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Abstract: Automatic Recognition of Diseased Cotton Plant and Leaves (ARDCPL) using Deep Learning (DL) carries a 

greater significance in agricultural research. The cotton plant and leaves are severely infected by a disease named 

Bacterial Blight-affected by bacterium, Xanthomonas axonopodis pv. Malvacearum and a new rolling leaf disease 

affected by an unorthodox leaf roll dwarf virus. Existing research in ARDCPL requires various complicated image 

preprocessing, feature extraction approaches and cannot ensure higher accuracy in their detection rates. This work 

suggests a Deep Convolutional Neural Network (CNN) based DCPLD-CNN model that achieves a higher accuracy by 

leveraging the DL models ability to extract features from images automatically. Due to the enormous success of 

numerous pre-trained architectures regarding several image classification task, this study also explores eight CNN based 

pre-trained architectures: DenseNet121, NasNetLarge, VGG16, VGG19, ResNet50, InceptionV3, InceptionResNetV2, 

and Xception models by Fine-Tuning them using Transfer Learning (TL) to recognize diseased cotton plant and leaves. 

This study utilizes those pre-trained architectures by adding extra dense layers in the last layers of those models. Several 

Image Data Augmentation (IDA) methods were used to expand the training data to increase the model's generalization 

capability and reduce overfitting. The proposed DCPLD-CNN model achieves an accuracy of 98.77% in recognizing 

disease in cotton plant and leaves. The customized DenseNet121 model achieved the highest accuracy of 98.60% 

amongst all the pre-trained architectures. The proposed method's feasibility and practicality were exhibited by several 

simulated experimental results for this classification task.   

 

Index Terms: Cotton Plant Leaf Disease Recognition, Deep Learning, CNN, Transfer Learning, Image Data 

Augmentation. 
 

 

1. Introduction 

Cotton, often known as the ―silver fiber,‖ is among the essential fiber crops used as raw resources in the clothing 

manufacturing industry. While the garment sector of Bangladesh is growing each day, it requires a tremendous amount 

of imported cotton since the amount of cotton produced internally is relatively low compared to the demand of the ever-

growing textile industry in Bangladesh, costing a significant amount of foreign currency. However, the cotton leaf and 

plant face many challenges regarding numerous diseases such as Bacterial Blight, Root Knot Nematode, Fusarium Wilt, 

Root Rot, Verticillum Wilt, and recently a new disease called rolling-leaf-hampering its growth, and the conventional 

technique that is now embraced is that an expert crop pathologist can diagnose the disease by optical inspection of 

infected plants [1], incorporating a substantial amount of complexity regarding time, money and effective solution. 

The emergence of Deep Learning (DL) and Computer Vision (CV) has unlocked the way to automatically detect 

crop plant disease through its exceptional feature extracting power and complex computational capacity. Embedding a 

DL model in a simplified graphical user interface-based mobile application enables farmers with even little educational 

knowledge to detect infected cotton plant and leaves without an expert crop pathologist's aid. Before the surge of DL 

approaches, researchers mostly used image processing techniques and conventional Machine Learning (ML) models to 

identify infected plants or leaves, see for reference, [2–7]. The biggest challenge for these models is manually extracting 

a substantial degree of required features for the classification task. DL methods solve this problem due to their 

automatic feature extraction aptitude from raw representations of input data during training the model using CNN.  

Using Transfer Learning (TL), we can train our DL model to achieve greater accuracy. TL is an advancement of 

unearthing in a novel job by carrying intelligence from a similar task that was previously grasped [8]. It is reusing a pre-

trained architecture on a novel problem on hand. Transfer learning is typically performed for tasks where the dataset 

does not have enough data to train a full-scale DL model from scratch. Fine-tuning the final neural network layers of a 
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pre-trained model to a relatively new set of data has been the popular choice of tools for scholars worldwide. 

Researchers who used TL and publicly available plant disease dataset like Plant Village [9] include [10–13].  

However, the shortage of proper real-life plant image dataset of various kinds is an issue. One of the significant 

ways to increase the quantity of the dataset is to use Image Data Augmentation (IDA) [14]. The Supervised DL models' 

predictability mainly depends on the quantity and diversity of data available during training. Some of the typical IDA 

techniques are Flipping, Scaling, Rotation, Translation, Cropping, Padding, Brightness, Contrast, Saturation, Hue, 

Gaussian Noise, and Generative Adversarial Networks (GAN) [15]. This study adopts some of these IDA techniques to 

increase the no. of image quantity to train the models. 

