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Abstract-In this paper, the lattice-Boltzmann method is 
developed to investigate the behavior of isothermal 
two-phase fluid flow in porous media. The method is based 
on the Shan–Chen multiphase model of nonideal fluids that 
allow coexistence of two phases of a single substance. We 
reproduce some different idealized situations (phase 
separation, surface tension, contact angle, pipe flow, 
and fluid droplet motion, et al) in which the results are 
already known from theory or laboratory measurements 
and show the validity of the implementation for the physical 
two-phase flow in porous media. Application of the method 
to fluid intrusion in porous media is discussed and shows 
the effect of wettability on the fluid flow. The capability of 
reproducing critical flooding phenomena under strong 
wettability conditions is also proved.  
 
Index Terms - Multiphase Fluids, Porous Media, Simulation , 
Lattice Boltzmann Method 
 

I. INTRODUCTION 

 
Two-phase flows are encountered in many natural and 

industrial processes, including soil pollution and 
remediation, enhanced oil recovery, emulsion flow and 
stability, etc, and have considerable economic and 
scientific importance in these practical problems and 
applications. However, due to the inherent complexity of 
two-phase flows, from a physical as well a numerical 
point of view, “general” applicable computational fluid 
dynamics (CFD) codes are non-existent.  

In the last few years the lattice Boltzmann method 
(LBM) which is based on the cellular automaton concept, 
has attracted much attention as a CFD approach in fluids 
engineering [1, 2]. The LBM is based on statistical 
(macroscopic) description of microscopic phenomena. It 
describes a fluid as an ensemble of many particles 
interacting locally at the nodes of a regular lattice by 
collisions. And it has been shown to recover the 
conservation laws of continuum fluid dynamics, and, thus, 
allows the calculation of the macroscopic variables such 
as density and velocity. For its unique derivation, LBM 
has some advantages over the conventional 
computational methods. All information transfer is local 
in time and space and, thus, the algorithms can easily be 
implemented on parallel computers. It’s locality with 
respect to computational mesh is absolutely essential for 

the applications of interfacial problems. In addition, it has 
particular significance for porous media because LBM 
can easily simulate fluid flow with highly complex solid 
or free boundaries relative to continuum modeling 
approaches.  

To date, a number of different approaches have been 
used to simulate the two-phase fluid flows, including 
Chromodynamic model [3], Shan-Chen model[4], 
free-energy model[5] and HSD model[6], etc. All these 
models have their own advantages in the simulation of 
two-phase flow. The purpose of the research presented in 
this paper is to investigate the behavior of isothermal 
two-phase fluid flow in porous media using the single 
component, two-phase lattice-Boltzmann model, 
developed by Shan and Chen. Although this model has 
some shortcoming, it is exceptionally versatile, and 
problems that have long defied quantitative treatment can 
now be examined. Here, we develop a two-phase flow 
simulator and demonstrate the applicability of the LBM 
for prescribing fluid properties for non-ideal fluids. We 
also present flow simulation results in the interior of 
porous media. 

 

II. LATTICE BOLTZMANN METHOD 

 
Unlike traditional numerical methods which solve for 

the macroscopic variables, such as velocity and density, 
the LBM is based on the microscopic kinetic equation for 
the particle distribution function. The macroscopic 
quantities are obtained through moment integration of the 
distribution function. There are several different 
lattice-Boltzmann models available. In this paper we use 
the so-called lattice-BGK model [7], which is the 
simplest one in the hierarchy of lattice-Boltzmann 
methods. 

The physical space is divided into a regular lattice 
and  
the velocity space is discretized into a finite set of 
velocities {cα}, the Boltzmann equation with BGK 
approximation can be discretized as 
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Where Δt and cαΔt are time and space increments, 
respectively. fα is the single-particle velocity distribution 
function along the αth direction. fαeq is the equilibrium 
distribution function, and τ is the single relaxation time. 
In the simulations presented in this paper, we consider 
the two-dimensional square lattice with nine 
velocities-D2Q9 model. In this model the equilibrium 
distribution function is 
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where w0 = 4/9, w1 = w2 = w3 = w4 = 1/9, and w5 = w6 = 
w7 = w8 = 1/36. The macroscopic density ρ and velocity u 
are related to the distribution function by 
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To model surface tension forces that are 
characterized by a non-ideal gas equation of state, a 
nearest and next-nearest neighbor interaction potential 
can be incorporated into the lattice- Boltzmann model. 
We have adopted the method developed by Shan and 
Chen, where in addition to the local collisions 
neighboring fluid particles exchange momentum through 
an attractive short-range force: 

