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Abstract—Considering the properties of remote sensing 
texture such as strong randomness and weak local 
correlation, a novel adaptive compression method based on 
vector quantizer is presented and implemented on GPU. 
Utilizing the property of Human Visual System (HVS), a 
new similarity measurement function is designed instead of 
using Euclid distance. Correlated threshold between blocks 
can be obtained adaptively according to the property of 
different images without artificial auxiliary. Furthermore, a 
self-adaptive threshold adjustment during the compression 
is designed to improve the reconstruct quality. Experiments 
show that the method can handle various resolution images 
adaptively. It can achieve satisfied compression rate and 
reconstruct quality at the same time. Index is coded to 
further increase the compression rate. The coding way is 
designed to guarantee accessing the index randomly too. 
Furthermore, the compression and decompression process is 
speed up with the usage of GPU, on account of their 
parallelism. 

 
Index Terms—texture compression; self-adaptive; Human 
Visual System; vector quantizer; GPU 
 

I.  INTRODUCTION 

Using remote sensing images as textures for large-
scale terrain rendering can enhance rendering quality. But 
these high precision images have huge size, which is 
conflicted with limited amount of graphics memory and 
bandwidth available. At the same time, texture bandwidth 
is one of the most common bottlenecks in graphics 
performance that will affect real-time rendering [1], even 
using optimized out-of-core techniques to load textures in 
advance. Time waiting for textures loaded from external 
storage to memory and graphics memory, especially 
when the texture are large, will make the rendering side 
unacceptable. Thus, finding a compression method 
support fast decompression remote sensing texture 
without hurting the visual facticity is a key for real-time 
rendering large scale terrain. 

The aim of this work is the development of a vector 
quantization (VQ) based compression method optimized 
for remote sensing textures. The method can deal with 

different remote sensing images and various resolutions 
without artificial auxiliary.  

Ⅱ.  RELATED WORKS 

Utilizing the redundancy and coherency of images, 
the compression technique satisfies various requirements 
such as storage or transmission. Lots of methods are 
available in image compression including the JPEG 2000 
standard, wavelet coding using multi-resolution 
analysis[2], and fractal coding extracting the image’s 
self-similarity[3] etc. But these methods are not suite for 
texture compression in real-time rendering, as they do not 
offer random access to individual pixels from the 
compressed texture. Beers first solve the problem by VQ 
[4], which can decode the compressed image in the 
graphics hardware and satisfy the real-time requirement. 
Most VQ compression need long time of training. Tang 
proposes an incremental texture encoding algorithm to 
overcome the long training time problem [5], but the 
quantizer is not optimized in the algorithm. As Euclidean 
distance is used to measure similarity in many VQ 
algorithm, threshold has to be tried for different images 
manually. 

There is another problem in compressing remote 
sensing textures: the remote sensing image has large 
regional difference and lack of local correlation than 
static images. Methods based on wavelet and dimensional 
reduction [6] designed to overcome the problem, aim at 
high compression rate or detail maintenance. They don't 
offer pixel random access, which is very important for 
decompression process. It is hard for compression 
method to satisfy compression ratio, quality of 
reconstructed image and real-time decompression 
requirements at the same time. 

As Berg points out, if an optimal vector quantizer is 
found for a given performance objective, no other coding 
system can achieve a better performance [7]. In this paper, 
a novel quantizer is presented. The HVS-optimized 
similarity measurement function and threshold value can 
fit different and various resolution remote sensing 
textures automatically. An adaptive compression process 
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considering the property of remote sensing image is also 
designed to enhance the vector quantized code book 
accuracy. As the method is based on VQ, the 
decompression can satisfied the real-time requirement, 
especially with the help of GPU. GPU is also used to 
speed up the compression. 

  Ⅲ.  ADAPTIVE HVS-OPTIMIZED VECTOR QUANTIZER 

In general, a vector quantizer is defined as a mapping 
from a k-dimensional Euclidean space Rk into a N-entries 
code words set, called codebook, as Q: Rk RN. Using 
VQ in image compression, the image is first divided into 
n*n blocks, constructing the Rk. Then, code word is 
selected from Rk to represent a cluster of blocks in the 
original set. The clustering process is based on similarity 
measurement, which commonly use the pixels’ Euclidean 
distance between blocks. But the Euclidean distance can 
not tell the visual difference between blocks very well. 
That is why image with small MSE sometimes has bad 
visual quality. And it is hard to set a “perfect” threshold 
measuring the similarity for different images. These are 
what we will handle next. 

