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Abstract— In the computation process of many kernel 
methods, one of the important step is the formation of the 
kernel matrix. But the size of kernel matrix scales with the 
number of data set, it is infeasible to store and compute the 
kernel matrix when faced with the large-scale data set. To 
overcome computational and storage problem for large-
scale data set, a new framework, matrix-based kernel 
method, is proposed. By initially dividing the large scale 
data set into small subsets, we could treat the autocorrelation 
matrix of each subset as the special computational unit. A 
novel polynomial-matrix kernel function is then adopted to 
compute the similarity between the data matrices in place of 
vectors. The proposed method can greatly reduce the size of 
kernel matrix, which makes its computation possible. The 
effectiveness is demonstrated by the experimental results on 
the artificial and real data set. 
 
Index Terms—matrix, kernel, autocorrelation, computation 
 

I.  INTRODUCTION 

In the field of machine learning, there are many 
successful methods to be used for feature extraction and 
dimension reduction. These methods are generally 
divided into two categories: linear methods and nonlinear 
methods. The commonly used linear methods include 
Principal component analysis (PCA) [1][2], Linear 
discriminate analysis (LDA) [3] and so on. Support 
Vector Machine (SVM) [4] and kernel principal 
component analysis (KPCA) [5] is the frequently used 
nonlinear methods.  These methods have been used in 
many complex applications, such as face recognition, 
image compression, etc. 

 Principal component analysis (PCA) is a classical 
method for feature extraction and dimension reduction [6]. 
It uses the dimensions with larger variances and neglects 
the less important components. Linear discriminate 
analysis (LDA) is a classical technique for feature 
extraction and dimension reduction. It finds the subspace 
which maximizes the between-class and minimized the 
intra-class scatter matrices. Although these linear 
methods have been successfully used in many 
applications, it does not work well in nonlinear data 
distribution. Therefore, it is necessary to generalize the 
linear methods for the nonlinear structure. 

Vapnik et al. [4] firstly introduced kernel method [7] 
into Support Vector Machine. After that, it has 
successfully generalized to kernel principal component 

analysis, Generalized discriminant analysis [8] and other 
algorithms. Its main idea is to map the data set from the 
input space into high-dimensional feature space. Thus, 
the nonlinear components can be extracted using the 
traditional linear algorithm in feature space. The kernel 
trick is used to calculate the inner product between data 
set without knowing the explicit mapping function. These 
nonlinear methods have been used in classification, 
regression and supervising learning [9][10][11], etc.   

In the computation process, many kernel methods need 
to compute the kernel matrix for all samples. For example, 
SVM uses all the training samples to learn hyperplane to 
maximize the separating margin. It needs to solve the 
quadratic programming (QP) problems, which time and 
space complexity is  and  respectively, 
where m is the number of data samples. The standard 
KPCA generally needs to eigen-decompose the kernel 
matrix (called Gram matrix) , which is acquired using the 
kernel function. It must firstly store the kernel matrix of 
all data, which takes the space complexity of . In 

addition, it needs the time complexity of  to 
extract the kernel principal components. But traditional 
kernel function is based on the inner product of data 
vectors, the size of kernel matrix scales with the number 
of data set. When faced with the large-scale data set, it is 
infeasible to store and compute the kernel matrix because 
of the limited storage capacity. However, the ever-
growing large-scale data set needs to be processed in 
many applications, such as data mining, network data 
detection and video retrieval. Consequently, some 
approaches must be adopted to account for the 
inconvenience. 

3(O m ) )

)

these methods lies in the sampling way. One 
disadvantage is that these methods will lose some 

2(O m

2( )mο
3(mο

In order to solve the problem of the large-scale data set, 
some methods have been proposed to reduce the time and 
space complexities. In general, these approaches are 
classified into two categories: the sampling and non-
sampling based approaches.  

