSA tree needs (p/2)+1 CSA 

modules. Afterwards a (2n)-bit one's complement adder 

is to be added to the modulo 2
n
-1, which is a CPA with 

EAC, therefore its delay is two times of  the delay of a 

CPA that includes a 2n FA modules. In order to 

calculate the equation (33), we use 2n not gates and at 
the end, we use a ((2+p)n+1)-bit regular adder.  

If we consider the delay of a CSA equal to a FA' 

delay and the delay of a n-bit CPA equal to an (2n)-bit 

F.A' delay, the final delay will be calculated as follow: 

delay=((6+p)n+(2+(p/2))) TFA. 

 

Figure 1.  Reverse converter for general moduli set {2
n
-1,2

n
+1, 2

pn+1
-1}  

B. Reverse Converter Structure for Moduli Set {2
n
-

1,2
n
+1, 2

2n+1
-1}  

General moduli set {2
n
-1,2

n
+1,2

pn+1
-1}, for p=2 we 

have moduli set {2
n
-1,2

n
+1, 2

2n+1
-1} which is considered 

as a special case.  
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2n+1

3
X = Y ? 2 - 1)+ x

                                                  (34) 

n-1

1 1 1 1,0 1,n-1 1,n-2 1,0 1,n-1 1,n-2 1,1

2n 2n2 -1

v = 2 ( x x ) = (x x x ...x x x ...x )

 (35) 

2

2n-1

2 2,0 2,n 2,n-1 2,1

n-1 n-1
n+1 2n2 -1

v = 2 ( 0...0 x ) = (x 0...0 x x ...x )

          (36) 

2,n 2,n-1 2,0 3,2n

n-1n+1

v = ( x x ...x 1...1x )
'

                                         (37) 

4,2 3,2n-1 3,2n-2 3,0
v = ( x x ...x )

                                               (38) 

Finally X is calculated as follow : 

2n +1

3 3
X = 2 Y - Y + x = Yx + Y +1.

                                 (39) 

Example: 

For moduli set {2
n
-1,2

n
+1,2

2n+1
-1}for n=2 we have 

the moduli set {3,5,31}. We calculate X by residue 
representation (1,2,6) as follow: 

x1=1=(01)2 

x2=2=(010)2 

x3=6=(00110)2 

With respect to equations above, we have: 

v1=(1010)2=10 

v2=(0001)2=1 

v'=(1011)2=11 

v4,2=(1001)2=9 

Y=|10+1+11+9|15=|31|15=1 

X=32×1-1+6=37 

If we consider above results, we can see that the 

residue representation X=37, with respect to moduli set 

{3,5,31} is (1,2,6), which is truly calculated. 

 

Figure 2.  Reverse converter for moduli set {2
n
-1,2

n
+1, 2

2n+1
-1} 

The delay of this circuit is (8n+3) TFA. Comparing 

this delay to the same form of moduli sets with the 

similar dynamic range, will show us that the delay is 

decreased. The details of the implementation are shown 

in figure 2.  

TABLE.1 DELAY AND HARDWARE DETAILS OF REVERSE CONVERTER FOR DIFFERENT MODULI SETS. 

 

DR Delay 
XNOR 

/OR 

XOR/ 
AND 

NOT FA Moduli Set 
Reverse  
Converter 

4n+1 
(8n+3) TFA 

+2 TNOT 
n-2 n-1 5n+2 8n+4 }2

n
-1,2

n
+1,2

2n+1
-1{ 

The Proposed 

Reverse Converter 

4n+1 
(8n+4)TFA 

+2 TNOT 
4n-3 2n-3 6n+4 8n+7 }2

n/2
-1,2

n/2
+1,2

n
+1,2

2n+1
-1{ [16] 

4n 
(7n+8)TFA 

+2 ROM 
- - - 26n+8 }2

n
-1,2

n
-3,2

n
+3,2

n
+1{ [6] 

4n+1 (7n+7)TFA - 5n+4 7n+2 9n+2 }2
n
-1,2

n
,2

2n+1
-1{ [11] 

4n+1 (8n+2)TFA - 2n-2 - 8n+2 }2
n
-1,2

n
+1,2

2n
+1{ [8] 

4n-1 
(9n) TFA 

+ 3 TNOT 
3n-3 - 7n-1 9n-2 }2

n
-1,2

n
,2

2n-1
-1{ [12] 
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IV. PERFORMANCE EVALUATION 

Dynamic range of proposed reverse converter for 

three general moduli set {2
n
-1,2

n
+1,2

pn+1
-1} is  

((p+2)n+1)-bit and for the special case p=2 is (4n+1)-bit. 
The reverse converter of this moduli set is comparable 

to the reverse converters with similar dynamic range. 

