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Abstract—Multi-objective programming problem was 
transformed into a class of simple unsmooth single-objective 
programming problem by Max-min ways. After smoothing 
with aggregate function, a new homotopy mapping was 
constructed. The   minimal weak efficient solution of the 
multi-objective optimization problem was obtained by path 
tracking. Numerical simulation confirmed the viability of 
this method.  
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I.  INTRODUCTION 

Homotopy method(or path-following method) is a 
developing and important method of global convergence 
to resolve Multi-objective programming problem 
emerged at the end of 20th century. At first, homotopy 
method played a very important roll in algebra equations, 
zero and fixed points[1], and existence theorem[2]. In 
1988, Megiddo[3] and Kojima et al. [4] discovered that 
the attractive Karmarkar interior point method for linear 
programming was a kind of path-following method. Since 
then, the homotopy method for mathematical 
programming has become an active research field. 
Reference [5-8] presented a new interior point method—
combined homotopy interior point method (CHIP 
method)—for nonlinear programming under cone 
condition, quasi-normal cone condition and pseudo cone 
condition. In 2003, Z.H. Lin and Z. P. Sheng [9] 
transformed the multi-objective programming problem 
into single-objective programming problem through 
linear weighted technique, generalized the CHIP method 
to convex multi-objective programming (MOP) problems. 
In this work, we presented a new transformation method 
(Max-min method) which was different from that used in 
reference [9]. Because the obtained single-objective 
programming problem after this transformation was non-
smooth, we need to search for a new method (different 
from that of [9]) to solve this problem. 

Consider the following multi-objective programming 
problem 
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For MOP  problems, each efficient solution of Ω is 

equivalent to the existence of a vector , such that 
the solution is optimal for the program  

λ +∈Λ

{ }( )

 
p p

n

1 1( ), ,

( ) 0   

min
( 1) 

s.t  

f x f

x R

λ λ

≤ ∈
MOP

⎧⎪
⎨
⎪⎩ g x

L

1

x
. 
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,see the definition below. 
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  So the optimistic solutions of 3MOP  is minimal 

weak efficient solution of 1MOP .  
Because 3MOP

1
max ( )i ii p

 is a single-objective strained 
optimization problem, it is more simple than that in [9]. 
But ( , )F x f xλ λ
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non-smooth functions. The purpose of this paper is to 
adopt aggregate function  to transform a non-smooth 
optimization problem into a smooth optimization problem 
with parameters and use the homotopy method to obtain 
the globally converged solution of the smooth 
optimization problem. This paper is organized as follows: 
Section 2 we recall some notations and preliminaries 
results. In Section 3, we use aggregate function smooth 

3MOP  with parameters and establish the new combined 
homotopy equation is different from [9]. The existence 
and convergence of a homotopy path from almost any 
initial point to the minimal weak efficient solution of 
multi-objective programming problem are proved. Finally, 
a numerical algorithm is given, and numerical examples 
show that this method is feasible and effective  in Section 
4. 

(0)w

( )

II. PRELELIMINARIES 

The following are four assumptions used in the 
literature: 
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The proof of Lemma 1.1~Lemma 1.6 are referred to 

[11-12]. 
Definition 2.1 Let M , be differential manifolds 
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N

dim N p= and let :H M N→

,
be a differentiable 

mapping. If rank( ( ) / )H x x p∂ ∂ = 1( ),x H y−∀ ∈ we say 
that that y N∈  is a regular value of H  and x M∈ is a 
regular point. Given a curve 1( ),H y−Γ ⊂  if every x∈Γ is 
a regular point, then we say that  is a regular path. Γ

Lemma 2.7 (Parametric Form of the Sard Theorem on 
a Manifold with Boundary) Let Q  and  be differential 
manifolds of dimension q  and , respectively. Let

N
p M be 

a m-dimensional differential manifold with boundary. 
Suppose that :Q M NΦ × → is a mapping, where rC
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,∂Φ then for almost all a ,Q∈   is a regular value of 0
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restriction of 
,∂Φ a∂Φ

Φ  and aΦ  to Q  and M×∂ ,M∂ respectively. 
This lemma is a special case of the transversality 

theorem (Theorem 5.7 in [13]). 
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Lemma 2.9 (classification theorem of one-dimensional 
manifold with boundary, see [14] ) Each connected part 
of a one-dimensional manifold with boundary is 
homeomorphic either to a unit circle or to a unit interval. 