For the sampling based approaches, Zheng [12] 
proposed to partition the data set into several small-scale 
data sets and handle them, respectively. Some 
representative data [13] are chosen to approximate the 
original data set. Some approximation algorithms 
[14][15][16][17][18] are also proposed to extract the 
nonlinear components. The major difference between 
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information in the sampling process. Aside from that, it is 
time-consuming to search for the representative data. 

For the non-sampling based approaches, an iterative 
procedure is proposed to estimate the kernel principal 
components by kernelizing the generalize Hebbian 
algorithm [19]. But the convergence is slow and cannot 
be guaranteed. Cauwenberghs & Poggio [20] gave an 
incremental algorithm for SVM. Wu et al. [21] also 
proposed the Kronecker factorization approach to 
approximate the kernel matrix by the Kronecker product 
of two smaller matrices, and then extracted the nonlinear 
components. Osuna et al. [22] used decomposition 
methods to break down large QP problems into many 
smaller QP sub-problems. 

In this paper, we propose a new framework, matrix-
based kernel methods, which can effectively solve the 
problem of large-scale data set. We have given 
elementary application on KPCA [23] and SVM [24]. In 
this paper, we will give further demonstration and 
discussion. The core idea of matrix-based kernel methods 
is firstly to divide the large scale data set into small 
subsets, each of which can produce the 1-order and 2-
order statistical quantity (mean and autocorrelation 
matrix). For the 1-order statistical quantity, the traditional 
kernel method can be used to compute the kernel matrix. 
Because the 2-order statistical quantity is a matrix, we 
proposed a novel polynomial-matrix kernel function to 
compute the similarity between 2-order statistical 
quantities. Because the number of subsets is less than the 
number of samples, the size of kernel matrix can be 
greatly reduced. The small size of kernel matrix makes 
the computation and storage of large-scale data set 
possible. The effectiveness of the proposed method is 
demonstrated by the experimental results on the artificial 
and real data set. 

 The rest of this paper is organized as follows: section 
II gives reviews of kernel methods. Section III describes 
the proposed algorithm in detail. The experimental 
evaluation of the proposed method is given in the section 
IV. Finally we conclude with a discussion. 

. 

II.  REVIEW OF KERNEL METHODS 

Let 1 2( , ,..., )mX x x x=  

re , 1, 2,...,i

be the data matrix in input 

space, whe x i m
ata 

=
 is the number of d

ng function 

, is a n-dimensional vector 
and samples. There exists a 
ma
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ppi φ , which projects the data into high-

dimensional (even infinite dimensional) Reproducing 
Kernel Hibert Space (RKHS). 
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It accords with  

                             Cν λν=                                        (4) 

Where  and λν  onding eigenvector and 
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overcom a ke  solution 
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By substituting Eq.3, Eq to Eq.4, we can get the 
following formula: 

                             α λα=                                      (6) 

Where α  is span c  is Gram matrix 
denoted a . The 

entry of

oefficient, 
( )T Φ

ijk k

K
(X =

jx x
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 Gram
1 ,( ) )ij i j mK X k ≤ ≤= Φ

 matrix is ( , )i= . It is pro
matrix sitive semi-defin

kernel prin nts, the tra
agonali  m x K  using 

ven [25] 
that th ite. To 
compute the ditional 
method is eigen-
decomposition techniqu

Once the eigenvect

e Gram 
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cipal com
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α  
cipal com

has been achieved, we can 
achieve the kernel prin ponents ν  using Eq.5. 
For a test sample  is given:x , the nonlinear feature
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In the process of whole derivation, it is assumed that 
the data have zero mean, if it is not, we can get the 
centering matrix 1 1 1 1m m m mK K K K K= − − +% , 

where 
11 ( )m m m×=  . 
m

 

III. THE PROPOSED ALGORITHM 

 
The data set 1 2( , ,..., )mX x x x=  is firstly divided 

into M  subsets ( 1,..., )iX i M= , each of which 

consists of about /k m M= . Without loss of generality, 
it is denoted: 

          

1 1 2 1 2

( 1) 1
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A. Computing 1-order statistical quantity 
First, we compute 1-order statistical quantity (mean) 

for each subset. It is given as follows: 
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Having computing mean of each subset, the 1-order 
statistical quantity is still a

 used to map it t

r

T

=

= ∑ L

        

 vector. The standard kernel 
method can be o high dimensional space. 

