
I.J. Image, Graphics and Signal Processing, 2011, 5, 44-50
Published Online August 2011 in MECS (http://www.mecs-press.org/)

A Rotation Transformation Method of 3D Object
in WPF by Modifying Camera Attributes

YU Ren

Navy Engineering
University

Wuhan, China
yurenarticle@hotmail.co

m

 Mao Wei
Navy Engineering

University
Wuhan, China

weimao@yahoo.com.cn

LU Gubin
Navy Engineering

University
Wuhan, China

lugubing@yahoo.com.cn

Lu Feng
XINXIANG Technology

Co. Lited.
Wuhan, China

lfausten@hotmail.com

Abstract— Based on the .NET Framework 2.0, the new
generation of the windows software development
framework .NET Framework 3.0 has four new components,
in which the most attractive one is WPF(Windows
Presentation Foundation). WPF is a new GUI engine that
can provide uniform descriptions and methods for user
interface, 2D/3D graphic, document and media. In WPF, the
commonly used rotation transformation method for 3D
object is RotateTransform3D. This method needs to
calculate the state of the camera carefully, otherwise, the 3D
object may move anomaly on the screen. To solve this kind
of problem, another method is brought forward in the paper,
which realizes the rotation transformation by calaulating
and changing the attributes (Position, LookDirection,
UpDirection) of the camera directly. The method can
exhibite the rotation of 3D object distortion-freely, without
the anomal movement on the screen. The calculation and
the program of the method is simple.

Index Terms-WPF; Three Dimention Rotation; GUI
Engine; .NET Framework

I. INTRODUCTION
In an information management system which needs to

exhibit a 3D object, such as an equipment or facility, the
rotation transformation of the 3D object is a key function
when developing the software. Usually, this is carried out
by Direct3D[1] or OpenGL[2], which require the
developers have abundant special knowledges, and the
workload of program is high. Another way is to utilize the
specialized 3D graphical engine, which is generally
expensive, and has many functions unnecessary.

The release of Windows Vista brings forward a new
generation of Windows software development framework,
that is, the .NET Framework 3.0, which brings four new
groupwares. One of them is the WPF (Windows
Presentation Foundation)[3], which is a new GUI engine,
can provide uniform interface technique for different
applications. It is based on the DirectX 9/10, and makes
the graphic disposal of 3D object easy. The WPF provides
abundant .NET UI framework, integrates vector graphic,
flow text support, 3D vision effect, and powerful controls
model framework.

The rotation transformation methods for 3D object in
WPF are[4]:

• By using RotateTransform3D method.

• By calculating and modifying the camera
attributes: Position, LookDirection, UpDirection.

When rotating the 3D object with RotateTransform3D
method, it needs to calculate the state of the camera
carefully, otherwise, the 3D object may move anomaly
on the screen, and puzzle the user.

To avoid this problem, another method which realizes
the rotation transform by calculating and modifying the
camera’s attributes directly is brought forward in the
paper. The way to describe the 3D object in WPF is
explained at first in section 2, with some instances in
section 4 about the rotation of 3D object in 3D scene
when the mouse is moving. In section 5, the calculation of
the two key parameters is illustrated, that is: the
coordinates of the rotation point and the radial of the
camera rotation orbit. In section 6, the procedures and
methods to calculate the attributes of the camera are
discussed in detail. The method for mapping the track of
the mouse on the screen to the three dimension
coordinates is given in Section 7, so as to realize the
control of the rotation by moving the mouse on the screen.

II. THE DESCRIPTION OF 3D OBJECT IN WPF
In WPF, the 3D graphic object is resided in the

Viewport3D control. The ViewPort3D is required to host
any 3D models, serves as a container in three dimentions
scene, and is the projection of a 3D object in three
dimentions scene to the two dimentions plane[5].

a. The describtion of 3D graphic

As generally, all the 3D graphics in WPF are
described as a set of a series of triangle, as shown in Figue
1. That is to say, the triangle is the smallest geometric
solid to describe a plane. In the sence of the WPF, the
color of each triangle can be calculated with the render
engine, according to its texture and the angle between the
plane and the light. The reason of utilizing triangle is that
all the points in a triangle can be ensured to be in a same
plane. Thus, the calculation and rendering will be simple.

