A Novel Method to Improve the Visual Quality of X-ray CR Images

Huiqin Jiang
School of Information Engineering and Digital Medical Image Technique Research Center
Zhengzhou University, Zhengzhou, China
Email: iehqjiang@zzu.edu.cn

Zhongyong Wang
School of Information Engineering and Digital Medical Image Technique Research Center,
Zhengzhou University, Zhengzhou, China
Email: iczywang@zzu.edu.cn

Ling Ma
Fast Corporation
2791-5 Shimoturuma Yamoto, Kanagawa Japan.
Email: L.Ma@fast-corp.co.jp

Yumin Liu
Business School and Digital Medical Image Technique Research Center,
Zhengzhou University, Zhengzhou, China
Email: yuminliu@zzu.edu.cn

Ping Li
School of Information Engineering and Digital Medical Image Technique Research Center,
Zhengzhou University, Zhengzhou, China
Email: lip1988@sina.cn

Abstract—The aim of this study is to improve the visual quality of x-ray CR images displayed at general displays. Firstly, we investigate a series of wavelet-based denoising methods for removing quantum noise remains in the original images. The denoised image is obtained by using the scheme of wavelet thresholding, where the best suitable wavelet and level are chosen based on theory analysis. Secondly, the image contrast is enhanced using Gamma correction. Thirdly, we improve unsharp masking method for enhancing some useful information and restraining other information selectively. Fourthly, we fuse the denoised image with the enhanced image. Fifthly, the used display is calibrated, so that it could offer full compliance with the Grayscale Standard Display Function (GSDF) defined in Digital Imaging and Communications in Medicine (DICOM) Part 14. Finally, we decide parameters of the image fusion, resulting in the diagnosis image. A number of experiments are performed over some x-ray CR images by using the proposed method. Experimental results show that this method can effectively reduce the quantum noise while enhancing the subtle details; the visual quality of X-ray CR images is highly improved.

Index Terms—Wavelet denoising, image enhancement, unsharp masking
Therefore, it is necessary to improve the visual quality of X-ray CR images.

Image enhancement is a very powerful tool to improve the visual quality of images. Numerous enhancement methods have been proposed in the literature. Mainly on grayscale transform and frequency domain transform. Windowing/leveling and the histogram equalization approach are two of the most widely used spatial uniform contrast-based enhancement technique, which are simple global enhancement approach and observers can interactively change the image contrast in any grey level range [2]. Studies of frequency domain transform mainly concentrate on the wavelet transform [3]-[4]. However, artifacts are inherent in these enhancement processes, such as, at bone-soft tissue boundaries. These artifacts have a detrimental effect on diagnoses. In some cases they can be pathological evidence in a normal radiograph, or they can hide subtle lesions. Especially, an important issue in X-ray CR images is to acquire high quality images with the lower clinical dosages to eliminate the potential danger of radiation. However, simply downscaling the radiation intensities over the entire scan results in increased quantum noise. With the detection of the statistical nature of photon, it is found that Poisson noise is one of the important factors degrading X-ray CR images at low count level.

Several methods with a discrete wavelet transform have been proposed to remove the noise [5]-[6]. Such as Donoho’s soft thresholding algorithm [5], Zhang’s algorithm [6], etc. most of the previously developed wavelet-based denoising algorithms are to remove additive Gaussian noise. However, for removing Poisson noise, these de-noising techniques needs further to be researched.

In this paper, a wavelet-based medical image de-noising and enhancement algorithm was presented. We first investigated a wavelet-based de-noising algorithm. Then we modify the image enhancement technique in [7] and propose a new scheme for medical image de-noising and enhancement. By using the proposed method, the quantum noise on x-ray CR images can be reduced and the images can be enhanced effectively. Consequently, the visual quality of X-ray CR images is highly improved.

II. FACTORS FOR AFFECTING THE VISUAL QUALITY

Typically there are two factors affecting the visual quality of x-ray CR images displayed in PACS. They are the used display and the original image quality.

Compared to medical grade displays, the commercial displays have some disadvantages for showing medical imaging.

