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Abstract—The dynamics of rational maps and their 

properties are interesting because of the presence of 

poles and zeros. In this paper we have computed Julia 

sets of rational maps having Zhukovskii Function for 

which the double of the first derivative has no Herman 

rings. The data points out of the Julia set in Matlab 

workspace were imported to Matlab Signal Processing 

Tool for their analysis. We have sampled the data points 

with the sampling frequency of 8192 Hz and obtained 

complex signals.  We have then applied the band pass 

filter to these complex signals. The effect of the band 

pass filter has generated complex analogue modulated 

signals.  

 
Index Terms— Wavelets, Julia Set, Maps, Matlab 

SPTool, Zhukovskii Function 

I. INTRODUCTION 

The study of iterated holomorphic mappings began in 

the 19
th

 century but only came to flower in the 20
th

. In 

this section our objective is to discuss basic definitions 

and tools used in complex dynamics. Section 2 provides 

the mapping properties of the rational map having 

Zhukovskii Function , section 3 discusses wavelets 

based Iterated Functions, section 4 presents simulation 
results of computer generated images  using Matlab 

SPTool,  we will wind with the conclusion. The reader 

needs to possess introductory background in complex 

analysis. 

A rational map is defined by a ratio of two 

polynomials,  
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where .,;00,0, Cqpqandpmn iimn   

The algebraic degree of 

   mnQPR ,maxdeg,degmax  . 

If   ,0)(),()(  asandNkzs
k

azzQ then R is 

said to have a pole of order k at .a The complex 

number 0z is said to be a critical point of R if either 

0)( 0  zR or if  k
zz 0 , ,2k is a factor of 

).(zQ The image of 0z under ,R ),( 0zR is called a 

critical value of ,R in the case that  k
zz 0 is a factor 

of ,Q .)( 0 zR Infinity is a critical point of ,R  if 

.0)( R  The presence of a pole at the origin 

reveals that there is a neighborhood of the origin that is 

mapped to the basin at infinity [1]. 

A rational map of R degree 2d has 22 d critical 

points counted with multiplicity. This comes from 

Riemann–Hurwitz formula. It has 1d fixed points 

counted with multiplicity. This is an instance of 

Lefschetz fixed point formula [2]. We are interested in 

finding the fixed points because fixed points of a given 

function are interesting in analyzing the function about 

its equilibrium point. A fixed point also known as an 

invariant point of a function is a point that is mapped to 

itself by the function. That is to say, if Cz0 is a 

fixed point of a function then .)( 00 zzR  The 

derivative of R  evaluated at 0z , ,)( 0  zR is 

sometimes referred to as the multiplier or the eigenvalue 

for the fixed point of R at 0z . The fixed point is 

classified based on the value of .  

If ,1 then 0z is repelling fixed point.  

If ,10   then 0z is an attracting fixed point.  

If ,0 then 0z is a superattracting fixed point.  

If ,1 then 0z is an indefferent fixed point.  

If 0z  is neutral or indifferent, we 

write ;)( 02

0

 i
ezf  further if 0 is rational, then 

0z  is rationally indifferent or parabolic, otherwise 0z is 

irrationally indifferent. 

Assume that 0z is an attracting fixed point of R  and 

,1   

then 000 )()()( zzzzRzRzR    

neighborhood D of 0z . 

Then

000 )()()( zzzzRzRzR nnnn    and 

0)( zzR n  uniformly on D . The basin of attraction 

of 0z ,  00 )(:)( zzRCzzA n   .  
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It is well known that the dynamics of a rational map is 

very much influenced by the forward orbits of its critical 

points [3]. The forward orbit E  of a periodic point is 

called a cycle, because ER /  is a cyclic permutation. 

The Julia set can be defined as the closure of the set 

of repelling periodic points for R . Here a point z  is 

periodic if zzR p )(  some 0p ; it is 

repelling if   1)( 


zR p
  

indifferent if   1)( 


z
p

R ; and 

attracting if   1)( 


zR p
. 

