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Abstract—Solving the Optimal power flow (OPF) 

problem is an urgent task for power system operators. It 

aims at finding the control variables’ optimal scheduling 

subjected to several operational constraints to achieve 

certain economic, technical and environmental benefits. 

The OPF problem is mathematically expressed as a 

nonlinear optimization problem with contradictory 

objectives and subordinated to both constraints of 

equality and inequality. In this work, a new hybrid 

optimization technique, that integrates the merits of 

cuckoo search (CS) optimizer, is proposed to ameliorate 

the krill herd algorithm (KHA)'s poor efficiency. The 

proposed hybrid CS-KHA has been expanded for solving 

for single and multi-objective frameworks of the OPF 

problem through 11 case studies. The studied cases 

reflect various economic, technical and environmental 

requirements. These cases involve the following 

objectives: minimization of non- smooth generating fuel 

cost with valve-point loading effects, emission reduction, 

voltage stability enhancement and voltage profile 

improvement. The CS-KHA presents krill updating (KU) 

and krill abandoning (KA) operator derived from cuckoo 

search (CS) amid the procedure when the krill updating in 

order to extraordinarily improve its adequacy and 

dependability managing OPF problem. The viability of 

these improvements is examined on IEEE 30-bus, IEEE 

57-bus and IEEE 118-bus test system. The experimental 

results prove the greatest ability of the proposed hybrid 

meta-heuristic CS-KHA compared to other famous 

methods. 

 

Index Terms—Cuckoo search algorithm (CS); krill herd 

algorithm (KHA); optimal power flow (OPF); voltage 

stability (VS); valve-point effect; emission reduction. 
 

I.  INTRODUCTION 

The problem of optimal power flow (OPF) is 

significated considerable attention in recent years and has 

based its position among the main tools for the operation 

and planning of recent power systems. OPF is a non-

linear programming problem. The major objective is to 

find the correct adjustment of its control variables that 

optimize specific objective functions/functions while 

sufficient the operational constraints of equality and 

inequality at specified loading settings and defined 

system parameters [1-3]. 

The OPF has been applied to regulate the production of 

real powers, generators terminal voltages, setting of 

transformer taps, shunt reactors/capacitors and other 

control variables to improve the power system 

requirements by minimizing the production fuel costs, 

reducing the network active power losses, enhance the 

voltage stability and voltage profile at load buses. The 

previous requirements are achieved while all operational 

requirements are preserved within the accepted operation 

limitations as The voltages of load bus, the reactive 

power products of the generator, the network's power 

flows and whole other state variables in the power system 

within their assure and operational bounds. 

In its most popular formulation, the OPF is static, a 

non-convex, wide-ranging optimization problem with 

both discontinuous and continuous control variables. 

Even in operating cost functions’ absence of non-convex 

generators, prohibited operating zones (POZ) of 

generating units and discontinuous control variables, the 

OPF problem is a non-convex because of the presence of 

non-linear alternating current power flow equality 

constraints. The existence of discontinuous control 

variables, like transformer tap positions, phase shifters, 

switchable shunt devices, added more difficulty the 

formulation and solution of the problem. 

The methods were evolving to solve OPF problem can 

be categorized into two types conventional and advanced 

optimization techniques. The traditional optimization 

techniques were used derivatives and gradient operators. 

These techniques are usually not capable to find or 

determine the global optimal. Several mathematical 

suppositions like analytic, convex and differential 

objective functions must be made to simplicity the 

problem. Nevertheless, the OPF's problem is a problem of 

optimization non-convex and non-smooth objective 

function in general. As a result, it is significant to evolve 

optimization methods that are effective in dominating 

these disadvantages and to treat this hardness effectively. 

The computational materials’ evolution in recent decades 

has motivated to the development of advanced 

optimization methods that were so-called meta-heuristics. 
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These techniques can dominate many disadvantages of 

conventional techniques [4]. Several of these recent 

techniques have been applied to solve the OPF problem 

like: Simulated Annealing (SA) [5], Genetic Algorithm 

(GA) [6,7], Differential Evolution (DE) [8], Tabu Search 

(TS) [9], Imperialist Competitive Algorithm (ICA) [10],  

Particle Swarm Optimization (PSO) [11], adaptive real 

coded biogeography-based optimization (ARCBBO)[12],  

Biogeography Based Optimization (BBO) [13,14], multi-

phase search algorithm [15], Gbest guided artificial bee 

colony algorithm(Gbest-ABC) [16], Gravitational Search 

Algorithm (GSA) [17] , Artificial Bee Colony (ABC) 

[18], Multi-objective Grey Wolf Optimizer 

(MOGWO)[19], black-hole-based optimization (BHBO) 

[20], Teaching Learning based Optimization (TLBO) [21], 

Sine-Cosine Optimization algorithm (SCOA) [22], Group 

Search Optimization (GSO) [23], hybrid algorithm of 

particle swarm optimizer with grey wolves(PSO-GWO) 

[24], quasi-oppositional teaching–learning based 

optimization [31]have been incorporated into it. 

Meanwhile, many state-of-the-art meta-heuristic 

techniques, like Improved Colliding Bodies Optimization 

(ICBO) [32], Moth Swarm Algorithm (MSA) [33], Moth-

Flame Optimization (MFO) [34], cuckoo search [35], 

firefly algorithm [36] and Backtracking Search 

Optimization Algorithm (BSA) [37] Surveys of different 

meta-heuristics used to solve the problem of OPF are 

offered in[25] The applications of these methods on 

different size systems lead to competitive results and 

therefore were favorable and encouraging for more study 

in this trend. Furthermore, because of the objectives’ 

contrast where various functions can be envisaged for 

modeling the OPF problem, of course not technique can 

be seen as the preferable in solving whole OPF problems. 

Hence, it is constantly needed to have a novel technique 

that can successfully solve several of the OPF problems. 

Optimization is turning a area of request to analysts, 

particularly since a framework's the competence depends 

on obtaining an arrangement an order that can be 

acquired through suitable optimization technique. It is a 

method in order to discover the perfect solution next 

assessing the cost function that denotes the association 

among the system framework and its limitations. 