First, the commercial displays have a smaller luminance range, which enables them to offer the smaller luminance difference versus between Just-Noticeable Difference (JND) indexes. Such smaller luminance difference is hard to be discerned by human eye.

Second, medical image is 10 bit or 12 bit. The number of available shades of gray on most commercial displays is limited to 256 (8 bit) only, enabling them hard to render every grayscale as defined by medical image.

Third, contrast is another important factor for diagnostic reading, medical grade display offer a better contrast ratio than the commercial display, which enables them to be capable of rendering more DICOM JNDs.

Fourth, DICOM3.14 standard proposes a Grayscale Standard Display Function (GSDF), which is much better for viewing medical images. However, most commercial displays have their own luminance response functions, which do not follow DICOM standards.

Moreover, the consistency of display images over time and temperature is very significant in medical imaging; medical displays can continuously measure the brightness of the display and even correct it if necessary. However, the commercial displays, its brightness is variable as the change of time and temperature.

On the other hand, noise remains in the original images also affect diagnosis accuracy for softcopy display.

Our research purpose is to improve the diagnostic value of the images by image processing; enabling commercial displays can provide long-term image viewing of the highest quality for efficient diagnosis and referral.

III. PROPOSED ALGORITHM

Our proposed method consists of the following steps. Fig. 1 shows the flow chart of the image processing.

Step1: Design a wavelet-based filter for removing quantum noise remains in the original images.

Step2: Enhance the image contrast using Gamma Correction.

Step3: Extract the high frequency information of the original image.

Step4: Classify the high frequency information.

Step5: Use image fusion to obtain a processed image.

Step6: Calibrate the used display on the basis of DICOM GSDF.

Step7: Decide parameters of the image fusion.

Figure 1. Flow chart of the proposed method
A. A wavelet-based filter

Noise remains can mask and blur important features in the real medical images. Fig.2 is an example of shown images using the commercial display. This image is degraded by noises as shown in Fig.2, enabling the detail of the texture hard to be found. Thus, we first consider the method of de-noising enhancement.

In the reduction of noise, we have to remove the noise component appropriately while retaining the edge components; especially, the ribs and the blood vessels can be viewed as potential edges, which are important features in medical images. Because the spectrum of their features is very similar to that of the noise, this is the difficulty of image processing.

Because wavelet transform are capable of trading one type of resolution for the other, which makes them especially suitable for the analysis of nonstationary signals. One privileged area of applications where these properties have been found to be noise reduction. Our previous research has proved that the wavelet-based de-noising techniques perform better than the optimal space-invariant solution (Wiener filter) [8]-[9]. Therefore, we choose the wavelet-based de-noising method in this paper.

One of the widely discussed techniques is the wavelet thresholding scheme, which recognizes that by performing a wavelet transform of a noisy image, noise will be represented principally as small coefficients in the high frequencies. Thus in theory a thresholding, by setting these small coefficients to zero, will eliminate much of the noise in the image [10].

Using Discrete Wavelet Transform (DWT), many methods for remove additive Gaussian noise have been proposed [11]-[14]. However, based on the classical DWT de-noising provides multi-scale treatment of noise, down-sampling of sub-band images during decomposition and the thresholding process of wavelet coefficients may cause edge distortion and Gibbs ring artifacts in the reconstructed images [13]-[14]. In order to overcome this drawback, we choose Stationary Wavelet Transform (SWT).

SWT is proposed on the basis of orthogonal wavelet transform, and it remove the down-sampling in the decomposition as illustrated in Fig.3. In Fig.3, cA_j represents a two-dimensional original image. F_j and G_j represent high-pass and low-pass filter at scale j, resulting from interleaved zero padding of filters F_{j+1} and G_{j+1} (j>1). cA_0 denotes the original image and the output of scale j, cA_j would be the input of scale $j+1$. cA_j denotes the low-frequency (LF) estimation after the.

\[T = \sigma \sqrt{2 \ln(N)} \]

where $\sigma = \text{Median}(\text{abs}(w_i))/0.6745$ is the estimated noise variance, w_i is the detail coefficients of SWT, and N is the sampling length of noisy image.

Copyright © 2011 MECS
Step 4: The Donoho’s soft thresholding method is applied to the details to modify SWT coefficients.