B. Computing the autocorrelation matrix of subset 
Similarly, 2-orde  statistical quantity (autocorrelation 

matrix) for each subset can be computed. The 
autocorrelation matrix can be defined as follows: 

 1 1 1 2 2 2, ,...,T T
M M MX X X X X X∑ = ∑ = ∑ =    (10) 

set The data )M1 2( , ,...,X X X=

1 2( , ,..., )M

X  is then 

transformed into ∑ = ∑ ∑ ∑ , where i∑  is 

n n×  autocorrelation matrix. Because the traditional 

kernel method is based on vector, the 2-order statistical 

quantity is a matrix. We must find some way of 

approaching the problem.

In this circumstance, we can treat them as the special 
computational units in input space. The data 
autocorrela

 

tion matrix can also be considered as 
generalized form of data vector. It is shown [6] that the 
autocorrelation matrix contains the statistical information 
between samples. 

Thus, the special computational unit can be projected 
 high-dimensional (even infinite dimen
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Theorem: When each subset has one sample, the 

polynomial kernel function based on th  data vector 
equals to twice of the polyno

1/

tocorrelation matrix. Th t means the degree d is the 
twice of the degree D. 

Proof: 
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When each subset contains one sample, the 
autocorrelation matrix i

T
i iX X∑ = . Using the 

polynomial-matrix kernel function, it follows: 

∗

, and the theorem is derived. 
her words, the polynomial kernel funct

extreme case of the polynomial-matrix one, when each 
su s only one sample. The theore
shows t  matrix computed using two di rent 
kernel functions is same at this time, which can give the 

el method. 

some kernel-based 
algorithms ---support vector machine and kernel principal 
component analysis. Other kernel algorithms can be 
derived similarly.  

D.  Support Matrix Machine (SMM) 
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Using the quadratic programming (QP) solver, the 

parameter

Tφ

, 1, ,i i kα = L  can be easily obtained. 
In the case of testing case, for a test sample x, its 

autocorrelati T x xxΣ =on matrix  and following decision 
function can be used to predict it: 
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         (15) 

From above deriva n, it shows that the proposed 
SMM has the same fr ework as the SVM except that 
the vector is replaced with ma . 

 

E.  Kernel Principal Component Analysis based on 2-
order statistical quantity 

ecause the data set is divided into many subseB
mber of subsets is less than the number of original data 

set. As a result, the large-scale data set is compressed by 
down-sampling the data using the matrix of each subset. 
In this situation, the size of kernel matrix can be greatly 
reduced from m m×  to M M×  by the novel 
po l-matrix kernel function. Thus, the small size lynomia

Copyright © 2010 MECS                                                                               I.J. Image, Graphics and Signal Processing, 2010, 2, 1-10 



 Matrix-based Kernel Method for Large-scale Data Set 5 

 
Figure 1.  Learning result on the 2-D toy problem
standard SVM (upper left) and SMM (upper right,

right) 

of kernel matrix makes the computation and storage 
possible. 

Currently, the mapped data set is 
( ) ( ( ), ( ),..., ( ))
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The computation process of proposed Kernel Principal 

Component Analysis based on 2-order statistical quantity 
is shown in Algorithm 1, Kernel Principal Component 
Analysis based on 1-order statistical  quantity is  identical 
to the traditional KPCA. 

 princi

A. Experiment using support matrix machine 
 

we perform the experiments 

po nomial kernel  (where d is the 
trix 

IV.  EXPERIMENT 

 
To demonstrate the effectiveness of the proposed 

kernel methods, we do some experiments using support 
matrix machine and kernel pal component analysis 
for large scale data set.  