We can characterize a cycle of order n  similarly, 

based on the value of the derivative of 
nR  at some 

points in the cycle. First we note that          
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any point in the cycle, and we can characterize a cycle 

(and the periodic points in the cycle) as repelling, 

attracting, superattracting, rational indefferent, or 

irrational indeferent according to the nature of the fixed 

point 0z  for the map 
nR . All attracting and 

superattracting fixed points and cycles are a part of the 

Fatou set. This follows because in a small neighborhood 

around an attracting (superattacting) fixed point, the 

map )(zR is a contraction [4]. Rational maps are 

complex analytic, so a broad spectrum of techniques can 

contribute to their study (quasiconformal mappings, 

potential theory, algebraic geometry, etc.).The rational 

maps of a given degree form a finite dimensional 

manifold, so exploration of this parameter space is 

especially tractable [5]. 

Let  
)(

)(
)(

zQ

zP
zR   where P and Q  are polynomials 

with .degdeg QP   In this case )(zR  as 

z so infinity is regarded as a fixed point. Also, 

infinity is an attracting fixed point, in the following two 

cases: 

1. 1degdeg  QP  

Then the Julia set of R is the boundary of the basin of 
attraction of infinity. 

2. 1degdeg  QP  and 1
m

n

q

p
  where 

mq  is the leading coefficient of Q and np  is the 

leading coefficient of .P If 1
m

n

q

p
  then infinity 

is not an attracting fixed point of .R  

  If 1
m

n

q

p
  then infinity is a neutral fixed point 

of .R  

For Julia sets of rational maps with numerator not of 
higher degree than denominator, then infinity is not a 

fixed point. 

Theorem 1.1 

If a rational map has only one fixed point which is 

repelling or has multiplier 1, then the Julia set is 

connected. 

II. MAPPING PROPERTIES 

In [6] the family of the maps 
d

n

z
zzG


 )(  

with 1,2  dn  was investigated and the most  

complicated case was when .2 dn These maps 

reduce to special case .
n

zz  So 
n

zzG )(0 is a 

polynomial of degree n, there is a superattracting fixed 

point at the origin (when .2n ), and the Julia set 

converges to the unit disk as .0  In our paper we 

attempt to study the class of rational maps, 

.0
2

1
)(,  








nforn

z
zznR


  

2.1 Polynomials of First Degree  

The rational map 







 n

z
zznR




2

1
)(,  reduces to 

a polynomial of degree one. 

 If ,0 then zzR n
2

1
)(,0   and fixes two 

points in extended complex plane C and 

is similar to a scaling. 

 If ,0n 
2

1

2

1
)(0,  zzR  and fixes two 

points in extended complex plane C and 

is similar to a scaling followed by translation. 

The above conditions are special cases of Möbius 

transformation.  

2.2 Zhukovskii Function 

Our goal in this section is to discuss another special 

case of the map 







 n

z
zznR




2

1
)(,  given by 

)1.2(
1

2

1
)( 










z
zzT

for .1 n   
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this is Zhukovskii map, and it finds applications in fluid 

dynamics [7]. Suppose that
 iez  , then 
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    Eliminating   by squaring both sides of these 

equations and adding them leads to 
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    Eliminating   in the same manner gives 
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Lemma 2.1 

Zhukovskii map 









z
zzT

1

2

1
)(  maps circles 

centered at the origin onto ellipses (Zhukovskii ellipses) 

and lines through the origin onto hyperbolas 

(Zhukovskii hyperbolas).The map 
2zz  takes a 

Zhukovskii ellispse to an ellipse with one focus at the 

origin. It takes a Zhukovskii hyperbola to one branch of 

a hyperbola that has the origin as its focus, and a line to 

a parabola with focus at the origin [8].  

It follows that 

    )6.2(1)
2

(
2

12
)(  zTzT  

    )7.2(1)
2

(
2

12
)(  zTizT  

Adding Eqn. (2.6) and Eqn. (2.7) we get         

    )8.2(1
2

)(
2

)(  izTzT  

In particular,     ,1
2

)(
2

)1(  iTT  

since .0)(1)1(  iTandT  

We can now change the form of Zhukovskii function 

in Eqn. (2.1) to consider the family 











z
zzT

1

2
)(


 . 

The Julia set of )(zT is defined as to be the set of 

points for which the family of iterates of )(zT is not a 

normal family in the sense of Montel. We denote the 

Julia set by .)( TJ  For each  the map )(zT  has two 

critical points given by  .11  and

 

The critical values 

are given by .  and Since )()( zTzT   , it 

follows that the orbits of these critical points are 

symmetric with respect to .zz  The orbits of the 

critical points are called the critical orbits. The behavior 

of the critical orbits of a complex map determines to a 

large extent the dynamics of the map on the whole 

Riemann sphere [9]. )(zT has fixed points at 

2







z  and 22)(   zT , so  )(zT has an 

attracting fixed point when  lies in the open disk of 

radius 1 centered at 1. 











z
ziizT

1

2
)(



  

This means that the imaginary axis is invariant 

under T . 

