
I.J. Image, Graphics and Signal Processing, 2010, 1, 46-52
Published Online November 2010 in MECS (http://www.mecs-press.org/)

Adaptive Remote Sensing Texture Compression
on GPU

Xiao-Xia Lu

College of Computer, National University of Defense Technology
Changsha, China

E-mail: xiaoxialu@nudt.edu.cn

Si-Kun Li
College of Computer, National University of Defense Technology

Changsha, China
E-mail: lisikun@263.net.cn

Abstract—Considering the properties of remote sensing
texture such as strong randomness and weak local
correlation, a novel adaptive compression method based on
vector quantizer is presented and implemented on GPU.
Utilizing the property of Human Visual System (HVS), a
new similarity measurement function is designed instead of
using Euclid distance. Correlated threshold between blocks
can be obtained adaptively according to the property of
different images without artificial auxiliary. Furthermore, a
self-adaptive threshold adjustment during the compression
is designed to improve the reconstruct quality. Experiments
show that the method can handle various resolution images
adaptively. It can achieve satisfied compression rate and
reconstruct quality at the same time. Index is coded to
further increase the compression rate. The coding way is
designed to guarantee accessing the index randomly too.
Furthermore, the compression and decompression process is
speed up with the usage of GPU, on account of their
parallelism.

Index Terms—texture compression; self-adaptive; Human
Visual System; vector quantizer; GPU

I. INTRODUCTION

Using remote sensing images as textures for large-
scale terrain rendering can enhance rendering quality. But
these high precision images have huge size, which is
conflicted with limited amount of graphics memory and
bandwidth available. At the same time, texture bandwidth
is one of the most common bottlenecks in graphics
performance that will affect real-time rendering [1], even
using optimized out-of-core techniques to load textures in
advance. Time waiting for textures loaded from external
storage to memory and graphics memory, especially
when the texture are large, will make the rendering side
unacceptable. Thus, finding a compression method
support fast decompression remote sensing texture
without hurting the visual facticity is a key for real-time
rendering large scale terrain.

The aim of this work is the development of a vector
quantization (VQ) based compression method optimized
for remote sensing textures. The method can deal with

different remote sensing images and various resolutions
without artificial auxiliary.

Ⅱ. RELATED WORKS

Utilizing the redundancy and coherency of images,
the compression technique satisfies various requirements
such as storage or transmission. Lots of methods are
available in image compression including the JPEG 2000
standard, wavelet coding using multi-resolution
analysis[2], and fractal coding extracting the image’s
self-similarity[3] etc. But these methods are not suite for
texture compression in real-time rendering, as they do not
offer random access to individual pixels from the
compressed texture. Beers first solve the problem by VQ
[4], which can decode the compressed image in the
graphics hardware and satisfy the real-time requirement.
Most VQ compression need long time of training. Tang
proposes an incremental texture encoding algorithm to
overcome the long training time problem [5], but the
quantizer is not optimized in the algorithm. As Euclidean
distance is used to measure similarity in many VQ
algorithm, threshold has to be tried for different images
manually.

There is another problem in compressing remote
sensing textures: the remote sensing image has large
regional difference and lack of local correlation than
static images. Methods based on wavelet and dimensional
reduction [6] designed to overcome the problem, aim at
high compression rate or detail maintenance. They don't
offer pixel random access, which is very important for
decompression process. It is hard for compression
method to satisfy compression ratio, quality of
reconstructed image and real-time decompression
requirements at the same time.

As Berg points out, if an optimal vector quantizer is
found for a given performance objective, no other coding
system can achieve a better performance [7]. In this paper,
a novel quantizer is presented. The HVS-optimized
similarity measurement function and threshold value can
fit different and various resolution remote sensing
textures automatically. An adaptive compression process

Copyright © 2010 MECS I.J. Image, Graphics and Signal Processing, 2010, 1, 46-52

 Adaptive Remote Sensing Texture Compression on GPU 47

considering the property of remote sensing image is also
designed to enhance the vector quantized code book
accuracy. As the method is based on VQ, the
decompression can satisfied the real-time requirement,
especially with the help of GPU. GPU is also used to
speed up the compression.