III.  MAIN RESULTS 

In order to find the solution of 3MOP , we turn it into 
problems as follows by means of aggregate functions： 
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curves. Because  there must be a 

smooth curve  starting from  
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+ +∈∂ Ω×Λ × × × ×  

iii) ( , ) {0}pw t R R R+
+ +∈Ω×Λ × × × × . 

Because the equation has only one 

solution  the case 
(i) is impossible. In case (ii), there must exist a sequence 
of 

(0) ( ,1) 0
w

H w =
pR++

++ ++× × ×0 0( ,1) {1}w R∈Ω ×Λ ×（ ）

(0)( , )k w
w t

,R

( )k ∈Γ 0

→ +∞

 such that . From the 

fourth equality of (3.2), we have , which 
contradicts Lemma 3.2. 

( )( , )k
kG x tθ →
( )ku

As a conclusion, (iii) is the only possible case, and 
hence, w  is a solution of (3.1). 

Remark3.2 By Theorem 3.1, for almost all 
the homotopy (3.2) 

generates a smooth curve . We call  as the 

homotopy path. Tracing numerically  from  

until 

(0) 0 {0},pw R R++
++ ++∈Ω ×Λ × × ×

(0)w
Γ

0 ,t

(0)w
Γ

(0)w
Γ (0)( ,1w )

+→  one can find a solution of (3.1). Let s  be 
the arclength of (0)w

Γ , we can parameterize (0)w
Γ  with 

respect to s . That is, there exist continuously 
differentiable functions  such that  ( ), ( )w s t s ,

(0) ( ( ), ( )) 0,  
w

H w s t s =                          (3.10) 
(0)(0) ,   (0) 1w w t= =                     (3.11) 

Differentiating (3.10), we obtain the following theorem. 
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Theorem 3.2 The homotopy path  is deter-mined 
by the following initial value problem to the ordinary 
differential equation 

(0)w
Γ

(0) ( ( ), ( )) ( )
0

( )( , )
w

H w s t s w s
t sw t

∂ ⎛ ⎞
=⎜ ⎟∂ ⎝ ⎠

&

&
            (3.12) 

( ), ( ) 1w s t s =&&   (0)(0) ,   (0) 1.w w t= =        (3.13) 
And the w  component of the solution point 

 of (3.10), for , is the solution of 
(3.1). 
( ( ), ( ))w s t s∗ ∗ ( ) 0t s∗ =

 IV. TRACING THE HOMOTOPY PATH 

In this section, we discuss how to trace numerically the 
homotopy path A standard procedure is the 
predictor-corrector method[16], which uses an explicit 
difference scheme for solving numerically  and a simple 
numerical example is given. 

(0 ) .ω
Γ

Algorithm 4.1 (MOP)'s Euler-Newton method).  
Step 0: Give an initial point 

0 0( ,1) {1}pw R R++
++ ++∈Ω ×Λ × × × ×（ ） ,R  

an initial step-length and three small positive 
numbers 

0 0d >

1,ε 2 ,ε 3.ε  let  : 0=k
Step 1: Compute the direction (kη ）of predictor step:  
(a) Compute a unit tangent vector 2 3k n pRζ + +∈（ ） of 

 at ;  ( 0 )ω
Γ k

ktω（ ）( , ）

(b) Determine the direction (kη ）of the predictor step.  