Presently, meta-heuristic algorithms are being formed in 

many regions for example crossbreeding, multi-objective 

type, binary type, preparing multi-layer perceptron and 

ways as Lévy flight, operator, and chaos theory. Most of 

these improvements happened because the deterministic 

and evolutionary components are used [23]. A perfect 

incorporation of global and local search has intensive 

local exploration and global exploration [25]. 

Krill herd method (KH) first suggested by Gandomi 

and Alavi in 2012 [26] and because it performs well, 

many optimization strategies such as chaotic theory [27, 

28, 36], Flower Pollination Algorithm (FPA) [29] and 

colonial competitive differential evolution (CCDE)[30] 

have been hybridized with the fundamental KH algorithm 

as mutation operator with the objective of further 

enhancing the performance of KHA. Furthermore, to 

make KHA perform in the most ideal way, a parametric 

study has been conducted through an array of standard 

benchmark functions [38]. 

Furthermore, KHA is a new population-build swarm 

computation [26] in view of the Lagrangian and 

revolutionary conduct of krill people in wildlife for 

utilization and investigation in a problem of optimization. 

KH computation occasionally is not able to must avoid 

local optimum [27] and [28]. 

Firstly, as portrayed here, a successful hybrid Meta 

heuristic cuckoo search krill herd (CS-KHA) technique in 

light of KHA and CS is initially suggested to accelerate 

convergence. In CSKH, we use an essential KHA to 

select an encouraging solution set. Consequently, krill 

updating (KU) and krill abandoning (KA) operator started 

from CS algorithm are added to the method. The KU 

operator is to a decent encouraging arrangement; while 

KA operator is made use of further improving the 

investigation of the CS-KHA to substitute the worse 

krill's a small amount at the finale of every generation. 

The performance of this approach is utilized to keep 

away from local optimum and obtain a worldwide ideal 

solution, in addition, minimal computational time to 

achieve the ideal solution, local minimum evasion, and 

quicker convergence, which produce them suitable for 

viable implementations for solving various constrained 

optimization problems. The purpose of this article is to 

develop an improved KHA called CS-KHA to solve OPF 

problem. So as to proven the evolution of the CS-KHA, 

its efficiencies are compared to CS, KHA and other well-

known optimization methods. 

The rest of article is structured in the next form: The 

following segment outlines the formulation of the OPF 

problem; meanwhile, section 3 depicts the algebraic 

equation of CS-KHA. Section 4 shows the simulation's 

results and discussion. While the finally conclusion of 

this paper is in section 5. 

 

II.  FORMULATION OF OPTIMAL POWER FLOW (OPF) 

The problem of OPF aims at finding the control 

variables’ optimal setting through minimizing 

/maximizing a predefined objective function while a 

collection of equality and inequality constraints satisfied. 

OPF considering the system's operating limit, hence it 

can be defined like a non-linear constrained optimization 

problem. 

 

Minimize:  ,f x u                           (1) 

 

Subject to: 

 

 

 

, 0

, 0

h x u

g x u




                            

(2) 

 

Where, 𝑢 is the independent variable or control's vector, 

is the dependent variables or state's vector.  Objective 

functions of OPF, g(𝑥, 𝑢): set of inequality constraints, 

ℎ(𝑥, 𝑢): set of equality constraints. 
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A. Control variables 

The vector of power network control variables is 

expressed as follows [37]: 

 

2 1 1 1, , ,
NG NG NCG G G G C C NTu P P V V Q Q T T      

   (3) 

 

Where, 
iGP  is the 𝑖-th active power bus generator. 

Chosen from bus 1 as swing bus is represented just and 

any one of the generator buses can be swing bus. 
iGV   is 

the voltage magnitude at 𝑖-th voltage controlled generator 

bus, 𝑇𝑗 is the 𝑗-th branch transformer tap, 𝑄𝐶𝑘 is the 

shunt compensation at 𝑘-th bus. 𝑁𝐺, 𝑁𝐶 and are the 

generators’ number, transformers and shunt VAR 

compensators. Any value within its range can be assumed 

as a control variable. Practically, transformer taps are not 

constant. Be that as it may, the tap settings indicated are 

in p.u. and outright voltage's estimation is not represented. 

Subsequently, for the aim of this study and to compare 

with previously described results, all control variables 

including tap settings are viewed constant for general 

cases of study. 

B. State (dependent) variables 

The power system's state variables can be expressed 

through vector 𝑥 as: 

 

1 1 1 1
, ... , ... , ...

NL NG nlG L L G G l lx P V V Q Q S S   
   (4) 

 

where, 
1GP  is the active power of generator at slack bus, 

iGQ  is the generator's reactive power linked to bus 𝑖, is 

the 𝑝-th load bus's bus voltage (PQ bus) and 𝑞-th line's 

line loading of is specified by. 𝑁𝐿 and 𝑛𝑙 are the load 

buses’ number and lines of transmission respectively[40]. 

C. Power System Constraints  

As aforesaid earlier, the problem of OPF presents both 

operational constraints on equality and inequality. These 

constraints are defined as follows: 

C.1.  Equality constraints  

In OPF, the reactive and real power equilibrium 

equations are represented the system constraints of 

equality are formulated as for all system buses: 

 

   
1

cos sin 0
i i

NB

G D i j ij ij ij ij

j

P P V V G B 


    
     (5) 

 

    
1

sin cos 0
i i

NB

G D i j ij ij ij ij

j

Q Q V V G B 


    
     (6) 

 

Where,  
ij i j    is the voltage angles among bus 

𝑖 and bus 𝑗, NB is the buses’ number, 
DiQ  and  

DiP  are 

reactive and real load demands. 
ijG  is the transfer 

conductance and 
ijB  is the susceptance among bus 𝑖 and 

bus 𝑗, respectively. 