 Ⅲ. ADAPTIVE HVS-OPTIMIZED VECTOR QUANTIZER

In general, a vector quantizer is defined as a mapping
from a k-dimensional Euclidean space Rk into a N-entries
code words set, called codebook, as Q: Rk RN. Using
VQ in image compression, the image is first divided into
n*n blocks, constructing the Rk. Then, code word is
selected from Rk to represent a cluster of blocks in the
original set. The clustering process is based on similarity
measurement, which commonly use the pixels’ Euclidean
distance between blocks. But the Euclidean distance can
not tell the visual difference between blocks very well.
That is why image with small MSE sometimes has bad
visual quality. And it is hard to set a “perfect” threshold
measuring the similarity for different images. These are
what we will handle next.

A. Adaptive similarity measurement function
The factor infects the VQ compression quality most

are: the similarity measuring method between blocks; and
the threshold value determining whether two blocks are
similar enough. These two correlative factors decide
whether one block can be substituted by the other. To
decrease precision loss caused by such substitution in
compression, the following facts of human visual system
(HVS) from biological sciences are used. First, the
properties affecting the quality of image are mainly
brightness, contrast, colorfulness and sharpness [8].
Second, human visual system is sensitive to local
luminance contrasts [9]. Third, the visual cortex neuron is
more active to the change direction and amplitude of
contrast [10]. These factors make our method pay more
attention to brightness and contrast.

The remote sensing image used in this work is in RGB
mode. First we convert it to YCrCb mode to reduce the
coherence between colors. This transform is also
convenient for us to utilize brightness value of pixel.
Thus, the similarity measurement function used to
evaluate the similarity between two blocks (B, B') is

' 2 ' 2 ' 2
k k k k k k

1
b b* (Y -Y) + *(Cr -Cr) + *(C -C)

nPixel

k
M α β γ

=

= ∑

The k here is the pixel index in a pixel block. In the
function, parameters α, β and γ are the adjustment factors
of brightness and two chromatism, α+β+γ=1. The setting
of α, β and γ is based on the ideas we mentioned above.
As human visual is sensitive to the change amplitude of
contrast, we evaluate the change amplitude of Y, Cr and
Cb in the image. Then, α, β and γ is calculated according
to these change amplitude. The design considers the
effect of contrast which is independent of brightness.
Contrast definition is:

(max min)contrast mean
−=

.

Based on this, α, β and γ is:
max min max min max min

max min max min max min

, //For normalization

, ,

r r b b

r b

r r b b

r b

Y Y C C C CN
Y C C

Y Y C C C CN N
Y C C

α β γ N

− − −
= + +

− − −
= = =

The simulation in part Ⅳ shows such definition is
efficient. To further simplify the computation, a basic
value for every block is set:

nPixel
2 2

k k
k=1

bB= *Y + *Cr + Cα β γ 2
k⎡ ⎤∗⎣ ⎦∑

The k here is the pixel index in a pixel block.
Thus, the similarity measurement function changed to:
' 2 ' 2 2 ' 2 2

k k k k k k
1

(Y -Y)+ (Cr -Cr)+ (Cb -Cb)

B-B'

nPixel

k
M α β γ

=

= ∗ ∗ ∗

=

∑ ' 2

2
kb

'
Cb

Let the difference between pixels in two blocks be △

(△Y, △Cr, △Cb), then the similarity is changed from:
2 2

1
*() + *() + *()

nPixel

k k
k

Y Cr CM α β γ
=

= Δ Δ Δ∑

to:

 ' ' '
k k k k k

1

bM+ 2 Y +2 Cr +2 C
nPixel

k
k

Y CrM α β γ
=

= Δ Δ∑ Δ

From the formula above, we can see that the changed
similarity measurement function is just larger than the
original value. It can be adjusted by augment the
threshold value. Applying the simplification, we get two
benefits: (1) the base value computation for pixel block is
only once per block, (2) the similarity measurement
during the compression process only needs a simple
comparison of two blocks’ base value. That can make the
compression quicker. And the computation turn to suit for
parallel implementation on GPU, as the base value can be
calculated parallel between blocks.