First on two-ly, 
dimensional toy problem using the standard SVM and the 
proposed SMM method, respectively. In addition, we use 
USPS data set to validate the feasibility of SMM. The 

( , ) ( Tk x y x=ly  )dy
degree) is used in standard SVM. The polynomial-ma
kernel function ( , ) || . ||Dik ∑ ∑ = ∑ ∗∑j i j C  (where D is 
th

se 2-d onal t

Gaussian distributions. In the SMM, the data set of each 

e degree) is used in SMM. The sample of cluster in the 
Kmeans algorithm is adjusted according to the training 
samples. 

Toy examples: 
We firstly u imensi oy problem to 

demonstrate the effectiveness of SMM. 500 positive and 
500 negative samples are generated, where follows a 
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Figur st 3 pr mponents obtained from 
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two methods e ual to 4 and 2, respectively.  

 
Table I gives the aver ge testing errors obtained by the 

VM and the proposed method. In the p
ber of cluster in each class was set t

. 
 

l original dataset. Although the dataset is not clustered 
me, matrix is still used to replace vector in the 

omputation process. According to the above theorem, 
e two methods can get the same result, which can be 

ound from the table. In addition, it also shows that the 
erformance based on matrix of cluster is comparable to 
tandard SVM.  

 

 wh

e abbreviate the method 1order-KPCA, which means 
Ke  on 1-order 

TABL

RESPECTIVELY.TABLE TYPE S

 SVM 
SMM with different k 

( , ) || . ||Di j i j C∑ ∑ = ∑ ∗∑  (where D  is the degree) is 
used in 2order-KPCA 

Toy examples: 
We firstly use 2-di

k

mensional toy problem to 
demonstrate the effectiveness of proposed methods. The 
200 2-dimensional nerated, where x-
values are uniformly distributed in [-1,1] and y-values are 
gi

data samples are ge

ven by 2y x η= + ( η  is the normal noise with 
standard deviation 0.2). In the 1order-KPCA and 2order-
KPCA, the data set is divided into 100 subsets, each of 
which contains 2 samples. The degree and for two 

l 
qu

e standard KPCA.

act the nonlinear componen

e nonlinear feature.  In the proposed methods, 
 training samples into some subsets with 

 d D
kernel functions equal to 2 and 1, respectively. 

he 1-order statistical quantity and 2-order statisticaT
antity was firstly computed. The experiment results are 

given in Fig.2. It gives contour lines of constant value of 
the first 3 principal components, where the gray values 
represent the feature value. From the result, the 1order-
KPCA and 2order-KPCA can get almost similar 
performance with th  The result shows 
the effectiveness of proposed methods, which can 
successfully extr ts. 
USPS examples:  

Firstly, we randomly select 3000 training samples to 
extract th
we divide 3000
different size (1 5k≤ ≤ ) in each subset. For each k, 10 
independent runs are performed, where the data samples 
are randomly reordered. The classified results of 2007 
testing samples are averaged. 

E I.   
ERROR RATE OF TESTING SAMPLE ON THE USPS DATA SET USING THE 

STANDARD SVM AND THE PROPOSED SMM WITH THE NUMBER OF EACH 
CLASS K= 400, 500 AND THE SIZE OF THE SAMPLES IN EACH CLASS, 

TYLES 

the size of samples 
in each class K=400 K=500 

Error 
Rate(%) 4.68 4. 4.73 4.78 68 
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Table  ~~Ta  gi  o g  
using standard KPCA osed od  
diffe um mples in h subset. e II, Table 
III, and Table u polynomial-m

 result of the 
standard KPCA (one sample in each subset), which can 
be

, it is impossible for standard 
KPCA alg n the normal hardware. Using 

ining 
ets, each of which consists of 6 

sa

The result shows that the proposed method is more 
effective and efficient than standard KPCA. 