Step 5: The denoised image is reconstructed by the inverse SWT.

In order to evaluate the de-noising method, we perform a series of de-noising experiments using images with controlled noise amounts. Results of quantitative evaluations are presented.

Images with Poisson noise are created using the following method.

The noisy image \(g(x, y) \) is generated by multiplying the original pixel values by \(\lambda \) and using the obtained results as input to a random number generator which returns truncated to the 12-bit gray-scale digitization range.

\[
g(x, y) = \frac{1}{\lambda} \text{Poisson}(\lambda f(x, y))
\]

(1)

\(f(x, y) \) and \(g(x, y) \) are the gray-scale values in the original and noisy images, respectively. Fig. 4 shows the simulation of this process.

\[
\text{Figure 4. Poisson noise simulator}
\]

With this approach, we maintain a constant mean grayscale value at different noise levels. The amount of noise depends upon \(\lambda \).

We use Peak Signal-to-noise (PSNR) as the evaluation criterion of denoised images. The PSNR is calculated using Equation (2)

\[
\text{PSNR} = 10 \log_{10} \frac{S^2}{\text{MSE}}
\]

(2)

Where, \(\text{MSE} = \frac{1}{MN} \sum_{n=1}^{N} \sum_{m=1}^{M} [g(n,m) - f(n,m)]^2 \)

(3)

\(S \) is the maximum pixel value, and PSNR is measured in decibel (dB).

We execute the algorithm to the obtained noisy images. For these noisy images, the PSNR was estimated before and after application of the proposed algorithm. Experiment results are shown in Fig. 5. Fig. 5 (a) shows a noisy version (PSNR = 24.37), Fig. 5 (b) shows the image (PSNR = 38.35) denoised by our technique, and Fig. 5 (c) shows the image (PSNR = 26.19) denoised by the DWT method.

\[
\text{Figure 5. (a) Noisy image (PSNR = 24.37), (b) The proposed method (PSNR = 38.35), (c) DWT method (PSNR = 26.19).}
\]

Table 1 and Fig. 6 show PSNR comparisons of the proposed method with the DWT method. The yellow line shows the PSNR of the denoised images by the proposed method. It can be noticed that the images that were applied the proposed method showed the best results.

\[
\text{Table 1. PSNR Measurements of Images}
\]

<table>
<thead>
<tr>
<th>Image No.</th>
<th>Amount of noise</th>
<th>Noise Image</th>
<th>DWT method</th>
<th>The proposed method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(\lambda = 0.02)</td>
<td>15.54</td>
<td>25.14</td>
<td>29.95</td>
</tr>
<tr>
<td></td>
<td>(\lambda = 0.07)</td>
<td>21.05</td>
<td>33.81</td>
<td>36.55</td>
</tr>
<tr>
<td></td>
<td>(\lambda = 0.2)</td>
<td>23.41</td>
<td>36.75</td>
<td>38.47</td>
</tr>
<tr>
<td>2</td>
<td>(\lambda = 0.02)</td>
<td>15.02</td>
<td>27.56</td>
<td>28.74</td>
</tr>
<tr>
<td></td>
<td>(\lambda = 0.07)</td>
<td>19.24</td>
<td>34.03</td>
<td>35.82</td>
</tr>
<tr>
<td></td>
<td>(\lambda = 0.2)</td>
<td>23.97</td>
<td>36.46</td>
<td>37.07</td>
</tr>
<tr>
<td>3</td>
<td>(\lambda = 0.02)</td>
<td>14.33</td>
<td>28.60</td>
<td>30.05</td>
</tr>
<tr>
<td></td>
<td>(\lambda = 0.07)</td>
<td>20.82</td>
<td>33.74</td>
<td>35.85</td>
</tr>
<tr>
<td></td>
<td>(\lambda = 0.2)</td>
<td>25.70</td>
<td>35.95</td>
<td>37.67</td>
</tr>
<tr>
<td>4</td>
<td>(\lambda = 0.02)</td>
<td>16.25</td>
<td>29.49</td>
<td>31.75</td>
</tr>
<tr>
<td></td>
<td>(\lambda = 0.07)</td>
<td>21.13</td>
<td>33.95</td>
<td>36.83</td>
</tr>
<tr>
<td></td>
<td>(\lambda = 0.2)</td>
<td>24.81</td>
<td>37.28</td>
<td>39.29</td>
</tr>
</tbody>
</table>

\[
\text{Figure 6. PSNR Comparisons}
\]