The setting of α, β and γ is calculated from the image.
They exhibit the variation amplitude of different
components and weighted the effects to the similarity.
Adjustment factors varied from one image to another.
This design is the first adaptive capacity of the algorithm.

B. Adaptive threshold value setting
After the similarity measurement function is decided,

the threshold value will be the key to satisfy the
compression rate and reconstruct quality requirement.

Most VQ compression methods don’t describe the
way how to set threshold, and some need user to try and
set many times to different image. With high volume of
images pending to compress, it will be a miscellaneous
work to set proper threshold for each image to balance
the compression rate and quality of reconstruct image.
Here we design an automatically threshold setting method
based on the image property. As the second adaptive
process in the algorithm, it cooperates well with the
similarity measurement function.

During the setting of threshold, there are two
adaptive treatments: (1) the threshold is automatic set

Copyright © 2010 MECS I.J. Image, Graphics and Signal Processing, 2010, 1, 46-52

48 Adaptive Remote Sensing Texture Compression on GPU

according to different images; (2) in view of different
area in an image, the threshold is adjusted to fit the local
character adaptively.

Since the design of similarity measurement function
mainly considers the effect of contrast, the threshold
adopts the variation amplitude between pixels to fit the
function. The threshold is set through two steps:
1. count the variation amplitude between pixels

through whole image, get the statistical value E;
2. using E and an adjust ratio δ to get base threshold T.

,
2 2

1, , 1, , 1, ,
, 0

2 2
, 1 , , 1 , , 1 ,

2 2
1, 1 , 1, 1 , 1, 1 ,

[() () ()

() () ()

() () (

i j N

i j i j i j i j i j i j
i j

i j i j i j i j i j i j

i j i j i j i j i j i j

E Y Y Cr Cr Cb Cb

Y Y Cr Cr Cb Cb

Y Y Cr Cr Cb Cb

=

+ + +
=

+ + +

+ + + + + +

= − + − + −

 − + − + − +

 − + − + −

∑ 2

2

2)]

+

* ()
3* *

ET
N N

δ=

Adjust ratio δ give user a choice to obtain whether
higher compression rate or reconstruct quality. The δ used
in our experiments is set to 1.

Remote sensing images have properties like large
regional difference and weak local correlation, the
complexity varies from one area to another. Thus, it will
produce distortion in reconstruct images when the image
is complicated, if the threshold is kept unchangeable.
Adjust the threshold according to complexity of the
handled area is a good way to solve the problem.

Experiments show when pixels change rapidly, the
human visual is unconscious to the error of the
reconstructed image, and is able to adjust the
compression rate higher. To the contrast situation, lower
the compression rate can make the reconstruct quality
better for HVS. According to such character, the
threshold is set through compute the difference between
the pixel and its “future” pixels within range R. Thus, we
get to adjust threshold according to the local property. EΔ

,

, ,
, 1

[] [(*) *
p q R

i p j q i j
p q

E B B R R n
=

+ +
=

Δ = −∑ (*)]n

The B here is the basic value for a block we defined
earlier, R is rang take into account, and n is the block size.
The “future” directions are showed in Figure 1, according
to the compression direction.

Figure 1. Pixel and its “future” pixels

With the setting method, a threshold can be calculated
automatically based on the image’s self property. That
can also be parallel calculated on GPU, eliminates the
user’s fussy work. Different resolution images are used to
test the efficiency of the method in part Ⅳ.

