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Abstract—Cluster synchronization is investigated in 
different complex dynamical networks. Based on an 
extended Kuramoto model, a novel approach is proposed to 
make a complex dynamical network achieve cluster 
synchronization, where the critical coupling strength 
between connected may be obtained by global adaptive 
approach and local adaptive approach, respectively. The 
former approach only need know each node’s state and its 
destination state; while the latter approach need know the 
local information. Simulation results show the effectiveness 
of the distributed control strategy.  
 
Index Terms—cluster synchronization, global approach, 
local approach, Kuramoto model 
 

I. INTRODUCTION 

Kuramoto model and its extensions are widely used in 
the research of phase synchronization [1-7]. In the 
Kuramoto model, all phase oscillators are coupled, in 
addition all the edge strength are equal; however, its 
extensions have more general network topology and edge 
strength [1-2]. For more details, refer the review paper [1] 
and its references. Phase synchronization of two typical 
network topologies: small world network and scale-free 
network are investigated in [3-5]. However, in these 
works, the edge strength is symmetrical. By introducing 
nonsymmetrical coupled edge strength, Li found for a 
random network topology, the network has same critical 
coupling strength as the classical Kuramoto model [6].  
During the formation of phase synchronization, people 
find that the oscillators always first form several 
synchronized clusters, then as the coupling strength 
increases, the whole oscillators reach synchronization [7-
8]. This drives Belykh et al. to the existence and stability 
of these synchronized clusters [9]. In these networks, the 
coupling strength can not be tuned. However, for some 
purposes, the tunable coupling strength is necessary. For 
example, when a crowd of robots rescue several wounded 
persons in the fire, the robots must be divided into several 
groups in order to save time, the robots in the same group 
rescue one person, respectively. For the unexpected 
things happen such as one robot loses a sensor, the 
coupling strength between robots must be adjusted timely. 

Recently, adaptive method is applied to investigate the 
synchronization of complex networks [10-15]. When the 
isolated node’s dynamics is chaotic oscillator, Kurths et 
al. proposed time-varying adaptive coupling strength, 
which depends on global information in the network [10]. 
Furthermore, Lellis et al. and Lu supposed time-varying 
adaptive coupling strength based on the local information 
in the network, respectively [12-14]. When the isolated 
node’s dynamics is Kuramoto oscillator, Ren and Zhao 
designated an adaptive law based on the local information 
in the network [15]. These adaptive laws are only applied 
to complete synchronization and phase synchronization. 
This propels us to design the adaptive strategy applied to 
cluster synchronization. 

In this paper, a novel distributed control strategy is 
proposed to make the network achieve cluster 
synchronization. Two adaptive approaches are used to 
obtain the critical coupling strength between nodes. In the 
former approach, the edge strength between nodes is 
assumed to be equal, and adjusts according to each 
node’s state and its destination; while in the latter 
approach, the edge strength is different, and adjust only 
with local information. When the underlying network is 
classical BA scale-free network, WS small-world 
network and a friendship network, the effectiveness of the 
distributed strategy and two adaptive approaches are 
verified by simulation results.   

II.  ADAPTIVE APPOACH OF KURAMOTO MODEL 

Consider an extend Kuramoto model of  coupled 
phased identical nodes, the evolution of the dynamical 
variable is written as follows: 

N
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where iω  is natural frequencies distributed with a given 
probability density.  is a control input added to each 

node. When the control input  equals zero, (1) 

( )iu t

( )iu t
reduces to the classical extend Kuramoto model 
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Compared to the global adaptive approach, the local 
approach only need know the states of t  he relate nodes

 there is only and their destinations. Obviously, if one 
group in the network, then for random node i  and node 
j ,  i js s=  Furthermore, equation (5) becomes  
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where three group size  and are 24, 38 and 

38, respectively. The n itial p are randomly 

1N , 

odes’ 

2N

in

3N  

hases 

distributed in [0, 2π ] and e ial ed trengths are set 

to zero.  

Figure 1 sho s that cluster synchronization in 

Kuramoto

 th init ge s

w

 oscillators, where the underlying network is  

BA scale-free network. The distributed controller (4) is 

added to each node, and the edge strength is adjusted 

according to (5) with the adaptive gain 0.1β = . As can 

be seen from Fig. 1(a), for 2.4t s> , 24 dashed lines 

reduce to one dashed line, 38 dotted lin o one 

dotted line, and the rest 38 so educe to one solid 

line. This implies that the network reaches the desired 

cluster synchronization.  

e reduces t

lid lines r
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It is easy to find that in Fig. 1(b) that the edge strength 

 keeps constant for . Combined with Fig. 