8

1

( , ) ( ( , )) ( ( , ))t G t w t tα α α
α

ρ ρ
=

= − + Δ∑F x ψ x ψ x c c      (4) 

Where G is the interaction strength, wα  is weight 

coefficient, and ( ( , ))x tψ ρ  is the interaction 

potential: 0
0( ) e ρ ρψ ρ ψ −= , 0 , 0ψ ρ  are arbitrary 

constants. 
    Adhesive forces between the fluid and solid phases 
are introduced into the model by Martys[8]: 

   ( , ) ( )ads adsF G t w s tα α
α

ψ= − + Δ∑x x c αc        (5) 

Here for nodes in the liquid and on solid walls, 

respectively. represents the particle interaction 
strength between fluid and solid walls, and varying the 

 parameter allows simulation of the complete range 
of contact angles. 

0,1s =

adsG

adsG

With these definitions, in simulation, the cohesive 
force and the attractive force are added to the velocities 
that compute the equilibrium distribution function with 
the following formula: 

 eq
cohesive adhesiveu u u u F Fωρ ωρ= + Δ = + +        (6) 

Where 1ω τ=  is the relaxation time, ρ  is 
the density. 

III. RESULTS AND DISCUSSION 

The ultimate success of the LBM for simulating 
liquid-vapor phenomena in porous media depends on its 

ability to reproduce observed behavior, which for simple 
geometries is well described by physicochemical models. 
In this section, we demonstrate the applicability of the 
aforementioned algorithms for prescribing fluid 
properties in the context of the lattice-Boltzmann model 
for nonideal fluids, including phase separation, surface 
tension, contact angle, pipe flow, and fluid droplet 
motion.  

In the case of multiphase flow, special care should be 
taken to ensure stable phase separation. Firstly, we 
present the results of numerical simulations for a 
two-dimensional system in which a first-order phase 
transition occurs. The numerical simulations reported 
here are on a 2D 200 200×  square lattices; and we took 

0 06.0, 100ψ ρ= =  and 
0 100cρ ρ ρ= = = . In the LBM 

simulation, the initial density distribution is 
homogeneous and a small (1%) random density noise is 
assigned to all grid points. Snapshots of the phase 
separation process at a series of times are shown in Fig.1. 
It can be seen from Fig.1 that, a part of original 
single-phase fluid rapidly condensed, and the average 
size of each of the coexisting phase domains tends to 
increase in an effort to decrease the interfacial energy. 
This corresponds, on a mesoscopic scale, to the 
randomization of the macroscopic velocity field as the 
system separates, as shown Fig.1. Liquid drops are 
formed depend on the total mass in the domain and 
consequently on the initial density selected, different 
initial condition resulted in different results. In Fig.1, 
several liquid drops are formed in a vapor atmosphere 
with initial density 
distributio ( )1.5 (0.5 ) /100 crandρ ρ= − −  and 

28dG = − .The ‘rand’ is a random number in the 

interval[ ]0,1  generated by Fortran. 
The second test is to estimate the surface tension. A 

series of simulations for a static two-dimensional liquid 
droplet are conducted and the pressure difference across 
the liquid-vapor interface and the droplet radius are used 
to compute the surface tension. For a two-dimensional 
droplet, the Laplace equation shows that the pressure 
difference, in outP P PΔ = −  across the surface of a static 
2D droplet is related to the surface tension σ  by 

P
r
σ

Δ = , where and are the interior and exterior 

pressure, respectively, and  is the droplet radius. 

inP outP

r
 

T=100 T=1000 
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T=2000 T=4000 

 

T=6000 T=8000 

 

T=10000 T=12000 

 
Fig.1 Time series of liquid-vapor phase separation dynamic 

The initial condition is a droplet suspended in a 
vapor. The droplet is determined to be in equilibrium 
when the shape changes are insignificant. Fig.2 
demonstrates the density profiles of the droplet when 
equilibrium state reaches, and Fig.3 shows the density 
and pressure profiles along the center line of the droplet.  
The size of the system in two dimensions is 200 200×  
computational grid. The center of the droplet is located at 
the center of the computational grid. The initial density of 
liquid and vapor are 50, 250gas liquidρ ρ= = . It is obvious 
that there is a pressure difference inside and outside the 
droplet. The pressure inside the droplet is constant up to 
the interface (note that, the interface has a small but finite 
thickness), and is constant outside the droplet. A rapid 
pressure change occurs across the droplet interface. The 
difference between the two constant values is then use to 
compute the surface tension.  