A. Adaptive similarity measurement function  
The factor infects the VQ compression quality most 

are: the similarity measuring method between blocks; and 
the threshold value determining whether two blocks are 
similar enough. These two correlative factors decide 
whether one block can be substituted by the other. To 
decrease precision loss caused by such substitution in 
compression, the following facts of human visual system 
(HVS) from biological sciences are used. First, the 
properties affecting the quality of image are mainly 
brightness, contrast, colorfulness and sharpness [8]. 
Second, human visual system is sensitive to local 
luminance contrasts [9]. Third, the visual cortex neuron is 
more active to the change direction and amplitude of 
contrast [10]. These factors make our method pay more 
attention to brightness and contrast.  

The remote sensing image used in this work is in RGB 
mode. First we convert it to YCrCb mode to reduce the 
coherence between colors. This transform is also 
convenient for us to utilize brightness value of pixel. 
Thus, the similarity measurement function used to 
evaluate the similarity between two blocks (B, B') is  

' 2 ' 2 ' 2
k k k k k k
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The k here is the pixel index in a pixel block. In the 
function, parameters α, β and γ are the adjustment factors 
of brightness and two chromatism, α+β+γ=1. The setting 
of α, β and γ is based on the ideas we mentioned above. 
As human visual is sensitive to the change amplitude of 
contrast, we evaluate the change amplitude of Y, Cr and 
Cb in the image. Then, α, β and γ is calculated according 
to these change amplitude. The design considers the 
effect of contrast which is independent of brightness. 
Contrast definition is: 
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The simulation in part Ⅳ  shows such definition is 
efficient. To further simplify the computation, a basic 
value for every block is set:  
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The k here is the pixel index in a pixel block.  
Thus, the similarity measurement function changed to:  
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Let the difference between pixels in two blocks be  △

(△Y, △Cr, △Cb), then the similarity is changed from: 
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From the formula above, we can see that the changed 
similarity measurement function is just larger than the 
original value. It can be adjusted by augment the 
threshold value. Applying the simplification, we get two 
benefits: (1) the base value computation for pixel block is 
only once per block, (2) the similarity measurement 
during the compression process only needs a simple 
comparison of two blocks’ base value. That can make the 
compression quicker. And the computation turn to suit for 
parallel implementation on GPU, as the base value can be 
calculated parallel between blocks. 

The setting of α, β and γ is calculated from the image. 
They exhibit the variation amplitude of different 
components and weighted the effects to the similarity. 
Adjustment factors varied from one image to another. 
This design is the first adaptive capacity of the algorithm.  

B. Adaptive threshold value setting 
After the similarity measurement function is decided, 

the threshold value will be the key to satisfy the 
compression rate and reconstruct quality requirement.  

Most VQ compression methods don’t describe the 
way how to set threshold, and some need user to try and 
set many times to different image. With high volume of 
images pending to compress, it will be a miscellaneous 
work to set proper threshold for each image to balance 
the compression rate and quality of reconstruct image. 
Here we design an automatically threshold setting method 
based on the image property. As the second adaptive 
process in the algorithm, it cooperates well with the 
similarity measurement function.  

During the setting of threshold, there are two 
adaptive treatments: (1) the threshold is automatic set 
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according to different images; (2) in view of different 
area in an image, the threshold is adjusted to fit the local 
character adaptively.  

Since the design of similarity measurement function 
mainly considers the effect of contrast, the threshold 
adopts the variation amplitude between pixels to fit the 
function. The threshold is set through two steps: 
1. count the variation amplitude between pixels 

through whole image, get the statistical value E; 
2. using E and an adjust ratio δ to get base threshold T. 

,
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Adjust ratio δ give user a choice to obtain whether 
higher compression rate or reconstruct quality. The δ used 
in our experiments is set to 1.  

Remote sensing images have properties like large 
regional difference and weak local correlation, the 
complexity varies from one area to another. Thus, it will 
produce distortion in reconstruct images when the image 
is complicated, if the threshold is kept unchangeable. 
Adjust the threshold according to complexity of the 
handled area is a good way to solve the problem.  