C. Index coding
For those code method based on VQ, the size of

index will influence compression rate too. For those large
resolution images, size of index is even larger than code
book. Thus, good index coding can improve the
compression rate.

A simple method is Huffman encoding for index.
However, it can only support decoding in sequence.
Therefore, random access is unavailable during the
process of decoding.

Through the analyzing of code book, it has been found
that for the self-similarity of image, only a small part
codes keep those low-frequency information, and remains
keep high-frequency information. Thus, all codes are
sorted according to the amount that they substitute. Codes
keeping low-frequency information are called “lucky
codes”. They are recorded directly in the index file.
Codes keeping high-frequency information are recorded
“0” in the index file. Those high-frequency codes
maintain their substitutions by recording the substituted
blocks’ position in the image. According to the statistics
of experiments, “lucky codes” represent more than 90%
texture. The scheme of encoding is illustrated as figure 2.

Figure 2. Encoding scheme of the index

During the process of decoding, the positions
substituted by high-frequency part are less and searching
among different code can be executed in parallel. So,
less cost are needed to fulfill searching.

D. Compression Steps
Just like most other VQ compression methods, the

image is first partitioned into small m*m blocks set. If K-
SOM is applied for VQ, greater reconstruct quality can be
achieved after long time training, as the codeword is
optimized by the side effect in the same cluster. We add
such lateral association to Tang’s incremental texture
encoding algorithm; optimize codeword with one-pass
process. Thus, the new process we present here utilizes
the virtue of SOM and incremental algorithm,
constructing code book fast and optimized. With the
similarity measurement function and value setting
method we described above, the compression process can

Copyright © 2010 MECS I.J. Image, Graphics and Signal Processing, 2010, 1, 46-52

 Adaptive Remote Sensing Texture Compression on GPU 49

implement a self-adapted process to those images with
large regional difference.

Let the pixel blocks partitioned from input image is
S={p1, p2,…, pn}. The compression process needs three
main steps which form three levels’ processing grid. The
first level computes the local threshold value, G={g1,
g2, …gk}, with gi calculate pixels’ difference in a block.
The grid figures out difference in local region of radius R.
The result is used to guide the adjustment of threshold
value: increase the threshold with big difference, and
decrease on the contrary. The second grid is used to find
the similar code words with minimal error. G'={g1',
g2', …} is an increasable grid with gi' handles a code
word in current codebook. If the minimum error is lager
than the threshold, the input block will be added to the
codebook. Or else, the input block go through the third
grid G"={g1", g2", …gl"}. All blocks in G" are
represented by same code word now. The function of G"
is to optimize the code word to get minimal error
represents all blocks of the cluster. The three level grids
and the blocks they handle are showed in Figure 3.

Figure 3. The three level processing grid

The compression work does not need train any more.
One-pass process can build the codebook. And the code
words are optimized through the processing in grid G"
with lateral effect is imposed on code words.

 Ⅳ. EXPERIMENTS AND ANALYSIS

Hardware platform of our experiments includes Intel
dual-core 1.8GHz CPU, 512 M memory and Nvidia
Geforce 8600 graphics card. Three types of remote
sensing images including Terra [12], QuickBird [13] and
CBERS-1 are used in the experiments of compression.
Through experiments, some key parameters of our
method are decided and the validity of our method is
verified.

Just using the statistical errors of pixels as MSE
doesn’t consider the coherence between pixels in the
same area. Wang etc. presents a criterion--SSIM to
compare the structural similarity between images [11],
taking advantage that visual is more susceptible to the
structure change. For paying more attention to the visual
accordance between the original image and the
reconstructed one, we use SSIM to judge the reconstruct
quality together with MSE.