Also, we evaluate the performance of the proposed algorithm on real CR images with inherent noise. The original and denoised images are shown in Fig. 7 (a) and (b), respectively. Let us look round Fig. 7 (a) and Fig. 7 (b). As one can see, the denoised image maintained sharpness and many fine details, while the noise was removed. It is visually better than the original image.
extracted high frequency components or the size of graininess is smaller, it is considered as noise. Secondly, we set a threshold \(T \) by analyzing this absolute value. Thirdly, we construct three temporary images according to the following rule. If \(f_h(x, y) > T \), \(f_h(x, y) \) is classified as the second temporary image \(f_2(x, y) \), this is the diagnosis feature component in the high signal range. Else if \(f_h(x, y) < -T \), \(f_h(x, y) \) is classified as the third temporary image \(f_3(x, y) \), this is the diagnosis feature component in the low signal range, else \(f_h(x, y) \) is classified as the fourth temporary image \(f_4(x, y) \), this is the noise component.

E. Image Fusion

On the basis of above four obtained temporary images, the enhanced image is reconstructed using image fusion as shown in Equation (6).

\[
f(x, y) = f_1(x, y) + a \cdot f_2(x, y) + b \cdot f_3(x, y) + c \cdot f_4(x, y)
\]

Where, \(f_1(x, y) \) is obtained using (2), \(\gamma \) is the gain factor for adjusting the compression ratio of non-diagnosis feature component. \(a \) is the gain factor for adjusting the enhanced diagnosis feature component in the high signal range. \(b \) is the gain factor for adjusting the enhanced diagnosis feature component in the low signal range. \(c \) is the gain factor for adjusting the removed noise component.

F. Calibration

In displaying a medical image, image data will be transformed according to the corresponding Lookup Table (LUT) on monitor, which is the final link between the image data and the eye brain system of human observer [16]-[19]. DICOM 3.14 standard proposes a Grayscale Standard Display Function (GSDF), which is much better for viewing medical images. However, the LUT in the general display is preset for normal text and picture display but not for medical softcopy image display, the general display’s luminance response curve does not follow GSDF defined as DICOM3.14. Thus, to make the medical softcopy image display system offering full compliance with DICOM GSDF [18]-[19], we need to calibrate LUT in the general display. Moreover, the monitor’s luminance response curve will appear degradation after a period of time; therefore, the calibration process need be performed routinely.

G. Deciding Parameter

In this study, the luminance response function used commercial display is calibrated firstly according to the GSDF defined in DICOM3.14 standard. Then parameters \(\gamma \), \(a \), \(b \), and \(c \) are decided by user while viewing the image quality. Also, we will make DICOM 3.14 calibration and update parameters to keep the image consistent over time.
IV. EXPERIMENT AND EVALUATION

We first perform a series of experiments using images in the Standard Digital Image Database, Japan: nodule 154, and non-nodule 93 on chest radiogram, to verify this technique.

Fig.8 (a), (b), (c), and (d) show the original images with big, middle, small nodules, and non-nodule using the commercial display respectively. The enhanced results of these images are shown in Fig.9 (a), (b), (c), and (d) respectively. The images displayed in Fig.8 present undesired properties like low signal-to-noise (SNR) and low contrast ratios. The displayed images have so poor image quality that nodules can not be seen in these images.

The enhanced results of these images are shown in Fig.9. Big nodule and middle nodule not only can be seen clearly in Fig.9 (a) and (b); but also, little nodule in Fig 9 (c) and the detail feature in Fig.9 (d) can be observed. The results show that the diagnosis feature has been enhanced effectively in the processed images.

Further more, we have evaluated this technique based on minimum standards to meet the American Association of Physicists in Medicine (AAPM) and Japan Industries Association of Radiological Systems Standards (JESRA).