Copyright© 2011 MECS I.J. Image, Graphics and Signal Processing, 2011, 5, 44-50

mailto:yurenarticle@hotmail.com
mailto:yurenarticle@hotmail.com

 A Rotation Transformation Method of 3D Object in WPF by Modifying Camera Attributes 45

Figure 1. Triangles to describe 3D object

A plane on a 3D object is called a mesh. A mesh is
defined with a series of 3D points. These points are called
vertices. All these vertices are connected with an
encirclement pattern to form many triangles. Each triangle
has its obverse side and reverse side, and only obverse
side will be rendered. The obverse side of a triangle is
confirmed by the order of encirclement of the vertices. In
WPF, anticlockwise encirclement pattern is utilized. The
obverse side can be judged with “right hand rule”, which
means, close your right hand, stick up your thumb,
encircle other fingers with anticlockwise pattern, then the
direction of your thumb is the obverse side of the triangle.
The “right hand rule” is illustrated in Figure 2.

Figure 2. “Right Hand Rule” to judge the frontispiece of a Triangles

In WPF, the three demention graphic is defined with

the following parts:

a. Three demention attibutes

Two kinds of 3D point structure are defined in WPF:
Point3D and Point4D. The Point3D structure defines X, Y,
Z coordinates in rectangular coordinates system in 3D
space. The Point4D structure defines X, Y, Z and W
coordinates in homogeneous coordinates system. The
homogeneous coordinates system is used for nonaffine
transform of the 3D matrix. The Vector3D structure
defines the X, Y, Z components in 3D space. A vector in
Vector3D is a row array formed with three elements, that
is, the X, Y, Z coordinate.

The Vector3D has five public attributes:

Length - get the length of a Vector3D object.

LengthSquared – get the square of the length of a
Vector3D object.

X – get or set the X component of a Vector3D object.

Y - get or set the Y component of a Vector3D object.

Z - get or set the Z component of a Vector3D object.

b. Three demention scene

A three demention scence contains these important
elements:

 Camera and coordinates system

There is a virtual camera in Viewport3D scene. Its
position, origin and other attributes determine the angle of
the scene. The coordinates system in which the camera
placed is a world coordinates system.

 Transpform3D

The class Transform3D is used for the zoom, rotation
and translation of a 3D object within the 3D space. It can
be used on the attributes of the objects Model3D,
ModelVisual3D, Camera, et al.. When this attribute is set,
the 3D object will be transformed to the new
corresponding position.

 Model3D

The class Model3D is similar to class Drawing in 2D
scene. It is a fundamental component to construct 3D
model in the scene. It has three subclass:

 Light：to calculate automatically the light and
shade effect in 3D scene according to the
distance of the light source. If there is no light
source, the scene will be dark.

 GeometryModel3D：to frame the 3D geometric
object. Together with Geometry and Material
attributes, it can construct a colored 3D
geometric object.

 TextureCoordinates：provide the mapping of 3D
to 2D for each Material.

 Visual3D

The class Visual3D is used for displaying the 3D
object. Only when a 3D object is put into the Visual 3D,
can it be displayed. The Visual3D has only one subclass
ModelVisual3D.

c. Three demention transformation

There are two methods for three demention
transformation in WPF:

• Using RotateTransform3D method. The status of
the camera should be treated carefully when this
method is used. Otherwise, the 3D object may
move abnormally.

• Calculating and modifying the camera attributes:
Position, LookDirection, UpDirection.