C.2.  Inequality constraints 

The inequality's constraint in the OPF reflects the 

equipment's operating limit in the power system, and too 

reflects the limitation of the line and the load bus to 

ensure the safety of the system. 

a) Generator constraints:        

 

 
min max

i i iG G GV V V i NG                   (7) 

 
min max

i i iG G GP P P i NG                    (8) 

 
min max

i i iG G GQ Q Q i NG                    (9) 

 

b) Transformer constraints:       

 

 min max

j j jT T T j NT                  (10) 

 

c) Shunt compensator constraints: 

 
min max

k k kC C CQ Q Q k NC                    (11) 

 

d) Security constraints:  

 
min max

p p pL L LV V V p NL                     (12) 

 
max

q ql lS S q nl                      (13) 

 

The control variables in constraints of inequality are 

self-limiting. The technique of optimization chooses a 

viable value for every like variable within the determined 

scope. Efficient methods for dealing with constraints of 

inequality related to dependent or state variables. 

 

III.  SUGGESTED HYBRID TECHNIQUE 

A. KH technique 

The KH technique is built on the natural inspiration of 

conduct krill individuals’ imitation in the krill population. 

The KH technique is motivated by krill activities like [26]: 

1/The movement of other krill individuals is induced; 

2/Food search activity; 3/random scattering. The 

optimization technique has the ability to search for an 

uncertain search space. 

• Lagrangian model is extended to an n-dimensional 

decision space: 

 

k
k k k

dX
N F D

dt
                   (14) 
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Where 
kN the movement is stimulated by other 

members of the krill; 
kF  is the feeding movement and 

kD is the physical diffusion of the kth krill. 

The movement stimulated expresses the conservation 

of density through every individual. The matimatical 

formula reflects this conduct, which is worded as follows: 

 
maxnext present

k k d kN N N  
          (15) 

 
arglocal t et

k k k   
                      (16) 

 

Wherein maxN  is the highest stimulated velocity,
 d  

indicates the inertia weight in [0, 1],
 

Ancient

kN  is the 

preceding movement local

k  and ett

k

arg  indicate the 

local effect of the neighbor, which is the best solution of 

the kth individual. 
ett

k

arg  is formulated by the following 

equations: 

 

arg
, ,

t et best
k best k bestk C K X

 

            (17) 

 

1

max

2best I
C r

I

 
  

 

                      (18) 

 

where,
bestC  is the krill individual's effective coefficient 

with the preferable fitness for the first kth krill, 
worstkK ,

ˆ   

and 
bestkK ,

ˆ are the worst and preferable krill's fitness 

value so far;  is a random values’ number among 0 and 1. 

It is used to improve exploration, I is the current 

iterations’ number, and maxI  is the iterations’ maximum 

number. 

Foraging activities/movements are mathematically 

calculated as follows: 

The foraging action consists of two major parameters. 

Premier is the position of the food
next

kF , followed by the 

preceding experiment
k  around the position of the food. 

 
next previous

k f k f kF V F                  (19) 

 
food best

k k k                            (20) 

 

Where, fV  is the foraging speed, f  is the foraging 

motion's inertia weight in the field [0, 1], 
previous

kF  is the 

final foraging movement, food

k  is the food attractive 

and 
best

k  is the preferable fitness's effect of each krill. 

Depending on the foraging speed's measured values, take 

as 0.02 (
1ms 

 ). 

 

 

max

kD D                                (21) 

 

max

max

1k

I
D D

I


 
  

 

                    (22) 

 

Wherein, maxD  is the highest induction velocity,   is 

the random direction vector [0, 1]. 

Lastly, the location of each krill is updated to: 

 

 next current

k k kX X x t                    (23) 

 

       k k kx t N t F t D t              (24) 

 

Where, t is the krill’s position. 

B. Cuckoo search 

Through optimizing the conduct of some cuckoo 

species, CS is suggested that is swarm intelligence's a 

type technique for optimization problems. In CS, Lévy 

flights are consolidated that decides the cuckoo's walking 

steps. For simplicity in portraying CS, Yang and Deb 

adopted some of the idealized rules. For instance, every 

cuckoo is just relating to one egg; the preferable nests 

would be preserved and not be obliterated; the possible 

host nest number is unchangeable, and an egg is 

recognized through the host bird with a possibility. In CS, 

every egg in a nest shows a solution. The CS is to take 

use of the recently created better solutions in place of a 

moderately poor solution. In this research, we just looked 

at every nest that merely had an egg. Thus, in this 

research, the difference between the nest egg and solution 

was not identified. The CS technique can make a good 

harmony between a local arbitrary walk and the irregular 

global exploratory walk using a switching parameter. The 

former one can be represented as 

 

   1t t t t

i i s a j kX X H p X X       
 
 (25) 

 

Where t

jX  and t

kX are two various solutions choice 

at random, H(u) is function of a Heaviside , ε is a number 

of random drawn from a regular distribution, and sis the 

step size. For the global random walk, it is combined with 

Lévy flights as follows: 

 

   

 
 

1

01

, , ,

sin
12

, , 0

t t

i iX X L s L s

s s
s

  


 

 

   

 
  

 



    (26) 

 

Here,
 0  is the scaling factor of step size.  

C. Proposed Hybrid CS-KHA procedure 

To ameliorate the fundamental's the search capacity 

KH technique; genetic techniques are added to the 

method [26]. Numerical outcomes when contrast with 
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other methods displays that KH II (only added crossover 

operator) performed the best.  

In any case, KH can sometimes find it hard to come up 

with better solutions to several complicated problems. 

Consequently, in this article, a novel meta-heuristic 

technique by prompting KU operator and KA operator 

into KH to form a recent hybrid method, named CS-KHA 

is used to manage an OPF problem. The introduced 

KU/KA operators are roused by the authoritative CS 

algorithm. As such, in this paper, the property of cuckoo 

used in CS is supplemented to the krill to create excellent 

krill's a sort that can play out the KU/KA operator. The 

contrast amongst CSKH and KH is that the KU operator 

as a local search tool is used to adjust the new solution 

for every krill rather than rand walks used as KH's part 

(whereas in KH II, genetic generation techniques are 

employed). While KA operator is used to enhance further 

the exploration the method's ability by replacing some 

nests randomly thereby constructing new solutions. By 

the blending of CS and KH, CSKH can investigate the 

new search space with standard KH technique and KA 

operator and exploit the population information by KU 

operator. The main step of KU/KA operators used in 

CSKH method is presented by Algorithms 1 and 2, 

respectively. 