Experiments show when pixels change rapidly, the 
human visual is unconscious to the error of the 
reconstructed image, and is able to adjust the 
compression rate higher. To the contrast situation, lower 
the compression rate can make the reconstruct quality 
better for HVS. According to such character, the 
threshold is set through compute the difference between 
the pixel and its “future” pixels within range R. Thus, we 
get  to adjust threshold according to the local property. EΔ

,
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The B here is the basic value for a block we defined 
earlier, R is rang take into account, and n is the block size. 
The “future” directions are showed in Figure 1, according 
to the compression direction.  

 
Figure 1.  Pixel and its “future” pixels 

With the setting method, a threshold can be calculated 
automatically based on the image’s self property. That 
can also be parallel calculated on GPU, eliminates the 
user’s fussy work. Different resolution images are used to 
test the efficiency of the method in part Ⅳ. 

C. Index coding 
For those code method based on VQ, the size of   

index will influence compression rate too. For those large 
resolution images, size of index is even larger than code 
book. Thus, good index coding can improve the 
compression rate.  

A simple method is Huffman encoding for index.  
However, it can only support decoding in sequence. 
Therefore, random access is unavailable during the 
process of decoding.  

Through the analyzing of code book, it has been found 
that for the self-similarity of image, only a small part 
codes keep those low-frequency information, and remains 
keep high-frequency information. Thus, all codes are 
sorted according to the amount that they substitute. Codes 
keeping low-frequency information are called “lucky 
codes”. They are recorded directly in the index file. 
Codes keeping high-frequency information are recorded 
“0” in the index file. Those high-frequency codes 
maintain their substitutions by recording the substituted 
blocks’ position in the image. According to the statistics 
of experiments, “lucky codes” represent more than 90% 
texture. The scheme of encoding is illustrated as figure 2. 

 
Figure 2.  Encoding scheme of the index 

During the process of decoding, the positions 
substituted by high-frequency part are less and searching 
among different code can be executed in parallel.  So, 
less cost are needed to fulfill searching. 

D. Compression Steps 
Just like most other VQ compression methods, the 

image is first partitioned into small m*m blocks set. If K-
SOM is applied for VQ, greater reconstruct quality can be 
achieved after long time training, as the codeword is 
optimized by the side effect in the same cluster. We add 
such lateral association to Tang’s incremental texture 
encoding algorithm; optimize codeword with one-pass 
process. Thus, the new process we present here utilizes 
the virtue of SOM and incremental algorithm, 
constructing code book fast and optimized. With the 
similarity measurement function and value setting 
method we described above, the compression process can 
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implement a self-adapted process to those images with 
large regional difference. 

Let the pixel blocks partitioned from input image is 
S={p1, p2,…, pn}. The compression process needs three 
main steps which form three levels’ processing grid. The 
first level computes the local threshold value, G={g1, 
g2, …gk}, with gi calculate pixels’ difference in a block. 
The grid figures out difference in local region of radius R. 
The result is used to guide the adjustment of threshold 
value: increase the threshold with big difference, and 
decrease on the contrary. The second grid is used to find 
the similar code words with minimal error. G'={g1', 
g2', …} is an increasable grid with gi' handles a code 
word in current codebook. If the minimum error is lager 
than the threshold, the input block will be added to the 
codebook. Or else, the input block go through the third 
grid G"={g1", g2", …gl"}. All blocks in G" are 
represented by same code word now. The function of G" 
is to optimize the code word to get minimal error 
represents all blocks of the cluster. The three level grids 
and the blocks they handle are showed in Figure 3. 

 
Figure 3.  The three level processing grid 

The compression work does not need train any more. 
One-pass process can build the codebook. And the code 
words are optimized through the processing in grid G" 
with lateral effect is imposed on code words.   

 Ⅳ.   EXPERIMENTS AND ANALYSIS 

Hardware platform of our experiments includes Intel 
dual-core 1.8GHz CPU, 512 M memory and Nvidia 
Geforce 8600 graphics card. Three types of remote 
sensing images including Terra [12], QuickBird [13] and 
CBERS-1 are used in the experiments of compression. 
Through experiments, some key parameters of our 
method are decided and the validity of our method is 
verified. 