In WPF, there are two kinds of camera: orthographical
camera and perspective camera. In the paper, the

Copyright© 2011 MECS I.J. Image, Graphics and Signal Processing, 2011, 5, 44-50

46 A Rotation Transformation Method of 3D Object in WPF by Modifying Camera Attributes

perspective camera is utilized. The attributes of a camera
are:

• Position ： defines the position of the camera.
Different views of the scene can be established
when moving Camera. The Position is the style of
Point3D, and has the values X, Y and Z. It can be
calculate simply: the coordinates of a point, such
as the origin (0,0,0), minus the coordinates of the
Camera, and the results are the values of the
Position.

• LookDirection：defines the visual angle vector of
the camera, that is, the direction of the Camera. It
is the style of Vector3D.

• UpDirection：defines the upward vector of the
camera. It is the style of Vector3D, with default
value (0, 1, 0).

• FieldOfView： defines the scare of the visual
angle of the camera.

Figure 3. The relationship of the camera’s attributes and the 3D object

The relationship of the camera’s attributes and the 3D
object is illustrated in Figure 3.

In the paper, the method of modifying the camera
attributes is adopted to perform the rotation of 3D object.

III. THE INSTANCE OF THE ROTATION OF 3D OBJECT
When the camera is moving on a sphere, the 3D object

will rotate in the 3D scene. The relationships of the
mouse and the 3D object from the observer point of view
are shown in Figure 4 and 5.

Figure 4. The relationship of the mouse and the 3D object from the

observer point of view, front side.

Figure 5. The relationship of the mouse and the 3D object from the

observer point of view, flank side.

When the mouse is moving horizontally, the rotation
of the Y axis must be maintained at the same point of the
mouse pointer, as shown in Figure 6.

Copyright© 2011 MECS I.J. Image, Graphics and Signal Processing, 2011, 5, 44-50

 A Rotation Transformation Method of 3D Object in WPF by Modifying Camera Attributes 47

Figure 6. The relationship of the mouse and the 3D object when the

mouse is moving horizontally.

When the mouse is moving vertically, the rotation of
the Y axis must be maintained at the same point of the
mouse pointer, as shown in Figure 7.

Figure 7. The relationship of the mouse and the 3D object when the

mouse is moving vertically.

An instance of the rotation of a 3D object in 3D scene
is shown in Figure 8.

a. Original view of 3D object.

b. The view of 3D object when the mouse is moving horizontally.

c. The view of 3D object when the mouse is moving vertically.

Figure 8. An instance of the rotation of a 3D with mouse moving.

IV. CALCULATION OF THE ROTATION POINT
COORDINATES AND THE RADIAL OF THE CAMERA

ROTATION ORBIT
Before the rotation transformation of the 3D object,

two key parameters should be calculated. They are: the

Copyright© 2011 MECS I.J. Image, Graphics and Signal Processing, 2011, 5, 44-50

48 A Rotation Transformation Method of 3D Object in WPF by Modifying Camera Attributes

coordinates of the rotation point and the radial of the
camera rotation orbit.

A. The Coordinates of the Rotation Point
The rotation point means the point in the three

dimention rectangular coordinates, arroud which the
camera rotates. This point is fixed to a 3D object, and the
vision effect with this rotation transformation method
should be that the 3D object rotates at this fixed point on
the screen. The projection of a 3D object to the three axes
is shown in Figure 9.

Figure 9. The projection of a 3D object to the three axes

In this paper, the rotation point is defined as the
midpoint of the 3D object. That means, each of its
coordinates is the median of the coordinates of the
corresponding maximum and minimum points of the 3D
object in the three dimention rectangular coordinates. In
WPF, the boundary rectangle of the 3D object can be
obtained easily with the method
VisualTreeHelper.GetDescendantBounds, and the
coordinates of the midpoint of this rectangle are the
coordinates of the rotation point.
Rect3D bounds =
VisualTreeHelper.GetDescendantBounds(modelvisual3D);
Point3D p3d = new Point3D(bounds.X + (bounds.SizeX / 2), bounds.Y +
(bounds.SizeY / 2), bounds.Z + (bounds.SizeZ / 2));

B. The Radial of the Camera Rotation Orbit
The radial of the camera rotation orbit means the

distance from the camera to the rotation point. When the
camera moves on the spherical surface with this radial, the
3D object seems to rotate at a fixed position on the screen.

