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analysis in detecting the autistic children based on EEG 

signal analysis. Thus, optimum preprocessing -which 

gives the highest classification accuracy- is studied. The 

artifacts of the recorded EEG signals were removed by 

visual inspection. Then, different preprocessing 

techniques were applied such as Re-referencing, 

Filtering, Winsorizing, Scaling, Single epoch extraction 

and Feature vector construction. After preprocessing, 

FFT was used as features. Dimensionality reduction 

using decimation factor 2 was applied. Finally, the 

extracted features were classified using RFLD. 

This research is considered as part of the main BCI 

project in the King AbdulAziz University that is funded 

by (King AbdulAziz City for Science and Technology) 

KACST, 8-NAN106-3. 

The layout of the paper is as follows. Section 2 

focuses on the literature review, the experiments that 

were performed and the methods used for data 

preprocessing, feature extraction are described in section 

3. Classification is given in section 4. Results are 

discussed in section 5. 

 

II. LITERATURE REVIEW  

One of the earliest Literatures that used the EEG 

and was tested with disabled subjects was described by 

Oberman, L.M., et al., .In their work, their results 

support the hypothesis of a dysfunctional mirror neuron 

system in high-functioning individuals with ASD [7]. 

Parallel to the work of Oberman, L.M., et al, 

neurofeedback (NFB) training were developed that used 

changes in mu brain-activity correlated to analysis the 

data by signal statistic. The results showed decreases in 

amplitude but increases in phase coherence in mu 

rhythms [8].  

An analysis of EEG background activity in Autism 

was applied in work [9]. They used Fourier methods to 

extract EEG features and used k nearest neighbors 

(KNN) to classify the two groups. In addition their 

findings have 82.4% discriminate between normal and 

autistic subjects. They also applied their work at beta 

band and had the same accuracy classification 82.4% [9].  

The significance of classification accuracy was 

measured by using different machine learning 

algorithms: the k-nearest neighbors (k-NN), SVM and 

naïve Bayesian classification (Bayes) algorithms with 

mMSE as a feature vector which described by William, 

B., T. Adrienne, and N. Charles [10]. They used Net 

Station software for acquisition data and Orange 

software for machine learning classification. Their 

accuracy classification is over 80% accuracy into 

control and high risk for autism HRA groups at age 9 

months. Classification accuracy for boys was close to 

100% at age 9 months and remains high (70% to 90%) 

at ages 12 and 18 months. For girls, classification 

accuracy was highest at age 6 months, but declines 

thereafter. 

EEGLAB were used to extract evoked EEG 

features:  raw EEG, CSD interpolated data, and back- 

projected IC features and also signal statistic was used 

to classify both groups. These data provide the first 

empirical demonstration of increased neural noise in 

those with ASD. Channel selection was based on an 

optimized electrode approach. Whereby the channel that 

showed the highest P1 amplitude [11]. However simple 

and robust RFLD was not used before in autism 

diagnosis [12] 

 

III. MATERIALS AND METHODS  

The whole process of methodologies used for 

automated diagnosis can be subdivided into a number of 

separated processing modules: Data Acquisition, pre-

processing, feature extraction and classification. 

A. Experiment and Data Acquisition  

The model was conducted and tested with fifteen 

children from Saudi Arabia, Jeddah. It was done in the 

laboratory of King Abdulaziz University Hospital, where 

the EEG signals were recorded. 

The procedure of experiment was follow:  
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 Subjects: The disorders consisted of eight 

children (5 boys and 3 girls, age 10–11 years). 

The control group consisted of four children (all 

of them are boys, age 10–11 years) without past 

or present neurological disorder. 

Recordings: The recordings were made with the 

subjects in a relaxed state in order to obtain as 

many artifact-free EEG data as possible.  The 

recording system consists of the following 

components: g.tec EEGcap, 16 Ag/AgCl 

electrodes, g.tec GAMMAbox, g.tec 

USBamp[13], and BCI2000 [14]. 

During the recording, the data were filtered 

using bandpass filter with frequency band (0.1-

60) Hz and digitized at 256Hz. The notch filter 

was also used at 60Hz. 

 Electrode selection: The ASD disorders have 

significantly values for discriminate between two 

subjects at electrodes FP1, F3, T5, F7, T3 and 

O1[2,9]. The electrodes which may give high 

accuracy were selected. The EEG were recorded 

using the international 10 – 20 system (channels 

FP1, FP2, F7, F3, Fz, F4, F8, T3, C4, Cz, C3, T5, 

Pz, O1, Oz and O2) with AFz as GND and right 

ear lobe as REF.  

B. Data Preprocessing 

1) Artifact Detection and removal:  The artifacts of 

the recorded EEG signals were removed by 

visual inspection using BCI2000Viewer tool.  

2)  EEG Re-referencing: The selection of a suitable 

EEG reference can greatly influence the 

classification accuracy and sensitivity to artifacts. 

In this study we use common average referenced 

(CAR)[15]. 

3) Filters: A further software sixth order forward–

backward Butterworth bandpass filter was used 

to filter the data with cut-off frequencies at 1.0 

Hz and 30.0 Hz. 

4) Winsorizing: Eye blinks, eye movement, muscle 

activity, or subject movement can cause large 

amplitude outliers in the EEG. To reduce the 

effects of such outliers, the data from each 

electrode were Winsorised. 

5)  Normalization: The samples from each 

electrode were scaled to the interval [−1, 1]. 

6) Feature vector construction: The samples from 

the selected electrodes were concatenated into 

feature vectors. The dimensionality of the feature 

vectors was Nc ×Ns×Ne, where Nc denotes the 

number of channels, Ns denotes the number of 

temporal samples in one epoch and Ne denotes 

the number of epochs. Due to the epoch duration 

of 1s and the 256Hz, Ns always equals 256. 

Depending on the electrode configuration Nc 

equals 16.  

Table1. Shown the different combined 

preprocessing techniques of the EEG signal which were 

used. 

TABLE 1.  THE DIFFERENT COMBINED PREPROCESSING TECHNIQUES 
OF THE EEG SIGNAL 
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Raw Data No No No No

Ref Data Yes No No No

Filtered Data No Yes No No

Filtered Ref Data Yes Yes No No

Norm Filtered Ref Data Yes Yes No Yes

Norm Filtered Data No Yes No Yes

Winsorised  Filtered Data No Yes Yes No

Norm Winsorised  Data No No Yes Yes

Winsorised  Filtered Ref Data Yes Yes Yes No

Norm Winsorised  Filtered Ref 
Data 

Yes Yes Yes Yes

 

C. feature extraction 

FFT feature extraction technique was used. 

 Data set: Artifact free data of 1276 sec. were 

selected from each normal and autistic children 
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