2.3 Basic Mapping Properties 

 

If n is odd, then ,)(,)(, znRznR   this means 

that the map presents some symmetry with respect to the 

origin. Since the rational map 







 n

z
zznR




2

1
)(,  

has the numerator of higher degree than that of the 

denominator i.e. )(, znR  as ,z so infinity is 

regarded as a fixed point. In addition,  

1degdeg  QP  where  

,2
1 n

zQand
n

zP 


  then the Julia set 

of )(, zR n is the boundary of the basin of attraction of 

infinity. In order to find the fixed points of the 

family 







 n

z
zznR




2

1
)(, , we solve the equation 
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The critical points are obtained by solving the 
equation 

)10.2(0
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We can deduce that the family  









 n

z
zznR




2

1
)(,  has 1n critical points 

excluding the one at infinity. R has a pole of order n  at 

the origin, the presence of a pole at the origin reveals 

that there is a neighborhood of the origin that is mapped 

to the basin at .  
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For clarity and simplicity we have generated the Julia 

sets of the family 









22

1
)(2,

z
zzR



 as per Fig.1. 

One way to investigate Julia sets and their structure is to 

plot them using a computer programme. There are many 

ways of doing this and many programs available capable 
of producing quite intricate pictures [10]. The maps of 

Julia sets produced in this paper were generated on 

Matlab. We have assigned the complex parameter real 

value. Note that this family has critical points at the 

third roots of .2  

Lemma 2.1 

If ,2n then )(2, zR has a reflection about the 

imaginary axis.  

 
Proof 

Let 





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1
)(2,

z
zzR
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  
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Adding member by member we get 

2
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z
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
    

Therefore
2

)(2,)(2,
z

zRzR


  .  

Lemma 2.2 

If ,2n then )(2, izR has a reflection about the real 

axis.  

 
Proof 

 

Let  











22

1
)(2,

z
izizR


  ; 










22

1
)(2,

z
izizR



  

Adding member by member in the above expressions 

we get 

2
)(2,)(2,

z
izRizR


   

Therefore .
2

)(2,)(2,
z

izRizR


  Apart from 

reflection, the family, 









22

1
)(2,

z
zzR



 presents 

also some symmetry as shown in Fig.1, since it is the 

sum of identity and even functions. 

The first derivative of the rational map )(, znR is given 

by 


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1

1
2

1
)(, n

z

n
znR
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Let us now evaluate this derivative at infinity we get, 

2

1
)(,lim)(, 


 znR

z
nR  ,  

when this derivative is evaluated at zero we get, 

 

.)(,
0

lim)0(, 


 znR
z

nR   

    Let us now define the rational map 

)11.2(
1

1)(2)(, 
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n
z

n
zRznM


 .  

 

It is obvious that Eqn.(2.11)  is the double of the first 

derivative of the rational map )(, znR  

with .1)(2lim)(, 


 zR
z

nM  

If n is an odd number, then .)(,)(, znMznM    

For quadratic rational maps, J. Milnor [11] suggested 

considering, among others, the family of those maps that 

take one critical point to the other. In appropriate 

coordinates these maps take the form 

.
2

1
1

z
z


 Before the work of Milnor, the family 

 








 0\:
2

1
12 C

z
zf 

  

was considered by 

M. Lyubich [12]. He asked whether the maps in this 

family have Herman rings. M. Shishikura [13], using 

quasi-conformal surgery techniques, proved that the 

quadratic rational maps have no Herman rings, thus 

solving Lyubich's question as a particular case. 

 

 

Fig.1. Map for 









2
2

1
)(2,

z

c
zzcR 347.0; cwhere  
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A component U  of the Fatou set )(\ fJC   is 

called a Herman ring if U  is comformally isomorphic 

to some annulus  ,1; rzzrA  and if 

f correspond to an irrational rotation of this annulus 

[14]. In [5], it was also proved that the family 

 












 0\:
1

1 C
d

z
z

d
f 


has no Herman 

rings.