The radial can be gained by a vector, which equals to
the vector of the camera position minus the vector of the
rotation point. The radial is the length of this vector.
Vector3D v = new Vector3D(P.X, P.Y, P.Z);
Vector3D v1 = new Vector3D(camP.X, camP.Y, camP.Z);
double r = (v - v1).Length;

Figure 10. The relationship of the camera posision, the rotaion point and

the radial

The relationship of the camera posision, the rotaion point
and the radial is shown in Figure 10.

V. THE CALCULATION OF THE CAMERA ATTRIBUTES
WHEN THE 3D OBJECT ROTATES

Let’s image the camera moves on the surface of the
sphere whose center point is the rotation point and has the
radial defined previously. To rotate the 3D object, the
attributes LookDirection and UpDirection should be
modified to ensure the line of the sight of the camera can
always fell on the 3D object. The attribute FieldOfView,
that is, the visual angle of the camera, will not change
before and after rotation.

In order to calculate the attributes LookDirection and
UpDirection, the concept of the Sphere Coordinates
System is introduced in this method, as shown in Figure
11. The sphere coordinates of a point A are :

α: the angle between the projection of the vector A on
the X-Y plane and the X axis;

β: the angle between the the projection of the vector A
on the X-Y plane and the vector A;

r: the length of the vector A.

In order to rotate the 3D object at a fixed point on the
screen, the differences of the angle values α, β of the
camera position point and the angle values α, β of the
vertex of the LookDirection vector should be consistent
respectively before and after the movement of the camera.
So do the corresponding value differences between the
camera position and the UpDirection vector. The
calculation of the attributes LookDirection and
UpDirection when the camera is at new position is based
on these requirements.

Copyright© 2011 MECS I.J. Image, Graphics and Signal Processing, 2011, 5, 44-50

 A Rotation Transformation Method of 3D Object in WPF by Modifying Camera Attributes 49

Figure 11. Sphere Coordinates System

A. Calculation Procedure
• In order to simplify the calculation, take the

rotation point as new origin, establish a new
parallel three dimension rectangular coordinates
system and sphere coordinates system.

• Calculate the distances from the vertexes of the
vectors of the LookDirection and the UpDirection
to the rotation point.

• Calculate the angle differences from the vector
vertexes of the LookDirection and UpDirection
respectively to the camera position before the
movement of the camera.

• Calculate the sphere coordinates of the vertexes of
the LookDirection and the UpDirection at new
position.

• Calculate the rectangular coordinates of the
vertexes of the LookDirection and the
UpDirection respectively at new position.

• Convert the rectangular coordinates of the two
vectors’ vertexes to the original rectangular
coordinates.

• Modify the attributes of the camera in new
position.

B. Calculation Method
• To the camera original position, the coordinates

of the camera in a new rectangular coordinates
system is (, ,), the corresponding sphere
coordinates is (, ,). The rectangular
coordinates of the vertex of the LookDirection in
new rectangular coordinates system is (x2,y2,z2),
the corresponding sphere coordinates is (α2,β2,r2).
The rectangular coordinates of the vertex of the
LookDirection in new rectangular coordinates
system is (x3,y3,z3), the corresponding sphere
coordinates is (α3,β3,r3).

• To the camera new position, the rectangular and
sphere coordinates of the camera at the new
position and the vector vertexes of the

LookDirection and the UpDirection in new
rectangular and sphere coordinates system are
(, ,), (, ,), (, ,), (, ,),
(, ,), (, ,), respectively.

• The radial of the camera rotation orbit keeps
unchanged before and after the movement of the
camera.