Just using the statistical errors of pixels as MSE 
doesn’t consider the coherence between pixels in the 
same area. Wang etc. presents a criterion--SSIM to 
compare the structural similarity between images [11], 
taking advantage that visual is more susceptible to the 
structure change. For paying more attention to the visual 
accordance between the original image and the 
reconstructed one, we use SSIM to judge the reconstruct 
quality together with MSE. 

A. The effectiveness of similarity measurement function 
and threshold value setting 

Three adjustment factors α, β and γ are very important 
in similarity measurement function. We compare three 
ways of setting including our method (M), random 
selection(R) and Euclidean distance based (E), as shown 
in Table 1. Principal component analysis (PCA) with VQ 
is also compared in Table 1 because it is an efficient 
method for dimensionality reduction [14]. We use the 4*4 
block partition, as that will produce less input blocks. 
And the compression time is less than using 2*2 
partitions. Your goal is to simulate the usual appearance 
of papers in a Journal of the Academy Publisher. We are 
requesting that you follow these guidelines as closely as 
possible. 

As the contrast difference between Cr and Cb is small, 
we set β=γ in random setting, and α=0.9 to emphasize the 
importance of luminance. Since less code-word means 
higher compression rate in VQ-based compression, 
“Proportion of code” in table 1 (means the proportion of 
code-words in all input blocks) exhibits the compression 
capability. From the values in table 1, we can see that 
under the same threshold, our method of setting can get 
satisfied compression rate and reconstructed quality at the 
same time. Other setting methods can not work well with 
arbitrary image. 

TABLE I.  ADJUSTMENT FACTORS’ EFFECT ON COMPRESSION RATE AND RECONSTRUCTED QUALITY  

Picture Name Adjustment Factors 
(α : β : γ) 

Proportion of 
code MSE SSIM (%) 

R G B 

CBERS-1coastland 
(19.5m precision) 

0.85 : 0.08 : 0.07(M) 0.031 9.344 84.20 86.87 79.75 
0.9 : 0.05 : 0.05(R) 0.047 9.473 84.19 86.49 79.06 
0.33 : 0.33 : 0.33(E) 0.025 9.842 80.05 82.41 77.92 
0.40:0.38:0.22(PCA) 0.012 11.762 76.37 76.83 73.80 

Iberian Pernisula 
(500m precision) 

0.79 : 0.09 : 0.12(M) 0.116 16.53 77.27 78.68 76.41 
0.9 : 0.05 : 0.05(R) 0.196 15.23 78.14 79.812 77.38 
0.33 : 0.33 : 0.33(E) 0.045 22.91 63.07 63.38 60.67 
0.38:0.34:0.28(PCA) 0.276 14.38 78.66 79.69 77.68 

Fires in Indochina 
(500m precision) 

0.46-0.16-0.38(M) 0.0061 6.938 84.181 87.15 85.45 
0.9 : 0.05 : 0.05(R) 0.0060 7.908 83.11 89.07 84.53 
0.33 : 0.33 : 0.33(E) 0.0054 7.125 82.90 85.66 83.83 
0.43:0.32:0.25(PCA) 0.0016 16 70.88 75.83 72.53 

TABLE II.  EFFICIENCY OF THE AUTOMATICALLY COMPUTED THRESHOLD TO DIFFERENT RESOLUTION IMAGES
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Image Name Proportion of code MSE SSIM (%) 
R G B 

Iberian Pernisula 1Km 0.14 17.924 80.89 83.62 81.31 
Iberian Pernisula 500m 0.12 18.378 79.43 82.48 80.08 
Iberian Pernisula 250m 0.035 12.651 73.73 77.84 73.91 
Australia Fires 2.4m 0.125 13.164 70.60 77.14 76.03 
The setting of the threshold is another key in the 

quantizer. In Table 2, we compress four remote sensing 
images with different resolution. The threshold measure 
the similarity is set using the method we described in Part 
2. The automatically computed threshold can get a 
compression ratio larger than 6 and the SSIM value more 
than 70% with all images of different resolution. 