 

 

We can deduce that the rational map 

1
1)(, 


n
z

n
znM


  where 

n


1
 has no Herman 

rings. The Julia set of )(, znM is shown in Fig.2. 

III. WAVELETS BASED ITERATED FUNCTIONS 

Wavelets find applications and have significant 

impact in various scientific areas including geophysics, 

hydrodynamics, econometrics, data processing, image 

compression, detection of discontinuities, neural 

networks, etc [15].  

One of the reasons wavelets have found so many uses 

and applications is that they are especially attractive 

from the computational point of view. 

 

Fig.2.Map for ;
3

2
1)(2,

z

c
zM


  

3
tan


cwhere  

Computational efficiency of wavelets lies in the fact 

that wavelet coefficients in wavelet expansions for 

functions in 0V (resolution subspace in  d
RL

2
 may be 

computed using matrix iteration, rather than by a direct 

computation of inner products: the latter would involve 

integration over
dR , and hence be computationally 

inefficient, if feasible at all. The deeper reason for why 

we can compute wavelet coefficients using matrix 

iteration is an important connection to the subband 

filtering method from signal/image processing involving 

digital filters, down-sampling and up-sampling. In this 

setting filters may be realized as functions 0m on a d-

torus, e.g., quadrature mirror filters [16]. It would be 

interesting to adapt and modify the Haar wavelet, and 

the other wavelet algorithms to the Julia sets [17].  

One of the applications of these IFSs, and their 

spectral theory, is to image processing [18] and [19]. 

IFSs include dynamical systems defined from a finite set 

of affine and contractive mappings in
dR , or from the 

branches of inverses of complex polynomials, or of 

rational mappings in the complex plane. A unifying 

approach to wavelets, dynamical systems, iterated 

function systems, self-similarity and fractals may be 

based on the systematic use of operator analysis and 
representation theory [20]. 

In terms of signal processing, what the two have in 

common, wavelets and IFSs, is that large scale data may 

be compressed into a few functions or parameters. In the 

case of IFSs, only a few matrix entries are needed, and a 

finite set of vectors in 
dR  must be prescribed. As is 

shown in [18], this can be turned into effective codes for 

large images. Similarly (see [21]) discrete wavelet 

algorithms can be applied to digital images and to data 

mining. The efficiency in these applications lies in the 

same fact: The wavelets may be represented and 

determined by a small set of parameters; a choice of 

scaling matrix and of masking coefficients, i.e., the 

coefficients ka  in the scaling identity Eqn. (3.1) below 

[22]. The scaling function  satisfies an important 

equation, called the scaling equation. This is obtained by 

considering the function  1
A which lies in 01 VV  . 

Since the translates of  form a basis for 0V , the scaling 

function is obtained: 

 

    )1.3(,

1

det

1

d
Rxkx

dZk
k

a

xA
A













where  
ka

Zk
is a sequence of complex numbers. 

Definition 3.1 

Let  zRz  be a given polynomial. Let P be a 

finite set of distinct polynomials each of degree less than 

the degree of R. Let  PRK ,
2

be a space of functions F 

in   RJH
2

. We say that F is in  PRK ,
2

if there are 

functions  zFp in   RJH
2

 indexed by P such that 

       )23( .zRpF
Pp

zpzF 




  It is easy to see that each  PRK ,
2

 is a closed 

subspace in   RJH
2

, so in particular it is a Hilbert 
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space. The finite family P that enters Eqn.(3.2) is a 

family of generalized filters. It depends on the particular 

polynomial  zRz  , and we can expect to find 

solutions to  Eqn. (3.2) in Definition 3.1 from the kind 

of representations of the Cuntz algebras the authors 

studied in their work on wavelets on fractals [19].  

In this paper we will deal with the complex iteration 

systems which generate Julia sets in the Riemann sphere. 

IV. SIMULATION  WITH SPTOOL 

In this section we are interested in complex signals 

generated by importing the Julia set shown in Fig.1, 

from Matlab workspace to matlab signal processing tool 
with the sampling frequency of 8192Hz. This tool has 

three main components: signal section view, filter 

section view and edit as well as spectra section. These 

are used to visualize waveforms and spectra of several 

signals and make a qualified filter design. In order to use 

a complex signal under these processes the Julia fractal 

was imported as an array of 400 column index vectors, 

each of them having the real part, imaginary part, 

magnitude and phase angle. Fig.3, Fig.4, Fig.5 and Fig.6 

show the sampled real part, imaginary part, magnitude 

and phase angle of the column index vector 1 

respectively.  