• The formulas to calculate the sphere coordinates
are:

• The formulas to calculate the angle differences
are:

• The formulas to convert the sphere coordinates of
the two vectors’ vertexes to the rectangular
coordinates:

C. The key codes
• Code for parallel movement conversion of the

coordinates.
// Rotation Point

Point3D RevolvePoint = ComputeRevolvePoint3D();

// Orijinal Camera Position

Point3D CameraP = new Point3D(pcamera.Position.X -

RevolvePoint.X, pcamera.Position.Y - RevolvePoint.Y,

pcamera.Position.Z - RevolvePoint.Z);

//Vertex of the LookDirection

Point3D LookDirectionP = new

Point3D(pcamera.LookDirection.X - RevolvePoint.X,

pcamera.LookDirection.Y - RevolvePoint.Y,

pcamera.LookDirection.Z - RevolvePoint.Z);

//Vertex of the UpDirection

Point3D UpDirectionP = new Point3D(pcamera.UpDirection.X -

RevolvePoint.X, pcamera.UpDirection.Y - RevolvePoint.Y,

pcamera.UpDirection.Z - RevolvePoint.Z);

// New Position

Point3D ObjectPoint = new Point3D(objectPoint.X -

i

i
i x

yarctan=α (1)

22
arctan

ii

i
i

yx

z

+
=β

(2)

122 ααα −=Δ
122 βββ −=Δ (3)

133 ααα −=Δ
133 βββ −=Δ (4)

)sin(

)cos(

)sin(

2
'
2

2'
2

2'
2

'
2

2
'
2

2'
2

2'
2

'
2

2
'
2

'
2

'
2

αα

αα

ββ

Δ+×−=

Δ+×−=

Δ+×=

zry

zrx

rz
 (5)

)sin(

)cos(

)sin(

3
'
3

2'
3

2'
3

'
2

3
'
3

2'
3

2'
3

'
3

3
'
3

'
3

'
3

αα

αα

ββ

Δ+×−=

Δ+×−=

Δ+×=

zry

zrx

rz
 (6)

Copyright© 2011 MECS I.J. Image, Graphics and Signal Processing, 2011, 5, 44-50

50 A Rotation Transformation Method of 3D Object in WPF by Modifying Camera Attributes

RevolvePoint.X, objectPoint.Y - RevolvePoint.Y,

objectPoint.Z - RevolvePoint.Z);

• Code for the radial calculation
//旋转点向量 Vector of the rotation point

Vector3D RevolveV = new Vector3D(RevolvePoint.X,

RevolvePoint.Y, RevolvePoint.Z);

// Vector of the LookDirection

double r1 = (RevolveV - pcamera.LookDirection).Length;

• Code for the angles and the angle differences
calaulation:

double a=Math.Atan(CameraP.Y / CameraP.X);

double b=Math.Asin(CameraP.Z / r);

double ap1=a1 – a+ ap;
double bp1=b1 – b+ bp;

• Code for the new coordinates calculation
double z1 = r1 * Math.Sin(bp1);

double x1 = Math.Sqrt(r1 * r1 - z1 * z1) * Math.Cos(ap1);

double y1 = Math.Sqrt(r1 * r1 - z1 * z1) * Math.Sin(ap1);

• Movement of the camera
// Convert the new coordinates to the original coordinates

system

Vector3D LookV = new Vector3D(x1 + RevolvePoint.X, y1 +

RevolvePoint.Y, z1 + RevolvePoint.Z);

Vector3D UpV = new Vector3D(x2 + RevolvePoint.X, y2 +

RevolvePoint.Y, z2 + RevolvePoint.Z);

// Modify the attributes of the camera, make it move.

pcamera.Position = objectPoint;

pcamera.LookDirection = LookV;

pcamera.UpDirection = UpV;

VI. CONTROL THE ROTATION OF 3D OBJECT WITH
MOUSE

By now, the attributes of the camera at new position
are calculated. The next problem is to get the movement
track of the camera on the spherical surface from the
track of the mouse on the two dimension screen. The
mapping of the track in two dimension coordinates
system to the spherical surface in three dimension
coordinates system is shown in Figure 12.