Manually inspecting plants for disease recognition and diagnosis is tedious, laborious, expensive, and to some 

extent, subjective. Swift developments of DL-based technology have facilitated significant feats in detecting plant 

disease in recent years. For this reason, researchers worldwide are adopting DL approaches as an alternative method for 

detecting disease in numerous plants. This study aims to solve the automatic recognition of newly discovered rolling-

leaf disease as well as bacterial blight disease of cotton leaves and plants using a stack deep CNN model. A comparative 

analysis of eight successful pre-trained architectures through customization of final layers was also evaluated to test 

these models' suitability regarding diseased cotton plant and leaves recognition.  

2. Related Work 

A substantial percentage of works have been conducted on problems with plant disease recognition. The expansion 

of Image Processing (IP), Computer Vision (CV), ML, and DL opened the door for automated recognition of the 

diseased plant due to their extensive feature processing performance. There has not been extensive research on specific 

disease recognition in cotton plant and leaves using ML and DL methods. One reason is the lack of a cotton plant-

specific dataset. For this study, the literature review is conducted in two ways: ML-based and DL-based methods used 

in detecting diseases in plant and leaves. 

2.1 Machine Learning (ML) based Methods 

Researchers worldwide have produced several accomplishments in the identification and prevention of plant 

diseases through ML technology. Some of the existing study and research mechanisms have been formulated as follows. 

Cheng et al. [16] presented a feature-based method that differentiates weeds from rice plants. They have extracted 

the features like the leaf tips and rice ear using the Harris Corner Algorithm, then applied ML algorithms for the 

classification. Decision Tree performed best with a precision of 98.2% and recall of 97.7%. 

Patil et al. [17] proposed a Support Vector Machine (SVM)-based cotton leaf spot detection model. Acquired 

images were segmented, and color and shape features were extracted from the segmented portion before feeding these 

to the SVM classifier. 

Shah and Jain [18] proposed an Artificial Neural Network (ANN)-based approach to detect diseased cotton leaves. 

Image segmentation was performed using hue saturation value and RGB components of the diseased images. 

Al-Tarawneh et al. [19] proposed olive disease detection and severity rating mechanism based on clustering 

algorithm of K-Means (KMC) and Fuzzy C-Means (FCM) algorithm. They have preprocessed the images using 

polygon cropping and applied grayscale representation to define the masked polygon region. The true acceptance rate 

obtained with these methods was 66% for KMC and 86% for FCM. 

Adeel et al. [20] recommended a model for dissection and identification of grape leaf diseases by using the popular 

Plant Village dataset. They have recommended a low contrast haze reduction scheme reducing noise and enhancing the 

diseased region, following a segmentation method for detecting the disease. Their SVM based method achieved 94.1% 

accuracy after Neighborhood Component Analysis based feature reduction.  

Zhang et al. [21] demonstrated a sparse depiction classification centered cucumber disease detection from its plant 

leaf. Their proposed method consists of three parts. At first, they have segmented the diseased leaf images by means of 

the k-means clustering system,  secondly from the lesion information, they have extracted the color and shape features 

of those plants; finally, they have classified the diseased leaf from the fresh ones using sparse representation. Their 

sparse representation-based method achieved the best recognition rate of 91.25% for gray mold disease. For other types 

of diseases, the recognition rate varies from 82.36% to 88.43%.  

Plant diseases can be identified and categorized by examining the color, shape, and texture from the images of 

diseased or infected leaves, see references [22–24]. Ashourloo et al. [25] in their investigation used spectral vegetation 

guides and numerous regression techniques to identify rust disease of wheat leaves. They have used the SVR, and PLSR, 

and Gaussian Process Regression-GPR algorithms for detecting rust in wheat leaf and compared performance among 

them. 

Sahoo et al. [26] proposed an image-based study of twelve different leaves to identify existing dead spots. They 

used various image segmentation procedures for the task, including gradient, magnitude, hue saturation value, grey 

threshold, and salient feature-based analysis using K-means. The diseases were classified after the images were 

segmented based on a predefined color spectrum.    
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Using SVM along with spectral crop sequences related to physiological parameters, Rumpf et al. [27] proposed an 

early disease recognition mechanism of sugar beet leaf. A summary of the reviewed ML and Image Processing based 

diseased plant leaf recognition system is presented in Table 1. 

Table 1. Studies using ML techniques for plant and leaf disease recognition. 