IV.  CONCLUSION 

 
In this paper, an efficient matrix-based kernel method 

for
divid
which can produce x. Then the 
autocorrelation matrix can be treated as special 
computational units. The sim tw

ovel om
 reduce the size of kernel matrix, 

tively solve the large scale problem. 

 of sample su

ix 

contract 
Innovation Scientists and Technicians 

II ble IV ves the error rate
 and prop

f testin
 meth

sample
s with

rent n ber sa
IV are the res

 eac
lts of the 

 Tabl
atrix 

kernel function under degree 1,1.5 2D and=  for 
2order-KPCA, respectively. It also gives the 
corresponding result of the polynomial kernel function 
under degree 2,3 4d and=  for standard KPCA and 
1order-KPCA, respectively. According to the 
aforementioned theorem, when each subset has one 
sample, the polynomial kernel function based on the data 
vector equals to twice of the polynomial-matrix one 
based on the matrix. In this situation, the result of 1order-
KPCA and 2order-KPCA should equal to the

 found in each Table. It also shows 1order-KPCA and 
2order-KPCA with different number samples in each 
subset could generally achieve competitively classified 
result than the standard KPCA. The reason may be that 
the mean and autocorrelation matrix contains the 
statistical information between samples in each subset. In 
addition, the computation instability for the small size 
kernel matrix can be greatly reduced when performing its 
eigen-decomposition. To visualize the result more clear, 
we plot the recognize rate under different number of 
kernel principal components in Fig.3~~Fig5. 

In addition, we also use all the training samples to 
extract the nonlinear feature. Because the size of Gram 
matrix is 7291 7291×

orithm to run i

216 subs
the proposed methods, we firstly divide 7291 tra
samples into 1

mples (The last subset contains only 1 sample). Table 5 
is the result of proposed method with 6 samples in each 
subset trained with all training samples. Here, the size of 
kernel matrix drops from 7291 7291×  to 
1216 1216× , which can be easily stored and computed. 
As shown in Table Ⅴ, it can also be seen that 1order-
KPCA and 2order-KPCA can achieve the right classified 
performance even the eigen-decomposition technique 
cannot work out when faced with large-scale data set. 

ilarity be een matrices can 
be computed using a n  polyn ial-matrix kernel 
function. It can greatly

 large-scale data set is proposed. The method firstly 
es the large scale data set into small subsets, each of 

 autocorrelation matri

which can effec
Compared to other related methods, the proposed 

method is different in the following aspects: (a). the 
proposed method uses the matrix, while other methods 
use data vector, as the computational unit in data space. 
(b). the autocorrelation matrix contains the correlation 
information bset, which can help the 
improvement of performance. (c). the proposed method 
can be easily implemented; while many other methods 
are more complicated. 

We only consider the polynomial-matr kernel 
function in the whole process. We will investigate other 
kernel function based on matrix. In addition, the optimal 
sample number in each subset deserves further study in 
our future work 
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TABLE III.   
TING SAMPLE USING PROPOSED METHODS (HAVING DEGR E D=1.5 AND DIFFERENT SAMPLE NUMERROR RATE OF 2007 TES E BERS K IN EACH 

SUBS THE STANDARD KPCA (HAVING DEGREE d  SAMPLES.. 