1(a), it is found that the network reaches cluster 

synchronization for , which implies that the left 

side of (5) is zero.  In other words, the edge strength will 

not increase any more in theory, which is consistent with 

the simulation result in Fig.1. 
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(b) 

Fig. 1 Cluster synchronization in the Kuramoto 

oscillators, where the underlying network is BA scale-

free network without noise and the global adaptive gain 

0.1β = .  (a) ( )i tθ  (b)edge strengths . ( )w t

   It is known that the noise is often encountered in many 

real world complex networks. Therefore, the effect of 

noise on the global adaptive approach is important. The 

network used in Fig.2 is the same as that used in Fig.1. 

An independent noise iαψ

s

 is added to the variable of (1) 

respectively at 3t = in Fig. 2, where the amplitude of 

the noise α  is 2; iψ  randomly satisfies the normal 

Gaussian distribution .  (0,N 1)

As shown in Fig.2(a), the network reaches cluster 

synchronization again for . At the same time, 

the coupling strength between nodes increases to 1.224. 

Therefore, the global adaptive approach is robust to noise. 

Compared to the results in Fig.1, it is easy to find that the 

network reaches cluster synchronization after a short time. 
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(b) 

Fig. 2 Cluster synchronization in the Kuramoto 

oscillators, where the underlying network is BA scale-

free network with noise and the global adaptive gain 

0.1β = .  (a) ( )i tθ  (b)edge strengths . ( )w t
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B  Local adaptive approach in BA scale-free network 

In Fig.3, the same network as that in Fig.1 is used, 

where the local adaptive approach (6) and the distributed 

controller (4) are added to each node. As can be seen 

from Fig. 3(a), for , 24 dashed lines reduce to 

one dashed line, 38 dotted lines reduce to one dotted line, 

and the rest 38 solid lines reduce to one solid line. This 

also implies that the network reaches the desired cluster 

synchronization. As we know from Fig.1, the network 

adopted the global adaptive approach reaches cluster 

synchronization for , which is much lower than  

the 9.5s in Fig.3. Therefore, the same network adopted 

local adaptive approach has longer transient time than 

that adopted global adaptive approach. 
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                        (b) 

Fig. 3 Cluster synchronization in the Kuramoto 

oscillators, where the underlying network is BA scale-

free network without noise and the local adaptive gain  

0.1β = .  (a) ( )i tθ  (b)edge strengths . ( )ijw t

Fig. 3(b) shows the variation of all the edge strength 

between node i  and node ijw j  keeps constant for 

. Combined with Fig. 3(a), it is easy to find that 

the network reaches cluster synchronization for ,  

which implies that the left side of (6) will be zero. 

Therefore, the edge strength will not change any longer. 

As shown in Fig.3(a), most edge strengths are lower than 

0.15. As shown in Fig.1(b), when the network adopts the 

global adaptive strength, the same network achieves 

cluster synchronization for the edge strength equals to 

1.073. This means that many unnecessary edge strengths 

are wasted if the edge strengths do not change with the 

local adaptive strategy. However, the local adaptive 

approach must know the local information at each time, 

which leads that the cost is bigger than that of global 

adaptive approach. 
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the variable of (1) respectively at in Fig. 4. As 

shown in Fig.4(a), the network again reaches cluster 

synchronization  for 
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                                     (b) 

Fig. 4 Cluster synchronization in the Kuramoto 

oscillators, where the underlying network is BA scale-

free network with noise and the local adaptive 

gain 0.1β = .  (a) ( )i tθ  (b)edge strengths . ( )ijw t

 

C  Global adaptive approach in WS small-world network  

A WS small-world network is constructed, where the 
average degree 2k=10, the rewiring probability is 

and the network size is  [17]. The 
whole nodes of the investigated network are randomly 
divided into two groups, which means 

0.2p = 80N =

2M = . The 
desired state  of node i  at time t  is chosen as the 
average of the nodes’ states in the same group:  
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where two group size  and  are 14 and 66, 

respectively. The nodes’ initial phases are randomly 

distributed in [0,

1N 2N

2π ] and the initial edge strengths are set 

to zero.  

   Fig.5 shows that the cluster synchronization in 

Kuramoto oscillators, where the underlying network is 

the typical WS small-world. The distributed controller (4) 

is added to each node, and the edge strength is adjusted 

according to the global adaptive appoach (5) with the 

adaptive gain 0.1β = .  

As shown in Fig. 5(a), for , 14 dashed lines 

reduce to one dashed line, 66 dotted line reduces to one 

dotted line. This implies that the network reaches the 

desired cluster synchronization for .  

3.8t >

>

s

3.8t s
It is easy to find that in Fig. 5(b) that the edge strength 

 keeps constant to be 0.909 for . 