Ref. Machine Learning Algorithm Feature Selection Dataset Evaluation Metric 

[16] Decision Tree, SVM, Naïve Bayes Color, and Surface Self-Collected 
98.2%-Precision 

97.7%-Recall 

[17] SVM Color, Shape 

Not mentioned 

Not mentioned 

[18] ANN Color Relative Error = 0.051. 

[19] K-means, Fuzzy C-means None 66% and 86% 

[20] SVM 
Color, Surface, and Geometric 

features 
Plant Village 94.1%-Accuracy 

[21] K-means Color 

Self-Collected 

91.25%-Accuracy 

[22] Classification Tree Color, Shape, and Surface 97%-Accuracy 

[23] K-means Color, and Surface 94%-Precision 

[24] K-means Color 84%-Accuracy 

[25] SVR, GPR, PLSR Color, Surface, and Shape 
Co-efficient of 

determination R2 = 0.98 

[26] K-means Color Not mentioned 

[27] SVM Spectral Vegetation guides 97%-Accuracy 

2.2 Deep Learning (DL) based Methods 

The automatic feature extraction techniques of DL methods have become further operative for classification, 

segmentation, and detection-related tasks regarding images. Out of many methods, CNN is the most preferred choice of 

researchers to carry out those tasks for plant disease recognition and categorization. Some of the existing research and 

research mechanisms in plant disease detection based on DL have been formulated as follows. 

Combining dilated convolution and global pooling, Zhang et al. [28], suggested a cucumber leaf disease 

recognition model. Their study's significant influences are reducing the training parameter, replacing fully connected 

layers of conventional CNN model with global pooling mechanism to escalate the receptive area of convolution without 

dropping feature details. The accuracy obtained was 94.75%. 

Uğuz et al. [29] presented a CNN based olive leaf disease recognition. They have also used pre-trained VGG16 

and VGG19 transfer learning models for the study. A comparative summary was also presented on the model‘s 

accuracy with and without IDA, where IDA based model yields better results with a precision value of 95%.  

Barbedo et al. [30] proposed a DL method that focuses on the spots and individual lesions for plant disease 

recognition instead of considering the whole plant leaf. They have used a diverse dataset for this task used 1567 images 

covering eighty-nine diseases affecting fourteen plant species. They have used the pre-trained GoogLeNet architecture 

with ten-fold cross-validation for this study and accomplished a state of the art accuracy ranging from 75% to 98%. 

Many researchers [27–29] have used the Plant Village dataset for their work and applied CNN and TL methods 

like LeNet, AlexNet, and GoogLeNet architecture.  

Wu et al. [34] explored three transfer learning methods, ResNet, AlexNet, and GoogLeNet architecture, to detect 

diseases in soybean leaves. They have performed a comparative study of those methods' performance using batch of 

different sizes and the various no. of epochs. Among them, ResNet achieved the maximum accuracy of 94.29%.  

A CNN-based rice disease recognition system was suggested by Lu et al. [35]. They have learned the features 

using sparse auto -encoding, and by applying stochastic pooling and convolution, they have made the classification of 

ten rice disease types from a reduced dataset and got a detection rate of 95%.  

Kawasaki et al. [36] presented a novel CNN-based cucumber leaf disease recognition method. They have used a 4-

fold cross-validation approach and got an avg. accuracy of 92.5% in the free aspects ratio and 94.9% in the constant 

aspects ratio dataset.  

Jenifa et al. [37] presented a CNN-based model to identify diseased cotton leaf. They have identified four types of 

cotton leaf disease using a small dataset of only 500 training images and 100 testing images. They have used a four-

layer CNN model without mentioning any information regarding strides, padding, polling, or normalization. With such 

a low amount of images for training without IDA brings the question of overfitting of the model. A summary of the 

reviewed DL based plant disease recognition system is presented in Table 2. 
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Table 2. Studies using DL techniques for plant and leaf disease recognition. 

Ref. DL Framework Transfer Learning Architecture Dataset IDA Accuracy 

[28] 

CNN 

 

AlexNet 

Self-Collected 

Yes 94.75% 

[29] VGG16, VGG19 Yes 95% 

[30] GoogLeNet No 75%-98% 

[31] LeNet 

Plant Village 

No 92%-98% 

[32] AlexNet, GoogLeNet No 99% 

[33] AlexNet, GoogLeNet No 99% 

[34] ResNet, AlexNet, GoogLeNet 

Self-Collected 

Yes 94.29% 

[35] None No 95% 

[36] None No 94.9% 

[37] None No 96% 

 

In this paper, a Deep CNN based DCPLD-CNN model is projected to detect the diseased cotton plant and leaves 

from the scratch. The study also analyzes the performance of eight individual pre-trained models: VGG16, VGG19, 

Xception, ResNet50, NasNetLarge, InceptionV3, InceptionResNetV2, and DenseNet121 by customizing them in the 

final layer using TL. To the best of the author‘s knowledge, all these models were not previously implemented together 

by customization, and performances were not evaluated to detect cotton plant and leaf disease in a single research paper.  