 

Algorithm 1           KU operator                  

Begin 

Get a krill i and update its solution using Lévy flights 

using Equation (25). 

  Evaluate its quality 
iF   

  Select a krill j randomly. 

 If  i jF F   

Replace j with the novel solution and take the novel 

solution as 
1iX 

 

 Else 

Update the position of krill using equation (22) as 
1iX 

 

end if 

End. 

Algorithm 2           KA operator 

1. Begin 

2.   
 , aK rand NP D p

 . 

3.   1 2;P P P P 
 

4.   For 1i  to NP  (all krill) do. 

5.      
 * ;i istep rand Y Z 

 

6.   
 ,: ;new iX X step K i 

   

7.  End for 

8.  For 1i  to NP  (all krill) do. 

9.    If 
   new iF X F X

then 

10. 
   ;new i new iX X F X F X 

. 

11.   End if 

12. End for 

13.end 

Firstly in the proposed method, standard KHA uses 

three movements to look for the best solutions and 

engage these movements to lead the candidate solutions 

for the following generation. In this, KU operator is then 

employed to carry out local search intensively to achieve 

better solutions. This operator can since it abuses the 

search space by Lévy flight. Towards the end of each 

generation, the KA operator is employed to additionally 

ameliorate the CS-KHA's the exploration by replacing the 

worse krill's a fraction (pa) .Along these lines, this 

component used in CS-KHA can completely extend the 

strong the KHA's exploration and gain overcome the 

absence of the KHA's weak exploitation . Above all, this 

technique can additional unwind the inconsistency among 

exploration and exploitation effectively. Furthermore, 

another basic change is the presentation of elitism scheme 

into the CSKH. Likewise, with other population-based 

methodologies, we employ a further focused elitism 

technique to hold the preferable solutions for the 

population. That elitism system forbids the preferable 

krill from existence demolished through three movements 

and KU/KA operator. By joining previously mentioned 

KU/KA operator and concentrated elitism design into 

unique KH technique to form a new CSKH algorithm 

(see Algorithm 3). 

 

Algorithm 3           CSKH algorithm 

Begin 

  Step 1: Initialization. Set the t =1,the population       

 P, max, ,fV D and 
maxN , ap  and KEEP . 

  Step 2: Fitness evaluation. 

  Step 3: While t MaxGeneration do. 

  Sort the population. 

  Store the KEEP best krill.  

  for 1: Pi N  (all krill) do 

  Perform the three motions. 

 Update the krill position by CU operator 

 (see  Algorithm 1). 

  Evaluate each krill by
1iX 

. 

  end for i 

 Destroy the worse krill and build new ones by  

 CA operator (see Algorithm 2). 

 Replace the KEEP worst krill with the KEEP best krill. 

Sort the population. 

 1t t  . 

 Step 4: end while 

 End. 

 

IV.  OBJECTIVE FUNCTIONS AND STUDIED CASES 

A few contextual investigations with unique and multi-

objective have been made for networks IEEE 30-bus, 

IEEE 57-bus and IEEE 118-bus test systems. The 

essential characteristics of this networks exam system are 

given in [33].  

A.  IEEE 30 Bus system results 
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A.1.Studied Cases 

A total of 8 studies of cases were implementing in the 

first exam system (IEEE 30-bus exam system). The first 

two cases studies reduced OPF's single objective function. 

The rest is multi-objective optimization, which translates 

into a single target with a weighting factor, as in 

numerous past studies and recreated here. The definitions 

of the studied cases are expressed as follows: 

Case 1: fuel cost's minimization 

This is the fundamental OPF's objective function in all 

studies. The relationship among fuel cost ($/h) and power 

generation Power (MW) is generally offered by two 

relationships, so the target function to be is reported as: 

 

  2

1

,
i i

NG

i i G i G

i

f x u a b P c P


               (27) 

 

Where 
ia  , 

ib , 
ic  are the 𝑖-th generator's cost 

coefficients generating produce power. IEEE 30-bus 

system generators’ cost coefficients can be seen in [39]. 

Case 2: fuel cost's minimization taking into account valve 

point effect 

The impact of the valve point should be taken into 

account for further practical and exact fuel cost function's 

modeling. The generating units with multi-valve steam 

turbines display a more prominent variety in the fuel-cost 

functions [32]. The valve loading multi-valve steam 

turbines’ impact is modeled as function of sinusoidal, 

which's the absolute value is added to the fundamental 

cost function. The steam plant's actual cost curve function 

becomes non-continuous. The aim of reducing fuel cost 

of generating with valve-point effect is presented by [40]: 

 

    2 min

1

( , ) sin
i i i i

NG

i i G i G i i G G

i

f x u a b P c P d e P P


       (28) 

 

Where, 
id and 

ie  are the coefficients that show the 

valve-point loading effect. The factors applied for 

calculations are given in [37]. 