If the sign of the determinant 
0 ( ,

T

k
k

k

DH t
ω

ω

ζ

（ ）

（ ）

（ ）

)
 is 

then( )1 p− ， k kη ζ=（ ） （ ）  

If the sign of the determinant 
0 ( ,

T

k
k

k

DH t
ω

ω

ζ

（ ）

（ ）

（ ）

)
 is 

, then( ) 11 p+− k kη ζ= −（ ） （ ）  

Step 2: Compute a corrector point :  ( 1)
1, )k

ktω +
+（

    ( ) ( ) ( ), ) , ) ,
k k k

k k kt t dω ω η= +（ （   

( 0)

( ) ( ) ( )( 1)
1, ) , ) , ) , )

k kk
k kkt t DH t H

ω
ω ω ω ω+ +

+ = −（ （ （ （
k

kt , 
where 

 is the Moore–Penrose inverse of 
(0) (0 ) ( 0 ) ( 0 )

1, ) , ) ( , ) , ) )T TDH t DH t DH t DH t
ω ω ω ω

ω ω ω ω+ −=（ （ （ （

( 0) , ).DH t
ω

ω（  

If 
( 0)

1)
1 1, ) ,k

kH t
ω

ω ε+
+ ≤（（ let { }1 0min , 2 ,k kd d+ = d  go 

to Step 3. 
If 

( 0)
1)

1 1 2, ) ( , )k
kH t

ω
,ω ε ε+

+ ∈（（ let go to Step 

3. 
1 ,kd d+ = k

If
(0)

1)
1 2, )k

kH t
ω

,ω ε+
+ ≥（（ let 25

1 0
1max 2 , ,
2k kd d d−

+
⎧ ⎫= ⎨ ⎬
⎩ ⎭

p 3: If

 

go to Step 2. 

Ste R R ( 1)k pw R+ +
+ +∈Ω×Λ × × × ,and 1 3kt ε+ >  

let 1k k= + , g
If R R

o to Step 1. 
( 1)k pw R+ +

+ +∈Ω×Λ × × ×  and 1 3 ,kt ε+ < − let 

1

: ,  go to Step k
k k

k k

td d
t t +

=
−

1
1( , )ktω +
+

）  for t

2 an pute 

he initial point 

d re-com

)k . k（ k（ ）

If ( 1)k pw R R+ +
+ +

( , tω
R∉Ω×Λ × × × , let 

1

: ,k kd t
=  

2k
k k

d
t t +−

go ) fo

po

 to r the initial  Step 2 and re-compute kω 1
1( , kt

+
+

（ ）  

int ( , )k
ktω（ ） . 

If ( 1)k pw R R R+ +
+ +∈Ω×Λ × × × and 1 3 ,kt ε+ ≤ then stop. 

Remark4.1 In lgorithm 4.1, the arclength 
parameter s is not computed explicitly. The  tangent 
vector at a point on ( 0)ω

A

Γ  has two opposite directions, one 
( the positive direction ) makes s increase, and another 
( the negative direction ) makes s  decrease, The negative 
direction will  lead us back to the initial point, so we must 
go along the positive direction. The criterion in Step 
of Algorithm 4.1 that determ es the positive direction is 

on a basic theory of  homotopy  method  [17], that 

 

 1 (b) 
in

based 
is, the positive  direction η    point at  any ( , )ω μ  on 

(0)ω
Γ  kee   ps the  sign  of  the determinant  

0 ( ,DH
ω

ω（ ） )t
.

propositio
1 If

Tη
invariant e have the following 

n. 
Proposition 4. (0)ω

 W

 Γ is 
(0)

a smooth curve of 

. Then the dire(0)
1(0)H

ω
− ction η  

es 

of the predicted step at 

nt the initial poi 0( ,ω（ ）1)  satisfi

( )0
0

0

( ,1)
sign 1T

pDH
ω

ω

η
= −

（ ）

（ ）

（ ）
. 

Proof : From  

0

( )

0
(0)

(0) (0) (0) (0)

1 2

( ,1)

0 0 0 0
0 0 0
0 0 0 0
( , ) 0 ( , ) 0 0 ( , )
0 0 0

n

p
T

T
x

DH

E
E e
e

u G x G x u G x

M M

ω
ω

α
β

θ θ θ
θ γ

=

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−
⎢ ⎥∇⎢ ⎥
⎢ ⎥Λ⎣ ⎦
=

（ ）

where  
(0) (0) (0) (0)( , , ) ( ,x xF x u G x )α λ θ θ= −∇ − ∇  

(0) (0) (0)( , , )F xλ ,β λ θ−∇ ξ= − (0) (0)γ ξ λ= o  
( 2 2) ( 2 2M R M R) ( 2 2) 1

1 2,n p n p n p+ + × + + + + ×∈ ∈ , 

1M is nonsingular and the unit tangent 2 0.M ≠

vector (0)ζ at es 0ω（ ）( ,1)  satisfi of (0)ω
Γ
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(0)

(0)

1
1 2

2

( )M M
ζ

ζ

⎛ ⎞
⎜ ⎟ =
⎜ ⎟
⎝ ⎠

0
(0) (0)2 2

1 2,n p, R Rζ ζ+ +∈ ∈ . 