3. Materials and Methods  

3.1 Study Outline 

This study utilizes the CNN architecture for the task. The key benefit of CNN is that it recognizes critical features 

without human intervention. Since CNN has features such as sharing of parameters as well as dimensionality reduction, 

the key idea is that what it learns in one part of the image will be expedient in a different part of the image. The 

computing power needed in CNN is reduced due to the reduction in dimensionality. Those automatically extracted 

features using techniques such as pooling, strides and padding of CNN are then trained along with augmented image 

data to build the model for detecting diseased cotton plants and leaves. The methodology is presented visually in Fig. 1. 

 

 

Fig. 1. Proposed methodology of the study. 

3.2 Dataset  

The dataset used in this study has been collected from [38]. The dataset contains 1951 training images and 324 test 

images belonging to four classes: Diseased Cotton Leaves, Diseased Cotton Plants, Fresh Cotton Leaves, and Fresh 

Cotton Plants, see Fig. 2. The diseased plant and leaves are affected with Bacterial Blight-infected by bacterium, 

Xanthomonas axonopodis pv. Malvacearum and a new rolling leaf disease affected by an unorthodox leaf roll dwarf 

virus. Since the training images quantity is relatively low, IDA was performed to increase the quantity so that the 



 Leveraging Convolutional Neural Network and Transfer Learning for Cotton Plant and Leaf Disease Recognition  

Volume 13 (2021), Issue 4                                                                                                                                                                        51

proposed Deep CNN model faces diversity during the classification task as well as expands its generalization capacity 

and reduce overfitting.  

 

    

    

(a) (b) (c) (d) 

Fig. 2. (a) Diseased cotton leaf, (b) Diseased cotton plant (c) Fresh cotton leaf (d) Fresh cotton plant, from the used dataset. 

3.3 Image Data Augmentation (IDA) 

Using IDA, we create disparities and deviations in the existing training images to increase the images' quantity for 

the experiment. Two significant IDA variables that affect DL techniques' performance are the augmentation method and 

augmentation rate [39]. For a small dataset, IDA increases the no. of images necessary for the proper training of the 

CNN model.  For this study, flipping, rotation, shifting, scaling, shearing, and zooming augmentation techniques were 

applied during training the models. Augmentation parameters along with values used in this experiment is provided in 

Table 3. 

Table 3. IDA techniques used in this study. 

Augmented parameter Description Range of Values 

Scaling The image is adjusted to the given dimension, e.g., an image width can be 

halved or doubled. 

[-0.2 to 0.2] 

Shearing Sliding the image in vertical or horizontal direction with a given degree. [-0.2 to 0.2] 

Horizontal Flipping Flipping of the image in left, right direction. True 

Shifting Shifting allows the objects position in the image to be changed. [-0.2 to 0.2] 

Rotating The image is rotated in a defined degree. [-20 to 20] 

Zooming Arbitrarily zooms images. [0.8 to 1.2] 

3.4 Transfer Learning (TL) of Pre-Trained Architectures 

For this study, eight pre-trained models were used using TL techniques and fine-tuned in the last layer for a 

comparative analysis of evaluated performance in cotton leaf plant disease recognition task. Existing literature in 

recognition of the disease in cotton leaves used conventional ML techniques. Since the dataset used in this study is not 

very large, training could be affected by overfitting. Those pre-trained architectures were used because of their learning 

through a larger dataset of images. As a result, more features are extracted through this process. TL is a strategy in 

which the model utilizes learned information during the training of a significantly larger dataset and uses it to train a 

model with a relatively small number of datasets since plant disease dataset collection in the agricultural field is a time-

consuming process due to many reasons. 

All the pre-trained architectures' layers are non-trainable except the last layer, whose weights can be updated 

during training. We can add our custom layers instead of that last layer for more parameters of training. This study 

modifies all eight TL-based pre-trained architectures and added custom layers on top of non-trainable layers to train the 

fine-tuned model. Eight pre-trained deep CNN models namely, VGG16, VGG19 [40], InceptionResNetV2 [41], 

NasNetLarge[42], InceptionV3 [43], Xception [44], ResNet50 [45], and DenseNet121 [46] were explored in this work. 