A number of tests with droplet radii ranging from 15 
to 50 were run. The results are shown in Fig.4. The plot 
shows that a linear relationship between the pressure 
difference and the mean curvature is consistent with the 
assumption that the assumed equations of state would 
lead to a fluid with properties compatible with those used 
in standard CFD simulations. The pressure-radius relation 
fits the linear equation given below:   

13.5602 0.0009P
r

Δ = +  

 

Fig.2 Equilibrium density profile( ) 50r =

 

 
Fig.3 Density and pressure profiles along the center line of 

the droplet ( ) 50r =

 

Fig.4  PΔ  vs. 1 r  obtained through simulation 

 
The relation between contact angle and the adhesive 

force constant  is studied next. Fig.5 shows the 
different contact angles for different adhesive force 
constant. As the  decreases, we can observe that 
the contact angle decreases because of the adhesive force 
between the fluid-solid grows stronger. The fluid region 

adsG

Gads
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is initially composed of a partial liquid droplet of radius 
40 lu on the bottom solid wall of a lu box 
where the solid surface is at 0 through 2 lu in the y 
direction and the vapor phase elsewhere. In the 
simulations the non-slip boundary condition at solid-fluid 
interfaces is realized through a computationally efficient 
‘bounce-back’ condition, where the particle momenta are 
conserved during collisions with a solid wall. 

200 200×

The relation between contact angle and the 
parameter  is shown as Fig.6, and fits the linear 
equation given below:  

adsG

2.2025 221.2598adsGθ = +  
Moreover, through the simulations, we found that 

high value of Gads ( ) leads to compression 
of the liquid near surfaces causing anomalously high 
liquid densities. All of these simulations are together with 

 for the liquid cohesion and the particular 
EOS parame

100Gs = −

25G = −
ters. 

The drainage process and imbibition process in a 
pipe are simulated in the Fig.7 and Fig.8. In the 
simulations, the no-slip boundary condition at solid-fluid 
interfaces is realized through a computationally efficient 
‘bounce-back’ condition, and periodic condition was 
applied in the x-direction. Fig.7 and Fig.8 show simple 
pipe models with four different diameters ( , 
respectively). We used the same values of pressure 
gradient ( ), cohesive force and adhesive force 
( )for all models. Fig.7 shows drainage 
in which the non-wetting fluid is pumped into the 
wetting-fluid-saturated system and Fig.8 shows 
imbibition where the wetting fluid replaces the 
non-wetting fluid. As the diameter of the pipe increases, 
we can observe that the contact angles decrease 
accordingly because the capillary pressure decreases. It is 
also observed that the contact angle at imbibition (

10, 7, 5, 2r =

2

0.001F =
110adsG G = −30,= −

θ ) is 

greater than that at drainage ( 1θ ). This is the well known 
contact angle hysteresis [9].The simulation successfully 
shows the capillary hysteresis. 

Fig. 9 presents simulated snapshots of the motion of 
a deformable liquid droplet in a straight channel with two 
solid barriers. The lattice is initially populated with the 
lighter phase –vapor, and a fluid layer is placed close to 
the upper channel end. Non-slip boundary conditions are 
imposed on the channel walls and on the barriers. 
Periodic boundary conditions are imposed on the two 
channel ends. In the first stage of the simulation, the 
liquid layer is given sufficient time -about 1500 time 
steps to relax and adopt a circular shape; then, 
force-driven flow is imposed to the modified velocity for 
equilibrium distribution function with 

acting in the negative y direction. It is 
interesting to note that the liquid droplet follows a 
pathway that drives it through the right opening, which is 
wider than the left two openings and, consequently, 
presents a slightly smaller capillary resistance. 