Define , by a simple computation, 
we have 

(0) (0) (0)

1 2( , )Tζ ζ ζ≡

( 0) ( 0)1
1 1 2 ,M M 2ζ ζ−= −  

2 (0)

1

( 1) ( , )
p

p

i

M G x1 iPθ λ+

=

= − ∏ . 

Hence   

0
0

1 2

0 00
1 2

1 2 0
2

2 1

1 2 0
21

2 1 1 2

1 0
1 2 1 1 2

( ,1)

1

0 1

1

T TT

T T

T T

T T

M MDH

M M
M M

M M
M M M M

M M M M M

ω
ω

ζ ζζ

ζ

2

ζ

ζ

−

− −

− −

=

=
−

=
+

= +

（ ）

（ ）

（ ） （ ）（ ）

（ ）

（ ）

 

Because and by the definition of the 

direction of the predictor step, and  

(0)( , )G x θ < 0

0

( 0)

2 0η <
1

2 1 1 21 T TM M M M− −+ >（ ）  

( )

1

12 (0)

1

sign

sign ( 1) ( , ) 1
p

pp
i

i

M

G x Pθ λ ++

=

⎧
= − = −⎨

⎩
∏ ⎫

⎬
⎭

 

So 

( )0
0

0

( ,1)
sign 1T

pDH
ω

ω

η
= −

（ ）

（ ）

（ ）
. 

In the following, we have tested the homotopy method 
by a simple numerical simulation. Let 

, ,  
, and 

(0) (0) (0)
1 2 1( , , ) (0.1,1.0,0.1)x x x =

(0) 0.0h = (0) 1.6u = 1 0.

(0) (0)
1 2( , ) (2.0, 2.1ξ ξ =

01

)
ε = , 2 1.0ε = 3

3 10ε, −= .  

The numerical results of , , , , ,x h uλ ξ∗ ∗ ∗ ∗ ∗ are listed 
in Table I. These results are computed by double 
precision. 

Example 4.1      

{ }1 2

2 2
1 1 2

2
2 1 2 3

1 1 2 3

2 1 2 3

3 1 2

4 1

5 2

6 3

min min ,

( ) 2 ( 1) 3

( ) ( 1.0)
.   ( ) 3

( ) 2 2 4
( )
( )
( )
( )

f f f
2
3f x x x x

f x x x x
s t g x x x x

g x x x x
g x x x
g x x
g x x
g x x

=

= + − +

= + + −
= + + −

= + + −
= −

= −
= −
= −

 

TABLE I. 
NUMERICAL SIMULATION RESULTS OF EXAPMLE 4.1 

(0)λ x∗
 λ∗

(1/2, 1/2) (0.0009,0.9992,0.0009) (0.4871,0.5129)
(1/3,  2/3) (0.0013,0.9984,0.0013) (0.3195,0.6805)

(2/3,  1/3) (0.0009,0.9995,0.0009) (0.6560,0.3440)

h∗ ξ ∗ u∗

-0.0001 (0.0001, 0.0001) 0.0034 
-0.0002 (0.0002, 0.0002) 0.0035 
-0.0002 (0.0002, 0.0002) 0.0041 

As a conclusion, using aggregate homotopy method to 
solve convex multi-objective programming problems is a 
new approach. The multi-objective programming 
problem with multi-strains was transformed into single-
objective programming problem with single strain, then 
the aggregate homotopy method was used to get the 
minimal weak efficient solution. This method is simple, 
convenient and of great relevance to applications. It must 
be pointed out that for the non-convex multi-objective 
programming problems, more extensive work are needed. 
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