Case 3: Fuel cost's minimization and voltage stability 

enhancement 

Voltage dependability issues are accepting developing 

consideration in power systems as network breakdown 

have been experienced in last because of instability of 

voltage. Under normal condition and in the wakw of 

being subjected to unsettling influence, the power 

system's steadiness is portrayed through its capacity to 

keep up whole bus voltages in suitable boundaries. A 

system goes into voltage instability's a condition when an 

unsettling influence, augmentation in load demand or 

variation in system term causes a dynamic and wild 

abatement in voltage[14]. Systems with long lines of 

transmission and overwhelming loading are further 

inclined to the problem of voltage instability. In power 

system, a system's enhancing voltage stability is a vital 

part. Each bus's 𝐿-index fills in as perfect power system 

stability's marker [42]. The index's value can be between 

0 and 1, where 0 existence the no load case whereas 1 is 

the voltage collapse. If a power system has NL load (PQ) 

buses’ number and NG generator (PV) buses’ number , 

L-index Lj's value of bus 𝑗 is can be explained as: 

 

1

1
NG

i
j ji

i j

V
L F

V

  , where 1,2,...,j NL     (29) 

and 
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Where, LLY and LGY  sub-matrices and are gotten from 

YBUS system matrix next separating load (PQ) buses and 

generator (PV) buses as shown in (29). 
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                 (30) 

 

 max max jL L  1,2.......,j NL            (31) 

 

The indicator maxL varies among 0 and 1 where the 

minimal the indicator, the further the system stable. Thus, 

enhancing voltage stability can be obtained by the 

reducing of maxL  . Hence, the objective function can be 

formulated as: 
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
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 
     (32) 

 

Where, maxL
 
is chosen weight factor's value L  is 100. 

Case 4: Fuel cost's minimization and emission 

Electrical power's generation from traditional energy's 

sources releases dangerous gases for the environment. 

The nitrogen oxides (NOx) and sulfur oxides (SOx)'s 

amount and emission in tones per hr (t/h) is higher with 

augmented in generated power (in p.u. MW) next the 

relationship presented in Eq. (33). 
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  (33) 

 

Where, 
i , 

i , 
i , 

i and 
i

  are all coefficients of 

emission provided in [41]. 

Therefore, the objective function of this case is given 

by: 
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
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The weight factors are chosen as = 100 in this case.
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Case 5: fuel cost's minimization and voltage deviation 

Deviation of voltage is voltage quality's a measure in 

the network. The deviation's index is too vital from the 

security part. The indicator is expressed as cumulative 

voltages deviation of whole load buses in the network 

from nominal unity's value. Mathematically it is 

formulated as: 

 

1

1
p

NL

L

p

VD V


 
  
 
                       (35) 

 

The combining fuel cost's objective function and 

deviation of voltage is: 
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Where, factor of weight is give a value of 100 as in 

[32,33]. 

Case 6: Fuel cost minimization and active power loss 

The power loss in system of transmission is certain 

because the lines have latent resistance. The active power 

loss to be reduced is formulated as: 

 

 2 2

1 1,

2 cos
nl nl

loss ij i j i j ij

i j j i

P G V V V V 
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A multi-objective case that aims at reducing fuel cost 

and active power loss simultaneously is transformed into 

single objective as: 
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Where, lossP  is the active power loss and factor's 

value p is selection as 40. 

Case 7: Fuel cost's minimization and voltage stability's 

enhancement 

The objective function's formulation , comprising of 

both fuel cost taking into account the valve-point effect 

and voltage stability, this case's the objective function can 

be expressed as: 
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The choice weight factor 𝜆𝐿 is too 100. 

Case 8: fuel cost's minimization, emission, voltage 

deviation and losses 

Four objectives are put together for this case study. 

Fuel cost, emission, voltage deviation and active power 

loss in the network are whole reduced together. The 

objective function is presented by: 
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The weight factors are choice as in [33] with 
E = 19,  

VD = 21 and p = 22 to balance between the objectives. 

 

V.  RESULTS AND DISCUSSION 

For optimizing's case 1 essential fuel cost, CS-KHA 

algorithms can produce to fuel costs of 799.0595 $/h 

which satisfies all the system constraints, complying to 

the vital constraints of inequality on generator reactive 

power, load bus voltage and line capacity . Amongst 

whole the constraints of inequality , constraint on load 

bus voltage was discovered to be vital as the load buses’ 

operating voltages are sometimes establish to be close the 

boundaries. Using the 3-methods (CS, KHA and CS-

KHA), recent studies recorded better results when 

compared with present study are presented in table 2. The 

valve-point effect is studied for case 2 to achieve at a rise 

in cost than in case 1 with conclusive value of 

830.0981$/h, get by CS-KHA. In a nutshell, in spite of 

the variation in efficiency is seen between three methods, 

produce one or more technique's outcome used in our 

work are better than most of the results revealed in past 

literatures on the problem of OPF are presented in table 2. 

Case 3 to case 8 are for OPF with multi-objective for 

30-bus system. In these case studies, the joined objective 

function's fitness is the significant factor in ranking the 

different optimization techniques’ outcome out. For a 

significant comparison, other techniques’ fitness value is 

calculated and provided here employing the different 

objective functions’ are weight factor. In multi-objective 

cases, an adjustment in weight factor e.g. elevated weight 

factor on fuel cost in case 3 the best values of both fuel 

cost and the system load buses’ 𝐿𝑚𝑎𝑥 , CS-KHA gives 

preferable produce of 799.5625 and 0.1251 respectively, 

superior to the other comparable algorithms as appears in 

the table 2. Two objectives of cost and emission are 

concurrently reduced in case 4. Along with the fitness 

value, CS-KHA is at the cost and emission's least values 

in compared with in compared with other techniques 

presented in table 4. 

Minimizing cost and voltage deviation (𝑉𝐷)'s in case 5, 

is achieved by CS-KHA which is the least among all 

other comparable techniques as appear in table 4. 

In case 6 will reduce the cost and power loss. Table 3 

shows’ quick review that any these techniques’ one or 

more CS, KHA and CS-KHA can give the preferable 

fitness values in whole the cases. Despite the fact that the 

preferable fitness is described by CS-KHA in case 6, a 
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transitional value fuel cost, the forming objectives’ one, 

is accomplished. The active power loss's other goal is the 

minimum when compared with other methods as appears 

in table 4. 
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Fig.1. Convergent curves of Case 1 

Table 1. The control variables’ optimal settings for Cases 1-3. 