40.1 10adforce −= ×

 
 

180oθ = ( 25Gads = − ) 
90 180o oθ< < ( 45adsG = − ) 

90oθ = ( 55adsG = − ) 0 9o oθ< < 0 75adsG( = − ) 

0oθ =  ( 90Gads = − ) 
0oθ = ( )

（anomalously high liquid densities 
adjacent to the solid surface) 

100Gs = −

Fig.5 Different contact angles for different adhesive force constant 

 

Fig.6 Contact angle vs. adhesive force coefficient 
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R=10 R=7 

 

R=5 R=2 

 
Fig.7 Drainage process through pipes 

 
 

 
R=10 R=7 

 
R=5 R=2 

 
Fig.8 Imbibition process through pipes 

IV VAPOR-LIQUID TWO-PHASE FLOW 
SIMULATION IN POROUS MEDIA 

Fluid flow in porous media plays an important role 
in a wide variety of technological and environmental 
processes such as chromatography, oil recovery, the 
degradation of building materials, and the spread of 
hazardous wastes in soils. The displacement of one fluid 
by another also exhibits a rich variety of pattern 
formation including a fractal or self-affine growth 
morphology. Such diverse behavior is a consequence of 
growth mechanisms that depend on the fluid properties 
(such as viscosity or surface tension), the structure of the 
porous media, and the external driving force that 
displaces the fluids. The complexity of single-component 
multiphase fluid flow in random porous media makes it 
theoretical and experimental study a great challenge. 

 

 

T=100 T=1500 

 

T=2500 T=3000 

T=3500 T=4000 

T=4500 T=5000 

Fig. 9 Motion of a deformable 2D liquid droplet in a channel with two 
solid obstacles 

The single component two-phase Lattice Boltzmann 
method was applied to the case of vapor displacement by 
liquid in a porous media. The simulations are carried out 
on a 230 100×  lattice, and the void space of the medium 
is represented as a collection of large pore bodies, called 
chambers, interconnected through narrow capillaries 
called throats. Such a representation has been repeatedly 
proved satisfactory for a variety of practical materials 
used in many fields. The pore network is initially filled 
with vapor and a fluid layer is set on the first several 
lattices. The internal walls use a simple bounce back 
boundary condition. Periodic boundaries are applied in 
the x direction and quasi-periodic boundary conditions 
were maintained in the y-direction. 

Two cases were studied. In the first case we 
consider the invasion without wettability in the system. 
Fig.10 shows six snapshots of the simulation results. In 
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the second case, wettability is introduced to the system 
and leads to drastic changes in the displacement process. 
The desired wettability conditions can be implemented by 
assigning the surface adhesion parameter  standing 
for the attractive force between fluid and solid. In this 
fashion, we take , namely, the contact angle 

adsG

120adsG = −
0θ = (completely wet). Fig.11 shows six snapshots of 

an imbibition simulation, where the liquid phase is 
assumed to wet the pore surface strongly, forming a thin 
liquid film along the pore walls. Compared with the case 
1, breakthrough is attained more easily in this experiment, 
especially for the narrower throat. The liquid phase 
advances through the pore network through, mainly, film 
flow resulting in poor sweeping efficiency. It seems that 
the sweep form can overcome the capillary resistance. 
The gradual increases of the film thickness causes, 
eventually, snap-off at pore throats and entrapment of a 
large vapor quantity in pore chambers [10]. Continued 
application of an external gravity force causes, eventually, 
condensation of the trapped vapor, progressively from up 
to down and from smaller to larger pore chambers. 

 
 

 
T=0 T=10000 

 
T=20000 T=25000 

 
T=30000 T=50000 

 
Fig.10 Displacement of vapor by liquid in porous media without 

wettability. 

 

T=0 T=7000 

T=13000 T=25000 

T=30000 T=60000 

Fig.11 Displacement of vapor by liquid in porous media with strong 
wettability. 

 

V. CONCLUSION 

To summarize, we have demonstrated the ability of 
single component multiphase LBM to simulate 
simultaneous liquid and vapor flow including contact 
angle and pipe flow. And the lattice-Boltzmann simulator 
was applied to two-phase flow problems in simple 
geometries and in pore networks. It was found that the 
simulator can predict several two-phase flow phenomena 
of critical significance in displacement applications, such 
as formation of advancing wetting film and early 
breakthrough under strong wettability conditions, film 
growth and snap off in throats, vapor condensation in 
pore, and wettability dependent sweeping efficiency of 
waterfloods. Furthermore, LBM provides insights into 
unstable and intermittent flows and interface routing in 
partially saturated pore networks that cannot be treated 
by standard continuum approaches such as the Richards 
equation 
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