A. The effectiveness of similarity measurement function
and threshold value setting

Three adjustment factors α, β and γ are very important
in similarity measurement function. We compare three
ways of setting including our method (M), random
selection(R) and Euclidean distance based (E), as shown
in Table 1. Principal component analysis (PCA) with VQ
is also compared in Table 1 because it is an efficient
method for dimensionality reduction [14]. We use the 4*4
block partition, as that will produce less input blocks.
And the compression time is less than using 2*2
partitions. Your goal is to simulate the usual appearance
of papers in a Journal of the Academy Publisher. We are
requesting that you follow these guidelines as closely as
possible.

As the contrast difference between Cr and Cb is small,
we set β=γ in random setting, and α=0.9 to emphasize the
importance of luminance. Since less code-word means
higher compression rate in VQ-based compression,
“Proportion of code” in table 1 (means the proportion of
code-words in all input blocks) exhibits the compression
capability. From the values in table 1, we can see that
under the same threshold, our method of setting can get
satisfied compression rate and reconstructed quality at the
same time. Other setting methods can not work well with
arbitrary image.

TABLE I. ADJUSTMENT FACTORS’ EFFECT ON COMPRESSION RATE AND RECONSTRUCTED QUALITY

Picture Name Adjustment Factors
(α : β : γ)

Proportion of
code MSE SSIM (%)

R G B

CBERS-1coastland
(19.5m precision)

0.85 : 0.08 : 0.07(M) 0.031 9.344 84.20 86.87 79.75
0.9 : 0.05 : 0.05(R) 0.047 9.473 84.19 86.49 79.06
0.33 : 0.33 : 0.33(E) 0.025 9.842 80.05 82.41 77.92
0.40:0.38:0.22(PCA) 0.012 11.762 76.37 76.83 73.80

Iberian Pernisula
(500m precision)

0.79 : 0.09 : 0.12(M) 0.116 16.53 77.27 78.68 76.41
0.9 : 0.05 : 0.05(R) 0.196 15.23 78.14 79.812 77.38
0.33 : 0.33 : 0.33(E) 0.045 22.91 63.07 63.38 60.67
0.38:0.34:0.28(PCA) 0.276 14.38 78.66 79.69 77.68

Fires in Indochina
(500m precision)

0.46-0.16-0.38(M) 0.0061 6.938 84.181 87.15 85.45
0.9 : 0.05 : 0.05(R) 0.0060 7.908 83.11 89.07 84.53
0.33 : 0.33 : 0.33(E) 0.0054 7.125 82.90 85.66 83.83
0.43:0.32:0.25(PCA) 0.0016 16 70.88 75.83 72.53

TABLE II. EFFICIENCY OF THE AUTOMATICALLY COMPUTED THRESHOLD TO DIFFERENT RESOLUTION IMAGES

Copyright © 2010 MECS I.J. Image, Graphics and Signal Processing, 2010, 1, 46-52

50 Adaptive Remote Sensing Texture Compression on GPU

Image Name Proportion of code MSE SSIM (%)
R G B

Iberian Pernisula 1Km 0.14 17.924 80.89 83.62 81.31
Iberian Pernisula 500m 0.12 18.378 79.43 82.48 80.08
Iberian Pernisula 250m 0.035 12.651 73.73 77.84 73.91
Australia Fires 2.4m 0.125 13.164 70.60 77.14 76.03
The setting of the threshold is another key in the

quantizer. In Table 2, we compress four remote sensing
images with different resolution. The threshold measure
the similarity is set using the method we described in Part
2. The automatically computed threshold can get a
compression ratio larger than 6 and the SSIM value more
than 70% with all images of different resolution.

B. Performance of the compression process
As our compression process is an improved

incremental algorithm, we compare the reconstructed

remote sensing images with Tang’s algorithm with the
same compression rate in Figure 4. Due to the
introduction of lateral association optimization to code
words and self-adapted process in the compression, the
reconstruction quality of our method is much better than
the original incremental algorithm, especially to the area
with lower contrast changing. The SSIM value in Table 3
also confirm that the structural similarity between
original image and our method reconstructed one is much
higher than the incremental reconstructed one.