A comparative summary is presented in Table 4. Customization of these pre-trained model‘s was done by training only 

the last layer of those models. A Fully Connected (FC) layer of 512 artificial neurons were added on top of the non-

trainable layers, then another FC layer of 128 artificial neurons, followed by another FC layer of 64 artificial neurons 

and finally the output layer with four artificial neurons, representing four classes namely, Diseased Cotton Leaves, 

Diseased Cotton Plants, Fresh Cotton Leaves, and Fresh Cotton Plants, after flattening (i.e. conversion of data into one 

dimensional array of feature vector for feeding the FC layer for elucidation). Doing this, features that the eight 

architectures learned during acquiring identification of object features and patterns belonging to thousands of multiple 
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categories have been retained. Those features and pre-trained weights are then applied to detect cotton plant and leaf 

disease in the final layers by customizing the architectures. Those pre-trained models are rarely implemented in 

diseased cotton plant and leaves recognition. Hence, this study tries to experiment with those models and their 

competence is this task is analyzed. A rudimentary overview of the customization of eight pre-trained architecture‘s is 

depicted in Fig. 3. 

 

 

 

Fig. 3. Rudimentary overview of the training of customized pre-trained architectures. 

Table 4. A comparative synopsis of eight pre-trained architectures utilized in this study. 

Pre-Trained Architectures # Parameters Top Five 

Accuracy* 

Top Five 

Error rate 

Depth Major Contribution Year 

NasNetLarge 88.9 Million 96% - - Allows transferability by designing a 

novel search span. 

2018 

VGG16 138.3 Million 90.01% 7.33% 23 Architectural simplicity with increased 

testing accuracy compared to previous 

models. 

2014 
VGG19 143.6 Million 90.0% 7.31% 26 

Xception 22.9 Million 94.5% 0.05% 126 It is a linear pile of depth-wise 

differentiable layers of convolution with 

residual association making it a flexible 

architecture to modify. 

2017 

InceptionV3 23.8 Million 94.1% 3.5% 159 Manages the issue of the 

representational constraint, Balances 

out the network, Able to represent 

higher dimensional attributes.  

2015 

InceptionResNetV2 55.8 Million 95.3% 3.52% 572 A hybrid form of Inception model. Uses 

split transformation combine concept 

with residual association. 

2017 

ResNet50 25.6 Million 92.1% 3.57% 50 Learns only residual information of 

each layers for detection task. Reduced 

complexity. 

2015 

DenseNet121 8 Million 92.3% 5.19% 121 Reduced the vanishing gradient 

problem and no. of parameters. 

2017 

*Top 5 Accuracy states the architecture‘s performance during validation on ImageNet dataset [47] and depth determines the model's topologic depth. 

3.5 Experimental Setup 

A 16 GB RAM laptop with Intel Core i7-8750 CPU consisting of eight cores clocking at 2.20 GHz and running an 

NVIDIA GeForce GTX 1050-Ti graphics were used for the experiments in this study. The PC was running Windows 10 

using Anaconda Python and the TensorFlow and Keras deep learning framework. 

3.6 Proposed DCPLD-CNN Architecture 

A stack five-convolution layer-based CNN model with MaxPooling in each convolution layer followed by dense 

layers of unit 512, 128, 64 artificial neurons and the final output dense layer with unit 4 artificial neurons is suggested in 

this paper from scratch. This is a stack CNN centered method for Diseased Cotton Plant Leaf Detection (DCPLD-CNN), 

without any transfer learning techniques. The architecture and input and output shape of each Convolution, MaxPooling, 

and FC layers are depicted in Table 5. The arrangement of DCPLD-CNN model is presented in Fig. 4.  
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Fig. 4. DCPLD-CNN Model Architecture. 

Model Parameters: 

Kernel size = 3; Strides = (1, 1); padding = ‗SAME‘; Input Image Shape = (224, 244, 3); MaxPooling pool size = 

(2,2); The batch size =32;  Activation function = ‗Relu‘ (i.e. in all the convolutional as well as dense layers apart from 

the final layer); Output layer‘s Activation function = ‗softmax‘; Optimizer = ‗Adam‘; Learning rate = 0.0001. To lessen 

the overfitting, Dropout value of 0.10 was used in the convolutional layers and at a level of 0.30 in every dense layer.  