The common and popular odd moduli sets with (4n+1)-

bit dynamic range are {2
n/2

-1,2
n/2

+1,2
n
+1,2

2n+1
-1} [16], 

{2
n
-1,2

n
-3,2

n
+3,2

n
+1} [6]. In addition {2

n
-1,2

n
,2

2n+1
-1} 

[11], {2
n
-1,2

n
,2

2n-1
-1} [12] are two moduli sets with 

(4n+1)-bit dynamic range, which are compared to our 

reverse converter. Hardware implementation details and 

delay is estimated based on F.A. 

Delay is listed in table 1. We can use the unit gate 

model [13], [15] to estimate the delay and the area. In 

this model each two input monotonic gate counts as one 
gate in the area and the delay. An XOR gate counts as 

two gates in the area and the delay and a F.A counts as 

seven gates in the area and four gates in the delay. 

Comparison between the delay and the area of reverse 

converters in this model are listed in table 2.  

According to table 1 our reverse converter has better 

hardware cost and delay comparing to the reverse 

converters with moduli sets {2
n/2

-1,2
n/2

+1,2
n
+1,2

2n+1
-

1}[16], {2
n
-1,2

n
,2

2n-1
-1}[12]. Also it has better hardware 

cost in comparison with reverse converter with moduli 

set{2
n
-1,2

n
-3,2

n
+3,2

n
+1} [6]. According to [1], using 

memory for large amount of n is not economically 

feasible for the delay and for the hardware. In addition 

two unusual moduli  2
n
-3, 2

n
+3, will cause decreasing of 

the performance in the arithmetic unit of RNS system. 

So from performance point of view our reverse 

converter is better than the reverse converter in [6] and 

It has less hardware costs comparing to the reverse 

converter with moduli set in {2
n
-1,2

n
,2

2n+1
-1} [11], 

although this module has less delay. 

TABLE.2  AREA AND DELAY OF UNIT GATE OF REVERSE 

CONVERTER FOR DIFFERENT MODULI SETS. 

 

There are some important parameters in designing an 

RNS like speed of internal RNS arithmetic processing. 

For estimating this parameter we use the method of [15] 

in which the time-performance is compared between 

moduli sets. The speed of arithmetic calculation for a 

moduli set is determined with slowest modulo which is 

the critical modulo. We use the unit gate delay of 

parallel prefix adder for critical modulo of moduli sets 

of table 1, and the results are shown in table 3. The 

moduli set {2
n
-1,2

n
+1,2

2n
+1}[8], with (4n)-bit odd 

dynamic range, with respect to table 1 has better delay 

and hardware cost comparing to our reverse converter 

with 4n+1-bit dynamic range. however,  because of two 

moduli in form of 2
n
+1 we will have a decrease in 

performance of RNS arithmetic unit. So time-

performance of our reverse converter is better than it. So 

we can conclude that the proposed reverse converter in 
this paper is better than the other reverse converter with 

similar dynamic range. 

TABLE.3  COMPARISON BETWEEN TIME-PERFORMANCE OF DIFFERENT 

MODULI SETS. 

 

V. CONCLUSION 

In this paper a general three moduli set for even p and 

it's reverse converter is proposed. This moduli set with 

((2+p)n+1)-bit variant dynamic range can have different 

dynamic range according to different applications. The 

odd moduli set leads to efficient implementation of 

internal circuits for fundamental problems in RNS 

arithmetic and in overall RNS system. The reverse 
converter in this paper has a better performance in 

hardware cost and delay comparing to the other reverse 

converters with similar dynamic range. 
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