Original Image Incremental algorithm Our algorithm

(a) CBERS-1 coastland

Original Image Incremental algorithm Our algorithm

(b) QuickBird Pescara, Italy

Copyright © 2010 MECS I.J. Image, Graphics and Signal Processing, 2010, 1, 46-52

 Adaptive Remote Sensing Texture Compression on GPU 51

Original Image Incremental algorithm Our algorithm

(c) QuickBird Tallinn, Estonia

Figure 4. Comparison of reconstructed image between incremental algorithm and our algorithm

TABLE III. THE SSIM OF DIFFERENT QUANTIZER

Image Name SSIM Original--Incremental Original—Without
adaptive Original--Self adapted

CBERS-1 coastland
(19.5m)

R 78.79% 81.51% 93.63%
G 78.96% 83.43% 94.64%
B 72.64% 78.71% 90.75%

Pescara, Italy
(60cm)

R 69.90% 72.80% 90.29%
G 72.95% 77.50% 95.98%
B 71.47% 74.33% 90.95%

Tallinn, Estonia
(2.4m)

R 85.89% 71.36% 94.79%
G 85.44% 73.78% 95.01%
B 85.10% 70.97% 94.24%

From the comparison in table 3 of SSIM value,
conclusion can be made that the HVS-optimized method
can get better reconstruct images even without self
adaption during the compression. And the self adaptive
process can further enhance the code book accuracy.

Original JPEG Our algorithm
Figure 5. Comparison of image quality with Lena

The compression algorithm can handle static images
as well. The Fig. 5 shows the reconstruct Lena
compressed by JPEG and our algorithm under the same
compression rate. The index file is also compressed using
Huffman Coding for our method in this work.

As we described in section 2.2, some part of
compression can be done parallel between blocks. With
help of CUDA [15], the GPU DRAM could be read in a
general way. So, these parallel works are assigned on
GPU easily, with one thread handles transactions of a
block—the transform of the mode from RGB to YCrCb,
the computation of basic value, and the setting of local
threshold. The decompression can also be speed up by
GPU as the VQ compression is designed to support the
pixel random access. Each thread deals with the code-
word searching of a block, and transforms the pixels in
the block from YCrCb mode back to RGB mode. From
Table 4 and 5, we can see that the compression time and

decompression time is much decreased using GPU as
assistant.

TABLE IV. COMPARISON OF COMPRESSION TIME (IN MILLISECOND)

Image size CPU-only GPU-assistant
512*512 2756 1859

1024*1024 18327 16000
2048*2048 269906 253328
4096*4096 3477436 3369781

TABLE V. COMPARISON OF DECOMPRESSION TIME (IN
MILLISECOND)

Code book size CPU-only GPU-assistant
About 800 9.478 0.8751
About 1200 9.0625 0.8691
About 1800 9.0452 0.8673

As shown in Table 4, the compression still needs
long processing time when image size is large, even with
the help of GPU. The reason is partly caused by the work
on the code-words’ optimizing. The other reason is that
VQ is computationally expensive when the vectors are
long. That is why split VQ is used by many studies to
handle large images.

Ⅴ. CONCLUSIONS

We have proposed a self-adaptive HVS-optimized
texture compression algorithm. The main contributions of
this work are: (1) the similarity measurement function
and threshold constructed automatically can fit different
and various resolution images; (2) the self-adaptive

Copyright © 2010 MECS I.J. Image, Graphics and Signal Processing, 2010, 1, 46-52

52 Adaptive Remote Sensing Texture Compression on GPU

threshold adjustment works well remote sensing textures
with large regional difference; (3) GPU is used to speed
up the compression and decompression process.

However, the code word searching time is still very
long if very large image is handled. It can be deal with by
carefully chosen tree-structured codebook and good
searching algorithms. Our future work will focus on
cutting down the code word searching time.