Table 5. DCPLD-CNN Network Architecture with filter size, shape of the output tensor, and no. of trainable parameters. 

Type of Layers Filter Output Shape # Parameters 

Convolution_Layer_1 16 (None, 222, 222, 16) 448 

Max_Pooling_Layer_1 16 (None, 111, 111, 16) 0 

Convolution_Layer_2 32 (None, 111, 111, 32) 4640 

Max_Pooling_Layer_2 32 (None, 55, 55, 32) 0 

Convolution_Layer_3 64 (None, 55, 55, 64) 18496 

Max_Pooling_Layer_3 64 (None, 27, 27, 64) 0 

Convolution_Layer_4 128 (None, 27, 27, 128) 73856 

Max_Pooling_Layer_4 128 (None, 13, 13, 128) 0 

Convolution_Layer_5 256 (None, 13, 13, 256) 295168 

Max_Pooling_Layer_5 256 (None, 6, 6, 256) 0 

Dense_Layer_1 512 (None,512) 4719104 

Dense_Layer_2 128 (None,128) 65664 

Dense_Layer_3 64 (None,64) 8256 

Dense_Layer_4 4 (None,4) 260 

Total parameters: 5,185,892 

4. Results 

In this segment, an evaluation based on this study's findings of the proposed DCPLD-CNN model and eight 

custom TL-based pre-trained models for the diseased cotton plant and leaf recognition is presented. For this study's 

comparative analysis, the dataset was trained using batch sizes of 32 and 64, for 100 iterations for every customized 

pre-trained model-based architecture. For the proposed built from scratch DCPLD-CNN model's performance 

evaluation, training was done for 100 and 500 iterations for two batch sizes of 32 and 64. In Table 6, a comprehensive 

summary of this study's outcome is presented. For DCPLD-CNN model a state of the art validation accuracy of 98.77% 

was achieved for 500 iterations and 88.89% for 100 iterations with 32 batch size. The validation accuracy and loss 

curve for 100 and 500 iterations of the DCPLD-CNN model is presented in Fig. 5-8. The validation accuracy curve of 

all eight customized pre-trained models for 100 iterations with a 32 batch size is presented in Fig. 9-12. 

 

  
(a) Loss metric curve –DCPLD-CNN-100 iterations-32 batch size (b) Accuracy metric curve – DCPLD-CNN-100 iterations-32 batch size 

Fig. 5. (a) Loss metric curve and (b) Accuracy metric curve of the proposed DCPLD-CNN Architecture. Batch Size=32, Iterations =100. 
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(a) Loss metric curve –DCPLD-CNN-500 iterations-32 batch size (b) Accuracy metric curve – DCPLD-CNN-500 iterations-32 batch size 

Fig. 6. (a) Loss metric curve and (b) Accuracy metric curve of the proposed DCPLD-CNN Architecture. Batch Size=32, Iterations =500. 

  
(a) Loss metric curve –DCPLD-CNN-100 iterations -64 batch size (b) Accuracy metric curve – DCPLD-CNN-100 iterations -64 batch size 

 

Fig. 7. (a) Loss metric curve and (b) Accuracy metric curve of the proposed DCPLD-CNN Architecture. Batch Size=64, Iterations =100. 

  

(a) Loss metric curve –DCPLD-CNN-500 iterations -64 batch size (b) Accuracy metric curve – DCPLD-CNN-500 iterations -64 batch size 

Fig. 8. (a) Loss metric curve and (b) Accuracy metric curve of the proposed DCPLD-CNN Architecture. Batch Size=64, Iterations =500. 

  
(a) Accuracy metric curve-Custom-DenseNet121 (b) Accuracy metric curve-Custom-VGG19-CNN 

Fig. 9. (a) Loss metric curve and (b) Accuracy metric curve of the Custom-DenseNet121-CNN and Custom-VGG19-CNN Architecture. Iterations 

=100.
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(a) Accuracy metric curve-Custom-VGG16-CNN (b) Accuracy metric curve-Custom-InceptionResNetV2-CNN 

Fig. 10. (a) Loss metric curve and (b) Accuracy metric curve of the VGG16-CNN and Custom--InceptionResNetV2-CNN Architecture. Iterations 

=100. 

  
(a) Accuracy metric curve-Custom-ResNet50-CNN (b) Accuracy metric curve-Custom-InceptionV3-CNN 

Fig. 11. (a) Loss metric curve and (b) Accuracy metric curve of the ResNet50-CNN and Custom—InceptionV3-CNN Architecture. Iterations =100. 