Nu
components 

KPCA 1or -KPCA d=3 

ET) AND =3) WITH 3000 TRAINING

mber of der  with 
K=1 K=2 K=3 K=4 K=5 

32 8.42 8.42 8.02 7.97 7.72 8.1     2 
64 7.13 7.13 7.32 6.98 7.87 7.7     

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 
 
 
 

 2 
128 7.62 7.62 7.72 7.52 8.17 7.8      7 
256 8.0 8.0 7.8 7.9 8.2 7.9 7 7 7 7 2 7 
512 8.17 8.17 8.07 8.07 8.07 8.07 

(a). Result of 1order

Nu
components 

KPCA 2order-KPCA 5 
-KPCA 

mber of  with D=1.
K=1 K=2 K=3 K=4 K=5 

32 8.42 8.42 7.87 8.07 8.02 8.1     7 
64 7.13 7.13 7.13 7.17 7.13 7.4      2 
128 7.62 7.62 7.57 7.27 7.17 7.6      2 
256 8.07 8.07 7.77 7.82 7.97 7.7      2 
512 8.17 8.17 17 8.27 8.37 8.07 8.

(b). Result of 2order-KPCA 

TABLE IV.  
ERROR RATE OF 2007 TESTING SAMPLE USING PROPOSED METHODS (HAV

SUBSET) AND THE S G DEG

Number of 
components 

KPCA 1

 
 DEGREING E D=2 AND DIFFER MPLE NUMB IN EACH 

TANDARD KPCA (HAVIN REE =4) 3000 . 
ENT SA ERS K 

d  WITH  TRAINING SAMPLES

order-KPCA with d=4 
K=1 K=2 K=3 K=4 K=5 

32 7.17 6.88 7.17 7.13 7.08 7.22 
64 6.98 6.98 6.98 7.08 7.13 7.13 
128 7.17 7.17 7.47 7.22 7.47 7.52 
256 7.22 7.22 6.93 7.13 7.22 7.13 
512 7.42 7.42 7.32 7.13 7.21 7.03 

(a). Result of 1o

Number of 
components 

KPCA 
rd

2
er-KPCA 

order-KPCA with D=2 
K=1 K=2 K=3 K=4 K=5 

32 7.17 7.17 7.27 7.03 7.17 7.42 
64 6.98 6.98 6.98 6.93 6.78 6.78 
128 7.17 7.17 7.37 6.88 7.08 7.03 
256 7.22 7.22 7.32 7.03 7.22 6.93 
512 7.42 7.42 7.27 7.47 7.32 7.42 

(b). Result of 2order-KPCA 

TABLE V.  
ERROR RATE OF 2007 TESTING SAMPLE USING 1ORDER-KPCA AND 2ORD

SAMPLES. IN THE PROPOSED METHODS, THE DATA SET IS DIVIDED INTO 
STANDARD KPCA CANNOT PR

 
ER-K
12

ODUCE THE RESUL

PCA (HAVING DIFFERENT DEGREE D) WITH ALL TRAINING 
16 SUBSETS, EACH OF WHICH CONSISTS OF 6 SAMPLES. THE 

T BECAUSE OF STORAGE PROBLEM.. 

D=4 D=5 Number of 
components 

D=2 D=3 

32 7.82 5.93 6.48 7.42 
64 5.63 5.93 6.73 7.52 
128 5.73 5.98 6.33 7.13 
256 5.93 5.63 6.44 6.58 
512 5.83 5.73 6.18 6.38 

(a). Result of 1

Number of 
component

D=2 D=3 
ord

s 

er-KPCA 

D=4 D=5 

32 6.08 6.88 7.87 9.42 
64 5.78 6.13 7.37 17 8.
128 5.73 6.18 6.93 7.47 
256 5.48 6.13 6.48 7.37 
512 5.73 6.03 6.38 6.68 

(b). Result of 2order-KPCA 
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Figure 3. Performance of proposed methods using different number
samples (k) in each subset under varying number of kernel principal
components (using log scale) corresponding to Table Ⅱ.. 

Figure 4. Performance of proposed methods using different number
samples (k) in each subset under varying number of kernel principal
components (using log scale) corresponding to Table Ⅲ. 

Figure 5. Performance of proposed methods using different number
samples (k) in each subset under varying number of kernel principal
components (using log scale) corresponding to Table Ⅳ. 
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