In visual check, acceptance test result report has indicated that the patches’ luminance differences among 16 steps can be clearly recognized, 5% and 95% patches can be visible, the judgment-use positions on the reference clinical image can be visible without any problem, smooth, stable and continuous display can be presented, and artifacts do not be present.

The measured values, such as contrast response, luminance deviation, luminance ratio, etc, are the range of acceptance in AAPM and JESRA Standards.

Therefore, although the commercial display is used, the enhanced image can provide long-term image viewing of the highest quality for efficient diagnosis and referral.

V. CONCLUSION

A novel method to improve the visual quality of X-ray CR images has been presented. We have demonstrated that the proposed technique not only can offer effective noise removal in noisy medical images and enhancing sharpness, but also can improve the diagnostic value of the shown image on the commercial display successfully.

REFERENCES

[6] Zhong J, Ning R, and Conover D. Image denoising based on mul-

[8] H. Jiang, T. Yahagi, T. Okamoto, and J. Lu,“An Adaptive Deno-

urance in the Digital Medical Enterprise, Society for Computer A-
plications in Radiology, 2002.

[19] David M. Jones, “Utilization of DICOM GSDF to Modify Lookup Tables for Images Acquired on Film Digitizers”, J. of Di-

Huiqin Jiang received her M.S. degree in mathematics from Zhengzhou University, P.R. China and Ph.D degree in information Science from Chiba University, Japan, in 1988 and 2004, respectively. In 1988, she joined Zhengzhou University. From a Lecture to Associate Professor, she has worked for ten years in Zhengzhou University. In 1999, she went to Japan for study and work. She worked as a Research Fellow in TERARECON Inc., USA and RealVision Inc., Japan, respectively. In 2009, she was promoted to Professor in the school of information engineering, Zhengzhou University, and created the digital medical image technique research center, Zhengzhou University. Her current research interests are wavelet applications in signal processing, medical image diagnosis system, three-dimensional image reconstruction and image processing. She is a member of Research Institute of Signal Processing, Japan.

Zhongyong Wang received his B. S. and M. S. degrees in Automatic Control from Harbin Shipbuilding Engineering Institute, Harbin, China, in 1986, 1988, respectively, and received his Ph. D. degree in Automatic Control Theory and Application from Xi’an Jiaotong University, Xi’an, China, in 1998. Since 1988, Zhongyong Wang has been with Zhengzhou University, Zhengzhou, China, as a Lecturer in the Department of Electronics. From 1999 to 2002, he was an Associate Professor, and in 2002 he was promoted to Professor in the School of Information Engineering. He is currently the Dean of the School of Information Engineering and a member of Digital Imaging Technology Research Center , Zhengzhou University. Prof. Wang’s general fields of interest cover numerous aspects within embedded systems, signal processing and communication theory.

Ling Ma received his M.S. degree in computed mathematics from Hebei Normal University, P.R. China and Ph. D. degrees in Department of Manufacturing Engineering from Beijing university of Aeronautics &Astronautics., P.R. China, in 1987 and 1997, respectively. In 1998, he joined Tokyo Research Institute of Tani Electronic Company, Tokyo, Japan, as a researcher. Presently He is working as a Research Fellow in Fast Corporation in Japan. His research interests include image processing, pattern recognition, 3D machine vision and computer graphics.

Yumin Liu received her M. S. degree in mathematics from Zhengzhou University and Ph.D degree from Nankai University, in 1988 and 2003 , respectively. In 1988, she joined Zhengzhou Institute of Aeronautics, China, and in 1995 she was promoted to Professor in the Dept. of Application Science Zhengzhou Institute of Aeronautics. From 2001 to Current, she is a Professor in Zhengzhou University. She currently is a member of Digital Imaging Technology Research Center, Zhengzhou University. She current research interests are in Quality Engineering, Statistical Technique, Corporate Governance Customer Satisfaction Measurement, Six Sigma Management and image processing.

Ping Li received the bachelor degree in electronic and information engineering from the PLA Information Engineering University. In 2010, she joined Zhengzhou University, as a master student of the school of information engineering. Her current research interests are image compression and image processing. She is a member of Technology Research Center, Zhengzhou University.