                          Case1                         Case2                         Case3 

Control variable  CS-KHA   KHA      CS         CS-KHA   KHA       CS        CS-KHA   KHA     CS  

PG1 (MW)        177.7695  176.6985  177.0700     199.9957  199.9873  200.0000     178.3494  175.2915  178.5539  

PG2 (MW)        48.8746   48.4488   48.8674      43.0739    42.5401   43.8734      48.2403   47.5274   48.9785   

PG5 (MW)        21.0243   21.5532   21.3084      18.6343    19.1074   18.7891      20.5650   22.4648   21.3404  

PG8 (MW)        21.5808   22.6989   21.0859      10.0300    10.0177   10.0000      20.3673   22.6681   21.5868  

PG11 (MW)       10.8258   10.4866    11.8626      10.0000    10.0960   10.0000      12.7147   11.7468   10.0000  

PG13 (MW)       12.0000   12.1911    12.0000      12.0000    12.0241   12.0000      12.0000   12.3124   12.0000  

V1(p.u)          1.1000    1.1000     1.1000       1.1000     1.1000    1.1000       1.1000    1.1000    1.1000  

V2(p.u)          1.0894    1.0891     1.1000       1.0854     1.0866    1.1000       1.0892    1.0937    1.0829  

V5(p.u)          1.0634    1.0631     1.0728       1.0588     1.0583    1.1000       1.0665    1.0674    1.0513  

V8(p.u)          1.0696    1.0708     1.0796       1.0665     1.0657    1.0878       1.0742    1.0825    1.0544  

V11(p.u)         1.1000    1.1000     1.0957       1.1000     1.0985    1.1000       1.0999    1.0999    1.1000  

V13(p.u)         1.1000    1.0944     1.1000       1.0975     1.0867    1.0160       1.1000    1.0982    1.1000   

Qc10(Mvar)       0.9873    0.7887     0           1.2012     0.3180    5.0000       4.8864    1.6654    5.0000  

Qc12(Mvar)      4.2959     0.8533     0           1.9153     0.1754   5.0000       0.7211     2.2254   5.0000   

Qc15(Mvar)      3.0959     0.0015     5.0000       0.1687     0.0254    0           0.0187     0.9965 0  

Qc17(Mvar)      5.0000     3.0633     5.0000       0.0310     0.0426   5.0000       0.6251     2.9405 0  

Qc20(Mvar)      4.4733     3.4508     3.5533       5.0000     3.3646   5.0000       0.0525    0.0173    0.8864  

Qc21(Mvar)      4.4607     0.4024     5.0000       0.1385     2.6324   5.0000       0.8977    0.3830    5.0000  

Qc23(Mvar)      0.3577     1.9594     5.0000       2.1640     0.8609   5.0000       2.4613    0.1354 0   

Qc24(Mvar)      5.0000     2.3827     5.0000       5.0000     1.2249   5.0000       4.0616    3.2836    5.0000  

Qc29(Mvar)      3.4597     2.5427     5.0000       0.0572     2.9633   5.0000       0.3548    0.8722    5.0000  

T6–9                    1.0315     1.0077     0.9718       1.0763     1.0090   1.1000       0.9910    0.9888    0.9000                              

T6–10                   0.9073     1.0210     1.1000       0.9027     1.0357   1.1000       0.9055    0.9503    1.1000  

T4–12                   0.9875     1.0364     1.1000       1.0359     1.0579   0.9000       0.9696    0.9850    1.1000  

T28–27                  0.9785     0.9963     1.0194       0.9805     1.0057   1.1000       0.9417    0.9446    0.9358    

Fuel cost ($/h)   799.0595    799.4972  799.6547     830.0981  830.4199  833.5157    799.5625  799.8928  800.3034 

VD            1.7638     1.1245     1.3088       1.2223     0.8337   0.9003       1.8465    1.7461    1.4380  

 Lmax          0.1290     0.1357     0.1350       0.1342     0.1393   0.1487       0.1251    0.1253    0.1268 

Emission (ton/h)  0.3685     0.3653      0.3662      0.4425     0.4423   0.4424       0.3696    0.3608    0.3708  

Ploss (MW)      8.6750     8.6771     8.7944      10.3339    10.3726  11.2625      8.8367    8.6110    9.0596 

 

Table 2. the results obtained are compared for Cases 1-3 

        Case 1                                  Case 2                          Case 3  

Algorithms Fuel cost ($/h)   Algorithms   Fuel cost ($/h)    Algorithms     Fuel cost($/h)    Lmax  

CS-KHA        799.0595        CS-KHA     830.0981         CS-KHA      799.5625       0.1251 

KHA            799.497         KHA        830.4199         KHA         799.8928       0.1253 

 CS             799.6547        CS          833.5157         CS           800.3034      0.1268 

BHBO[20]       799.921         BSA [37]    830.7779       Gbest-ABC [16]  801.5821      0.1370  

ARCBBO [12]   800.5159       ICBO [32]    830.4531       MSA [33]       801.2248     0.13713 

BSA[37]        799.0760        CBO[32]    830.473        BSA[37]        800.3340     0.1259 

MSA[33]        800.5099        ECBO[32]   830. 587       ICBO [32]      799.3277      0.1252 

BBO[37]        799.1267        DE[37]      830.4425       MDE [33]       802.0991     0.13744 
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Table 3. the control variables’ optimal settings for Cases 4-6. 

                          Case4                           Case5                        Case6                    

Control variable   CS-KHA   KHA     CS          CS-KHA      KHA   CS         CS-KHA   KHA     CS        

PG1 (MW)        112.7779  112.9464  111.7271     176.2886  176.2432   177.5324     105.5625  105.3719  102.2213 

PG2 (MW)        59.1035   58.7161   58.4399      49.1208   48.8217    49.1973      53.9578   52.9905    56.1303 

PG5 (MW)        28.0892   28.1822   27.3951      21.3698   21.6226    21.7154      36.9416   37.0963   37.2408 

PG8 (MW)        34.9991   35.0000   35.0000      22.0531   22.1836    22.8823      35.0000   34.9767    35.0000 

PG11 (MW)        26.5804   27.1184  30.0000      12.4129   12.3589    10           29.9505   29.6778    30.0000 

PG13 (MW)        26.9020   26.6188  26.2425      12        12        12           26.3434   27.7198    27.1722 

V1(p.u)           1.1000    1.1000    1.1000       1.0387    1.0462     1.0442       1.1000    1.1000     1.1000 