  
(a) Accuracy metric curve-Custom-Xception-CNN (b) Accuracy metric curve-Custom-NasNetLarge-CNN 

Fig. 12. (a) Loss metric curve and (b) Accuracy metric curve of the ResNet50-CNN and Custom—InceptionV3-CNN Architecture. Iterations =100.   

A Confusion Matrix (CM) is an analytical method that illustrates how correctly a model has identified the various 

classification labels and is used during the classification task's performance assessment. A CM is a summary of the 

prediction findings for a classification problem; see Fig. 13. The CM for the DCPLD-CNN model is presented in Fig. 

14-15, and CM of the eight customized pre-trained architectures are presented in Fig. 16-23, which demonstrates each 

class's classification accuracy distribution. 

 

 

Fig. 13. Structure of a Confusion Matrix (CM). Here, TP = prediction of true-positive occurrences, TN = prediction of true-negative occurrences, FP 

= prediction of false-positive occurrences, and FN = prediction of false-negative occurrences.  
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TP+TN
ACCURACY=

TP+TN+FN+FN

                                                                 (1) 

 

TP
PRECISION=

FP+TP

                                                                            (2) 

 

TP
RECALL=

TP+FN

                                                                                (3) 

 

2*PRECISION*RECALL
F-MEASURE=

PRECISION+RECALL

                                                        (4) 

 

Using the abovementioned evaluation metrics presented through Equations (1)-(4), the models evaluation 

performance was calculated. The ratio of the correct segment of the test outcomes is called precision. The recall is the 

proportion of positive inspections aptly predicted to all supervision in the correct classes. To assess the model's overall 

performance, the F1 score was provided. 
 

 

Fig. 14. Class-wise Confusion Matrix of DCPLD-CNN for 32 batch size and 500 iterations of training 

 

Fig. 15. Class-wise Confusion Matrix of DCPLD-CNN for 64 batch size and 500 iterations of training 

 

Fig. 16. Class-wise Confusion Matrix of Custom-DenseNet121-CNN Architecture. 
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Fig. 17. Class-wise Confusion Matrix of Custom-NasNetLarge-CNN Architecture. 

 

Fig. 18. Class-wise Confusion Matrix of Custom-Xception-CNN Architecture. 

 

Fig. 19. Class-wise Confusion Matrix of Custom-InceptionV3-CNN Architecture. 

 

Fig. 20. Class-wise Confusion Matrix of Custom-ResNet50-CNN Architecture 
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Fig. 21. Class-wise Confusion Matrix of Custom-InceptionResNetV2-CNN Architecture 

 

Fig. 22. Class-wise Confusion Matrix of Custom-VGG16 -CNN Architecture 

 

Fig. 23. Class-wise Confusion Matrix of Custom-VGG19 -CNN Architecture 

Table 6. Summary of the performed experiments performance in diseased cotton plant and leaf recognition in this study. 

Proposed Model 
Evaluation Metric Training  

Accuracy Precision Recall F1-Score Epochs Batch Size 

DCPLD-CNN 

88.89% 0.8627 0.886 0.874 100 32 

98.77% 0.9824 0.980 0.981 500 32 

86.42% 0.8456 0.799 0.821 100 64 

94.94% 0.9557 0.955 0.955 500 64 

Custom-DenseNet121 
98.60% 0.9886 0.988 0.988 

100 

 

32 

98.46% 0.9858 0.985 0.985 64 

Custom-NasNetLarge 
96.60% 0.9689 0.932 0.950 32 

94.44% 0.9178 0.910 0.913 64 

Custom-Xception 
94.48% 0.9448 0.924 0.934 32 

94.75% 0.9451 0.942 0.935 64 

Custom-InceptionV3 
90.02% 0.8810 0.912 0.896 32 

94.75% 0.9466 0.951 0.948 64 
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Custom-ResNet50 
80.86% 0.8028 0.816 0.809  32 

75.93% 0.7277 0.752 0.739 64 

Custom-

InceptionResNetV2 

94.44% 0.9444 0.942 0.943 32 

95.37% 0.9521 0.953 0.952 64 

Custom-VGG16 
96.30% 0.9535 0.952 0.952 32 

98.15% 0.9803 0.986 0.983 64 

Custom-VGG19 
92.59% 0.9289 0.927 0.928 32 

93.21% 0.9388 0.934 0.967 64 

5. Performance Comparison of the Study 

This paper provides a meticulous study of implementing the CNN-based cotton leaf and plant disease recognition 

model. In the previous literature, there is a shortage of extensive study of utilizing CNN for this task. To the best of the 

author‘s knowledge no study was done previously regarding diseased cotton plant, leaves recognition using stack CNN 

and eight pre-trained architecture along with IDA. In Table 7, a comparative analysis is presented between this work 

and other existing studies. 