Let  )(...)()()( 21 txtxtxtx m   be the 

sampling vector signal  

Let  )(...)()()( 21 trtrtrtr m   be the 

sampled vector signal  

Let  )(...)()()( 21 tytytyty m  be the 

response of the band pass filter  

Let )(tf  be the impulse response of the band pass 

filter  
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be mm data 

matrix representing the Julia set )( fJ in Fig.1. This 

data matrix is a complex matrix,
mmZJ  , associated 

with mm Pixels of the Julia set. In our case we have 

considered 400m in the Matlab programme that has 

generated the Julia set.  The Matlab signal processing 

tool shows that the sampled vector signal generated out 

of the Julia set )( fJ is a complex signal with real part, 

imaginary part, magnitude and phase. In this section we 

attempt to express the sampled vector signal )(tr  in 

terms of sampling vector signal )(tx  as well as data 

matrix J  representing the Julia set. 
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Since Jtxtr  )()(  is a complex signal, then, the 

magnitude of the sampled signal is given by: 
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In vector form Jtxtr  )()(  can be written as: 
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Fig.3. Real Part for Column Index Vector 1 
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Fig.4. Imaginary Part for Column Index Vector 1   

 

 
Fig.5. Magnitude for Column Index Vector 1  

 

 
Fig.6. Angle for Column Index Vector 1 

 
The power spectral density (PSD) of the sampled 

complex signal is shown in Fig.7. A stable band pass 

filter has been designed to analyze the complex signal in 

the sampling frequency range. Fig.8 shows magnitude, 

phase response, step response, group phase delay and 

other properties whereas Fig.9 indicates the pole–zero 

plot of the filter. The filtered real part, imaginary part,  

magnitude and phase angle of the column index vector 1   

are shown in Fig.10, Fig.11, Fig.12 and Fig.13 show 

respectively. The filtering process has eliminated noise 

successfully.   The power spectral density (PSD) of the 

filtered complex signal is shown in Fig.14. By definition 

the response of the band pass filter is given by the 

convolution of the impulse response )(tf of the band 

pass filter with the sampled vector  

signal  )(...)()()( 21 trtrtrtr m . Hence we 

get   dtftrtrtfty )()()()()(   .  

 
Fig.7.PSD of the Julia Set 

 

 
Fig.8. Band Pass Filter Characteristics  

 

 
Fig.9. Band Pass Filter Pole-Zero Plot 

 



68 Wavelet Based Some Julia Sets of Rational Maps Having Zhukovskii Function  

Copyright © 2012 MECS                                                        I.J. Image, Graphics and Signal Processing, 2012, 5, 61-70 

Apply the definition to each column, we get:   
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The complex wavelet generated out of the Julia set of 

mm Pixels, is given by:  
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    The magnitude of the complex wavelet generated out 

of the Julia set of mm Pixels, is given by:  
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The phase of the complex wavelet generated out of 

the Julia set of mm Pixels, is given by:  
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We can repeat the same steps on the rational map 

3
3

tan2

1)(2,
z

zM







  shown in Fig.2. 

 
Fig.10. Filtered Real Part for Column Index Vector 1 

  

 
Fig.11. Filtered Imaginary Part for Column Index Vector 1  

 

 
Fig.12. Filtered Magnitude for Column Index Vector 1  

 
Fig.13. Filtered Angle for Column Index Vector 1  

 

 
Fig.14. PSD of Filtered Julia Set 

V. CONCLUSION 

This research aimed at the generation of wavelets in 

the dynamics of rational maps having Zhukovskii 

function. But the reasoning applied on these rational 

maps can be extended to any other rational map. Indeed 

we have compute Julia sets of the rational maps with 

400400 pixels for 500 iterations using Matlab 

programme. We have then imported the data associated 

with the Julia set from Matlab workspace to Signal 
Processing Tool and generated complex signals through 

the sampling process of 8192 Hz. The filtering process 

of these complex signals has eliminated noise 

successfully.The effect of the filter has generated 

wavelets on both real part and imaginary part of the 

complex signals generated by the Julia set. We have also 

found that the filtered complex signals have dominating 

frequency at half of the sampling frequency.   
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