Figure 12. The mapping of the track in two dimension coordinates

system to the sphere surface in three dimension coordinates system.

In fact, the track on a spherical surface has its
projection on a two dimension screen. Contrarily, the two
dimension coordinates of a point on a screen can be
converted into the three dimension coordinates on the
sphere surface. This can be easily done with the
GeneralTransform2DTo3D method in WPF. Thus, the
GeneralTransform2DTo3D method is used here to map
the track of the mouse in two dimension coordinates
system to the sphere surface in three dimension
coordinates system.

Calculation Procedure
• Take the rotation point as the center point, the

distance between the camera and the rotation
point as the radial, build a virtual sphere.

• Convert the coordinates of the mouse track on the
screen to the three dimension coordinates on the
spherical surface with the
GeneralTransform2DTo3D method.
GeneralTransform2DTo3D
gt1=viewport3d.TransformToAncestor(model);
Point3D point = gt.Transform(mousePoint);

• Take this three dimension coordinates as the new
position of the camera, practise the rotation
transformation with the described method.

VII. CONCLUSION
A new method for the rotation transformation of 3D

object is illustrated in detail in the paper. The method
utilizes the new GUI engine WPF from the Microsoft, and
rotates the 3D object by calculating and modifying the
attributes of the camera directly. The method can avoid
the abnormal movement of the 3D object on the screen
that may be caused by the RotateTransform3D method,
exhibite the rotation distortion-freely. Compared with the
Direct3D and OpenGL, the method has great pacticability,
demands less calculation load and the program is simple.

REFERENCES
[1] Clayton Walnum, “Direct3D Programming Kick Start”, SAMS,

ISBN 978-0672324987,2003
[2] Dave Shreiner, Mason Woo , Jackie Neider, Tom

Davis ，”OpenGL(R) Programming Guide: The Official Guide to
Learning OpenGL(R)”, Addison-Wesley Professional, 6th Edition,
ISBN 978-0321481009, 2007

[3] Microsoft Developer Network for Visual Studio 2008
[4] Matthew MacDonald. “Pro WPF in C# 2008: Windows

Presentation Foundation with .NET 3.5”, Second Edition. Apress,
ISBN 978-1590599556, 2008

[5] http://viewport3d.com/trackball.htm

Copyright© 2011 MECS I.J. Image, Graphics and Signal Processing, 2011, 5, 44-50

http://www.amazon.com/Clayton-Walnum/e/B000APVO5A/ref=ntt_athr_dp_pel_1
http://www.amazon.com/Dave-Shreiner/e/B001IGNQ0G/ref=ntt_athr_dp_pel_2
http://www.amazon.com/s/ref=ntt_athr_dp_sr_3?_encoding=UTF8&sort=relevancerank&search-alias=books&field-author=Mason%20Woo
http://www.amazon.com/s/ref=ntt_athr_dp_sr_4?_encoding=UTF8&sort=relevancerank&search-alias=books&field-author=Jackie%20Neider
http://www.amazon.com/s/ref=ntt_athr_dp_sr_5?_encoding=UTF8&sort=relevancerank&search-alias=books&field-author=Tom%20Davis
http://www.amazon.com/s/ref=ntt_athr_dp_sr_5?_encoding=UTF8&sort=relevancerank&search-alias=books&field-author=Tom%20Davis
http://www.amazon.com/Matthew-MacDonald/e/B001IGR2JC/ref=ntt_athr_dp_pel_1

	I. Introduction
	II. the description of 3D object in wpf
	III. the instance of the rotation of 3d object
	IV. calculation of the rotation point coordinates and the radial of the camera rotation orbit
	A. The Coordinates of the Rotation Point
	B. The Radial of the Camera Rotation Orbit

	V. the calculation of the camera attributes when the 3D object rotates
	A. Calculation Procedure
	B. Calculation Method
	C. The key codes

	VI. Control the rotation of 3D object with mouse
	Calculation Procedure

	VII. conclusion
	References