Combined with Fig. 1(a), it is found that the network 

reaches cluster synchronization for , which 

means that the left side of (5) is zero. Therefore, the edge 

strength does not increase any more in theory, which is 

consistent with the simulation result in Fig.5. 
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                                              (b) 

Fig. 5 Cluster synchronization in the Kuramoto 

oscillators, where the underlying network is WS small-

world network without noise and the global adaptive gain 

0.1β = .  (a) ( )i tθ  (b)edge strengths . ( )w t
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An independent noise iαψ

s

 is added to the variable of 

(1) respectively at in Fig. 6, where the amplitude 

of the noise 

3t =

α  is 4; iψ  randomly satisfies the normal 

Gaussian distribution .  (0,1)N

As shown in Fig.6(a), the network reaches cluster 

synchronization again for . At the same time, the 

coupling strength between nodes increases to 1.187.  

Therefore, the global adaptive approach is robust to noise, 

when the underlying network is WS small-world network. 
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                               (b) 

Fig. 6 Cluster synchronization in the Kuramoto 

oscillators, where the underlying network is WS small-

world network with noise and the global adaptive gain 

0.1β = .  (a) ( )i tθ  (b)edge strengths . ( )w t

D  Local adaptive approach in WS small-world network  

In Fig.7, the same network as that in Fig.5 is used, where 

the local adaptive approach (6) and the distributed 

controller (4) are added to each node. As can be seen 

from Fig. 3(a), for , 14 dashed lines reduce to 

one dashed line, 66 dotted lines reduce to one dotted line. 

This also implies that the network reaches the desired 

cluster synchronization. As we know from Fig.5, the 

network adopted the global adaptive approach reaches 

cluster synchronization for , which is much lower 

than  the 10s in Fig.5. Therefore, the same network 

adopted local adaptive approach has longer transient time 

than that adopted global adaptive approach.  
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Fig. 7 Cluster synchronization in the Kuramoto 

oscillators, where the underlying network is WS small-

world network without noise and the local adaptive gain 

0.1β = .  (a) ( )i tθ  (b)edge strengths . ( )w t
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Fig. 7(b) shows the variation of all the edge strength 

between node i  and node ijw j  keeps constant for 

. Combined with Fig. 7(a), it is easy to find that 

the network reaches cluster synchronization for ,  

which implies that the left side of (6) will be zero. 

Therefore, the edge strength will not change any longer.      

As shown in Fig.7(a), all the edge strengths are lower 

than 0.25, which is much lower than the corresponding 

strength 0.909.  

10t > s
s

s

9.5t >

A same independent noise as that in Fig.6 is added to 

the variable of (1) respectively at in Fig. 8. As 

shown in Fig.8, the network again reaches cluster 

synchronization  for . 
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(b) 

Fig. 8 Cluster synchronization in the Kuramoto 

oscillators, where the underlying network is WS small-

world network with noise and the local adaptive gain 

0.1β = .  (a) ( )i tθ  (b)edge strengths . ( )w t

 

E  Adaptive approach in a friendship network 

A friendship network between karate club members is 
shown in Fig. 9. The network was concluded from the 
real data collected by Zachary, over a 2-year period of 
observations [18], which has 34 nodes and 78 edges. It is 
easy to find that the network has two groups of size 16 
and 18, which are represented by circles and squares, 
respectively. 

 
Fig.9 The friendship network between members in 

karate club [18] 

 Without loss of generality, the order of the nodes is 
realigned so that the first group has Node 1 to 16 and the 
second group has Node 17 to 34. The desired state  
of node i  at time t  is chosen as the average of the nodes’ 
states in the same group:  

( )is t
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where two group size  and  are 16 and 18, 

respectively.  

1N 2N

Fig. 10 shows that when the edge strength is adjusted 

according to the global adaptive approach (5) and the 

global adaptive gain is 0.1, the network achieves cluster 

synchronization for .  7.8t s>
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                                            (b) 

Fig. 10 Cluster synchronization in the Kuramoto 

oscillators, where the underlying network is the network 

shown in Fig.9 and the global adaptive gain 0.1β = .  (a) 

( )i tθ  (b)edge strengths . ( )w t

    Fig. 11 shows that when the edge strength is adjusted 

according to the local adaptive approach (6) and the local 

adaptive gain is 0.1, the network achieves cluster 

synchronization for .  18t s>
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                                     (b) 

Fig. 11 Cluster synchronization in the Kuramoto 

oscillators, where the underlying network is the network 

shown in Fig.9 and the local adaptive gain 0.1β = .  (a) 

( )i tθ  (b)edge strengths . ( )w t

 

4. Conclusions 

A novel approach to make a coupled phase oscillators 
achieve cluster synchronization was proposed. In this 
approach, the input controller added to each node is based 
on itself and its neighbors’ destination. In addition, the 
edge strength between connected nodes was adjusted by 
global adaptive approach and local adaptive approach, 
respectively. The global adaptive approach used each 
node’s state and its destination; while the local approach 
uses only local information of related nodes. By two 
classical network topologies and a real friendship 
network, the effectiveness was confirmed by numerical 
simulation. This strategy can be extended to other 
complex dynamical networks with nonlinear dynamics 
and will be helpful to comprehend the underlying 
mechanism of complex dynamical network.  
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