B. Performance of the compression process 
As our compression process is an improved 

incremental algorithm, we compare the reconstructed 

remote sensing images with Tang’s algorithm with the 
same compression rate in Figure 4. Due to the 
introduction of lateral association optimization to code 
words and self-adapted process in the compression, the 
reconstruction quality of our method is much better than 
the original incremental algorithm, especially to the area 
with lower contrast changing. The SSIM value in Table 3 
also confirm that the structural similarity between 
original image and our method reconstructed one is much 
higher than the incremental reconstructed one. 

   

   
Original Image                      Incremental algorithm                     Our algorithm 

(a) CBERS-1 coastland 

   

   
Original Image                      Incremental algorithm                     Our algorithm 

(b) QuickBird Pescara, Italy 
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Original Image                      Incremental algorithm                     Our algorithm 

(c) QuickBird Tallinn, Estonia 

Figure 4.  Comparison of reconstructed image between incremental algorithm and our algorithm 

TABLE III.  THE SSIM OF DIFFERENT QUANTIZER 

Image Name SSIM Original--Incremental Original—Without 
adaptive Original--Self adapted 

CBERS-1 coastland 
(19.5m) 

R 78.79% 81.51% 93.63% 
G 78.96% 83.43% 94.64% 
B 72.64% 78.71% 90.75% 

Pescara, Italy 
(60cm) 

R 69.90% 72.80% 90.29% 
G 72.95% 77.50% 95.98% 
B 71.47% 74.33% 90.95% 

Tallinn, Estonia 
(2.4m) 

R 85.89% 71.36% 94.79% 
G 85.44% 73.78% 95.01% 
B 85.10% 70.97% 94.24% 

From the comparison in table 3 of SSIM value, 
conclusion can be made that the HVS-optimized method 
can get better reconstruct images even without self 
adaption during the compression. And the self adaptive 
process can further enhance the code book accuracy.  

Original JPEG Our algorithm 
Figure 5.  Comparison of image quality with Lena  

The compression algorithm can handle static images 
as well. The Fig. 5 shows the reconstruct Lena 
compressed by JPEG and our algorithm under the same 
compression rate. The index file is also compressed using 
Huffman Coding for our method in this work. 

As we described in section 2.2, some part of 
compression can be done parallel between blocks. With 
help of CUDA [15], the GPU DRAM could be read in a 
general way. So, these parallel works are assigned on 
GPU easily, with one thread handles transactions of a 
block—the transform of the mode from RGB to YCrCb, 
the computation of basic value, and the setting of local 
threshold. The decompression can also be speed up by 
GPU as the VQ compression is designed to support the 
pixel random access. Each thread deals with the code-
word searching of a block, and transforms the pixels in 
the block from YCrCb mode back to RGB mode. From 
Table 4 and 5, we can see that the compression time and 

decompression time is much decreased using GPU as 
assistant. 

TABLE IV.  COMPARISON OF COMPRESSION TIME (IN MILLISECOND) 

Image size CPU-only GPU-assistant 
512*512 2756 1859 

1024*1024 18327 16000 
2048*2048 269906 253328 
4096*4096 3477436 3369781 

TABLE V.  COMPARISON OF DECOMPRESSION TIME (IN 
MILLISECOND) 

Code book size CPU-only GPU-assistant 
About 800 9.478 0.8751 
About 1200 9.0625 0.8691 
About 1800 9.0452 0.8673 

As shown in Table 4, the compression still needs 
long processing time when image size is large, even with 
the help of GPU. The reason is partly caused by the work 
on the code-words’ optimizing. The other reason is that 
VQ is computationally expensive when the vectors are 
long. That is why split VQ is used by many studies to 
handle large images. 

Ⅴ.   CONCLUSIONS 

We have proposed a self-adaptive HVS-optimized 
texture compression algorithm. The main contributions of 
this work are: (1) the similarity measurement function 
and threshold constructed automatically can fit different 
and various resolution images; (2) the self-adaptive 
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threshold adjustment works well remote sensing textures 
with large regional difference; (3) GPU is used to speed 
up the compression and decompression process.  

However, the code word searching time is still very 
long if very large image is handled. It can be deal with by 
carefully chosen tree-structured codebook and good 
searching algorithms. Our future work will focus on 
cutting down the code word searching time. 
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