V2(p.u)           1.0928    1.0924    1.1000       1.0215    1.0295     1.0278       1.0930    1.0922     1.1000 

V5(p.u)           1.0696    1.0688    1.0806       1.0092    1.0145     1.0155       1.0736    1.0695     1.0833 

V8(p.u)           1.0798    1.0800    1.1000       1.0044    1.009      1.0035       1.0824    1.0802     1.1000 

V11(p.u)          1.0992    1.0996    0.9000       1.0797    1.0241     1.0397       1.0997    1.0961     1.1000  

V13(p.u)          1.1000    1.0900    1.1000       0.9844     0.9835    0.9967       1.1000    1.1000     1.1000  

Qc10(Mvar)        1.1530    1.1760    5.0000       0         5         5            1.5790    3.5805     5.0000  

Qc12(Mvar)        3.3798    2.9034    5.0000       5         2.1588     0            3.0622    0.0852     0 

Qc15(Mvar)        5.0000    1.5069    5.0000       4.9985    5         0            0.1757    4.1400     0 

Qc17(Mvar)        3.7785    0.2768    5.0000       0        0.0767     0            5.0000    2.2509     0 

Qc20(Mvar)        4.1506    1.0711    5.0000       5         5         5            5.0000    2.5827     5.0000 

Qc21(Mvar)        1.1979    0.7196    5.0000       5         5         5            5.0000    3.6976     5.0000  

Qc23(Mvar)        0.0935    0.9665    5.0000       4.9587     0         5            2.9975    0.0588     4.2787 

Qc24(Mvar)        5.0000    0.2050    5.0000       5         5         5           5.0000     0.0048     5.0000      

Qc29(Mvar)        1.4504    0.3080    5.0000       0        1.6478     5           2.2077     0.1971     2.1814  

T6–9                      1.0603    1.0374   1.0772           1.0888    1.0403    1.0596       1.0594     1.0402     1.1000         

T6–10                     0.9000    0.9597   0.9000           0.9        0.9       0.9          0.9023     0.9182     0.9000 

T4–12                     1.0186    1.0330   1.1000           0.9451    0.9228    0.9303       0.9945     1.0196     0.9966   

T28–27                    0.9818    0.9857   1.1000           0.9487    0.9613    0.9797       0.9856     0.9767     0.9910 

Fuel cost ($/h)     835.3821  835.9164  839.0130     803.6357   803.6580  803.7306    853.1469   854.6579     857.3526   

VD              1.6529    1.1912    0.8867       0.1045     0.1117    0.1066      1.8266     1.5253     1.8731 

Lmax            0.1300    0.1342    0.1487       0.1468    0.1480    0.1490       0.1288     0.1310     0.1276 

Emission (ton/h)   0.2421    0.2422     0.2404      0.3637     0.3635    0.3677      0.2317     0.2311      0.2287 

Ploss (MW)       5.0521    5.1820     5.4047      9.8452     9.8300    9.9274      4.3558     4.4330      4.3646 

Table 4. The results obtained are compared for Cases 4-6. 

                     Case4                            Case 5                          Case 6  

Algorithms Fuel cost ($/h)  Emission (t/h)   Algorithms  Fuel cost ($/h)  VD (pu)   Algorithms  Fuel cost($/h)  Ploss(MW)  

CS-KHA      835.3821      0.2421         CS-KHA    803.6357    0.1045      CS-KHA   853.1469     4.3558 

KHA         835.9164      0.2422         KHA       803.6580   0.1117      KHA      854.6579     4.4330 

 CS           839.0130      0.2404         CS         803.7306    0.1066      CS       857.3526      4.3646 

BSA [37]     835.0199      0.2425        BHBO [20] 804.5975    0.1262     FPA [33]  859.1915     4.5404      

GA-MPC[41]  835.0420      0.2423        BSA [37]   803.4294    0.1147     MSA [33]  855.2706     4.7981 

MOGWO [19]  833.8528      0.2451        MSA[33]   803.3125   0.1084     MFO[33]   858.5812     4.5772 

NSGA-II[19]  859.849       0.3214        MFO[33]   803.7911   0.1056      

                                        FPA[33]    803.6638   0.13659     

 

Table 5. The control variables’ optimal settings for Cases 7 and 8. 

                          Case 7                                             Case 8 

Control variable   CS-KHA     KHA         CS              CS-KHA     KHA         CS          

PG1 (MW)         199.9573    200.0408    200.0001          122.7707    120.3378    121.4781 

PG2 (MW)         44.0569     40.8348     47.1590           52.2425     53.9179     51.5677    

PG5 (MW)         17.8443     18.9637     15.0000           31.2607     33.3589     30.5941 

PG8 (MW)         10.0000     11.2088     10.0000           34.9961     35.0000     35.0000  

PG11 (MW)         10.0028     10.5532     10.0000           26.4475     22.7272     30.0000  

PG13 (MW)         12.0214     12.0000     12.0000           21.1133     23.4242     20.1360 

V1(p.u)            1.1000      1.1000      1.1000            1.0999      1.1000       1.1000 

V2(p.u)            1.0906      1.0880      1.1000            1.0890      1.0879       1.0887  

V5(p.u)            1.0697      1.0665      1.0747            1.0627      1.0630       1.0636     

V8(p.u)            1.0800      1.0752      1.0837            1.0718      1.0708       1.0733 

V11(p.u)           1.0989      1.0995      1.1000            1.0560      1.0933       1.0206 

V13(p.u)           1.1000      1.1000      1.1000            1.0325      1.0357       1.0562  

Qc10(Mvar)         0          4.8665      5.0000            2.5177      0.9657       0 

Qc12(Mvar)         4.8593      0.1190       0                0.1353      2.0934       0 

Qc15(Mvar)         3.5759      3.0433       5.0000            4.8952      1.4256       0 

Qc17(Mvar)         4.6437      2.8878       0                3.2609      0.0210       5.0000 