Table 7. Comparison of this study with other existing study regrading diseased cotton plants leaves recognition (✓: Performed, x: Did Not Perform). 

Ref. Model IDA TL Accuracy 

[17] SVM    x    x Not mentioned 

[18] ANN    x    x Relative Error = 0.051. 

[37] CNN    x    x 96% 

This Study 
DCPLD-CNN     98.77% 

Pre-Trained     98.60% 

6. Discussion 

In this paper, a novel Deep-CNN based architecture named DCPLD-CNN and eight pre-trained customized Deep 

CNN architecture was evaluated based on numerous experiments in diseased cotton leaf and plant recognition. IDA was 

implemented to expand the number of samples during training the DCPLD-CNN and eight customized pre-trained 

models. It is perceived that the DCPLD-CNN method accomplished better as the no. of iterations during training 

increased. A batch size of 32 performed better than a batch size of 64 in DCPLD-CNN model. The experiment's 

outcome indicates that, amongst the eight customized pre-trained models, DenseNet121, NasNetLarge, Xception, 

InceptionResNetV2, VGG16, VGG19, and InceptionV3 were extraordinary. However, the ResNet50 did not perform 

better as the Top 5 accuracies suggest in this recognition task. An accuracy chart is provided in Fig. 24. The 

experimented models' results show that CNN can be effectively used in cotton leaf and plant disease recognition tasks. 

The DCPLD-CNN model achieves an accuracy of 98.77%, which is a more significant and improved number compared 

to previous literature, which used conventional ML algorithms and various image preprocessing techniques. Fine-tuned 

Pre-trained architectures also show tremendous accuracy in this task, making them a significant choice for disease 

detection in the agricultural sector regarding plants and leaves. 

There are numerous future research guidelines. Recognition of sternness of the disease can be classified. To do that, 

we need to expand the diseased crop dataset. There is a shortage of sufficient datasets in this field to attain a more 

robust and accurate outcome. More datasets with labeled cotton specific diseases and real environmental background 

are needed to deploy a DL based model for more vigorous detection disease types in cotton plant. Region-based 

segmentation of disease in cotton plants and leaves is another option for applying DL methodology. More extensive and 

cross-disciplinary exploration is essential to apprehend the dynamics influencing the recognition of plant diseases, such 

as the categories, volume of datasets, rate of learning, accurate depth of design architecture, lighting, state of the disease, 

etc. 
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Fig. 24. Accuracy of the experimented models in this study. 

7. Conclusion 

Deep Learning's revolution has created a surge in many practical applications in image classification tasks 

regarding disease recognition in various plants. Going out of the traditional manual detection and diagnosis of diseased 

cotton plants is the way to move forward now, due to robust deep learning architectures classification and detection 

precision through automatic features extraction characteristics. This study shows that DL-based models, particularly 

CNNs, achieve greater accuracy in the cotton plant and leaves disease classification. Furthermore, experiments piloted 

in this study show that the advantage of using a pre-trained model, specifically if the no. of instances being used in 

training any model, is not very significant or low in volume. In this study, a CNN based novel DCPLD-CNN method is 

presented to recognize diseased cotton plants and leaves. DCPLD-CNN method accomplished an intricate accuracy of 

98.77% with a 32 batch size and 94.94% with a batch size of 64. Eight pre-trained CNN models were also customized 

and experimented with within this study. Custom-DenseNet121 model attained the top accuracy of 98.60%, whereas all 

the other models returned great detection accuracy of over 90%. Only the Custom-ResNet50 model did not perform 

well compared to the other models based on transfer learning techniques. All the experimented methods could be 

applied to newer types of diseased plants for detection and classification even at an early stage with more real-world 

datasets and will significantly contribute to the agricultural sector of a country in a digital, fast and efficient way. In the 

future, the author aims to decrease all the models' processing and magnitude and turn it into a smartphone app that 

farmers can use to detect diseases flexibly without the need for external human supervision. The author also hopes to 

expand this model by including useful and practical recommendations and a consumer feedback module to effectively 

manage cotton plant and leaf diseases. 
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