ACKNOWLEDGMENT

Thanks to the support by the Major State Basic
Research Development Program of China (973 Program)
(No. 2009CB723803)

REFERENCES

[1] K. Roimela, T. Aarnio and J. Itäranta, “Efficient high
dynamic range texture compression,” in Proc. of the 2008
symposium on Interactive 3D graphics and games,
Redwood city, California, 2008, pp. 207-214.

[2] J. Wang, T. T. Wong, P. A. Heng, and C. S. Leung,
“Discrete wavelet transform on GPU,” in Proc. ACM
Workshop General-Purpose Computing on Graphics
Processors, 2004. pp. C–41.

[3] H. Jiao, G. Chen, “A color image fractal compression
coding method,” Journal of Software, vol. 14(4), pp. 864-
868, 2003.

[4] A. C. Beers, M..Agrawala, N. Chaddha, “Rendering from
compressed textures,” in Proc. of ACM SIGGRAPH, New
Orleans, Louisiana, 1996, pp. 373-378.

[5] Y. Tang, H. X. Zhang, M. Y. Zhang, “GPU-based texture
encoding and real-time rendering,” Chinese Journal of
Computers, vol. 30(2), pp. 272-280, 2007.

[6] C. Zhao, W. Chen, L. Zhang, “A compression algorithm of
hyper spectral remote sensing image based on vector
quantization,” Journal of Harbin Engineering University,
vol. 27(3), pp. 843-848, 2006.

[7] A. P. Berg, and W. B. Mikhael, “A survey of mixed
transform techniques for speech and image coding, ” in
Proc. of the IEEE International Symposium on Circuits and
Systems(ISCAS ’99), 1999, vol. 4, pp. 106-109.

[8] I. Heynderickx, E. Langendijk, “Image-quality comparison
of PDPs, LCDs, CRTs and LCoS projection displays,” In
Proc. of SID, Boston, 2005, pp. 1502-1505.

[9] Toet A., Van Ruyven L. J., Valeton J. M. 1989. Merging
Thermal and Visual Images by a Contrast Pyramid. Optical
Engineering, 28, 7(Jul.), 789-792.

[10] Wang Y. 2009. http://baike.bbioo.com/doc-view-414.htm
[11] Z. Wang, A. C. Bovik, “Mean Squared Error: Love it or

leave it?,” IEEE Signal Processing Magazine, vol. 26, (1),
pp. 98-117, 2009.

[12] “NASA Terra satellite remote sensing image,”
http://modis.gsfc.nasa.gov/galiery. 2009, Feb.

[13] “QuickBird satellite remote sensing image,”
http://www.digitalglobe.com/. 2004.

[14] Yu Y. D., Kang D. S., Kim D. 1999. Color image
compression based on vector quantization using PCA and
LEBLD. In Proceedings of the IEEE Region 10
Conference(TENCON 99), Cheju island, South Korea, 2,
1259-1262.

[15] NVDIA CUDA Programming Guide.
http://www.nvidia.com/object/cuda_develop.html, 2007.

Xiao-xia Lu Xiao-xia Lu was born in
Changsha, China in 1977. She received M.S.
degree of computer science in National
University of Defense technology in 2005 and
is pursuing Ph. D in there. The research areas
include virtual reality and computer graphics.

Si-kun Li is the professor of NUDT and guider of Ph. D

candidate. The research areas include EDA, SOC design
methodologies, virtual prototype and distributed virtual reality.

Copyright © 2010 MECS I.J. Image, Graphics and Signal Processing, 2010, 1, 46-52

	I. Introduction
	Ⅱ. Related works
	 Ⅲ. Adaptive HVS-optimized vector quantizer
	A. Adaptive similarity measurement function
	B. Adaptive threshold value setting
	C. Index coding
	D. Compression Steps
	 Ⅳ. Experiments and analysis

	A. The effectiveness of similarity measurement function and threshold value setting
	B. Performance of the compression process
	Ⅴ. Conclusions
	Acknowledgment
	References