Qc20(Mvar)         2.5235      4.7887       0                5.0000      3.0301       5.0000 

Qc21(Mvar)         0.0014      4.7253       0                0.1410      2.2403       5.0000  

Qc23(Mvar)         4.2770      4.0181       5.0000            4.7800      0.0133       0 

Qc24(Mvar)         0.2174      2.1304       5.0000            0.0437      0.4552       0 

Qc29(Mvar)         0.6333      2.9869        0               0.5568       0.8862       5.0000  

T6–9                        0.9844      1.0277       1.1000            1.0996      1.0405       1.1000  
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T6–10                       0.9000          0.9057      0.9000            0.9766      1.0636       0.9523 

T4–12                      0.9658           0.9706      0.9919            1.0791      1.0482       1.1000      

T28–27                     0.9469           0.9567      0.9472            1.0144      1.0126       1.0328   

Fuel cost ($/h)     830.5273      830.3209    831.7243          828.8532    832.1724     831.1796   

VD               1.9815       1.9553      1.7393            0.4827      0.5205       0.5015 

 Lmax             0.1248       0.1253      0.1253             0.1446      0.1440       0.1450   

Emission (ton/h)    0.4426        0.4422      0.4437             0.2537     0.2508        0.2517    

Ploss (MW)        10.4828      10.2013     10.7591            5.4308     5.3660        5.3759 

Table 6. The results obtained are compared for Cases 7 and 8. 

 
          Case 7                                            Case 8 

 Algorithms    Fuel cost($/h)  Lmax    Algorithms  Fuel cost($/h)  Ploss (MW) VD(p.u) Emission (ton/h)
 

     CS-KHA     830.5273     0.1248           CS-KHA     828.8532    5.4308     0.4827    0.2537 

      KHA       830.3209    0.1253           KHA        832.1724   5.3660     0.5205    0.2508  

       CS         831.7243     0.1253            CS          831.1796   5.3759     0.5015    0.2517 

      BSA [37]    832.7029     0.1262           FPA [33]     835.3699   5.5153     0.49969   0.24781  

                                              MSA [33]    830.639    5.6219     0.29385   0.25258  

                                              MFO[33]    830.9135   5.5971     0.33164   0.2523  

                                              MDE[33]    829.0942   6.0569     0.30347   0.2575   
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Fig.2. Convergent curves of Case 2 

Important amelioration in fuel cost seen (through CS-

KHA) in case 7's for multi-objective optimization where 

both cost considering the valve-point effect and 𝐿-max 

are minimized. Preferable to the other comparable 

algorithms as appears in table 6. 

Cost, real power loss, emission and voltage deviation 

concurrently reduced four objectives are in case 8. Along 

with the fitness value, CS-KHA is at the cost and loss's 

least values in contrast with MSA [33] and FPA [33], as 

shown in Table 6. Graphical comparison the convergence 

of three proposed techniques for Case 1 and Case 2 of the 

objective functions related to the fuel cost is shown in 

Figures 1 and 2 respectively. The convergence speeds are 

Not distinctly various between the techniques. Be that as 

it may, fast and surprising convergence is seen for both 

KHA and CS-KHA during the search process's first phase. 

KHA converges to the ideal solution more consistently. 

Two-objective cases’ convergences are given in Fig.3. 

(3.a and 3.b), Fig. 4. and Fig. 5. (5.a and 5.b). For clarity, 

only one technique's convergence achieving optimal 

fitness value is shown in the graph. 

Comparison among CS, KHA and CS- KHA 

Table 7. Shows the statistical summary of 30 runs 

using three proposed algorithm as the fundamental search 

technique for each study carried out. The columns denote 

the best, worst, average and standard deviation values of 

the objective function in every case. It is clear that no 

single technique is capable to issue the best mean values 

in whole the cases. CS-KHA is found to be superior to 

KHA and CS in all cases for 30-bus and 57-bus system. 

A.  Results of IEEE 57-bus test system 

So as to exam the usability of the suggested CS-KHA 

technique, a greater test system is take into account in this 

article, which is the IEEE 57-bus test system. 57-bus 

system's general system data are given in [43]. 

CASE 9: fuel cost minimization 

The goal of this case is to reduce the total generating 

fuel cost. Hence, this case's the objective function is 

presented by (27). The CS-KHA is implementation so as 

to get the optimal settings for this case and the gained 

results are presented in Table 8. In this case minimizing 

the fuel cost's fundamental objective produce to a value 

of 41660.2273 $/h by CS-KHA, the most minimal when 

compared with other recent studies’ substantial results as 

seen in Table 9. 

CASE 10: Fuel cost minimization and voltage deviation 

The purpose of the objective function is to reduce 

simultaneously both fuel cost and voltage deviation. The 

transformed single objective function next equation (36) 
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with weight factor 
VD is chosen as 100. The results of 

such optimization using the suggested CS-KHA 

technique are given in Table 8. This table shows that the 

VD has been decrease from (1.5991 p.u.) to (0.6940 p.u.) 

compared with CASE 9. Hence, the cost has slightly 

augmented from (41660.2273 $/h) to (41712 $/h) 

compared with CASE 9. 

B.  Results of IEEE 118-bus test system: 

CASE 11: Fuel cost minimization 

To prove performance of the suggested hybrid CS-

KHA, the large-scale IEEE 118-bus system is deliberated 

for study goal, the essential characteristics are presented 

in [43]. In general, the efficiency of the proposed 

algorithm is excellent for variables’ higher number in 

constrained optimization problems. Therefore, CS-KHA 

method is utilized to the system to decrease fuel cost. 

Hence, this case's objective function is presented by (27). 

The CS-KHA is implemented so as to get the optimal 

settings for this case and the gained results are presented 

in Table10. In this case, minimizing the fuel cost's 

fundamental objective produce to a value of 

135260.45$/h by CS-KHA, the most minimal when 

compared with other recent studies’ substantial results as 

seen in Table 11. 

 

VI.  CONCLUSION 

In present study, a new Meta hybrid heuristic CSKH 

technique has been suggested to solve the problem of 

OPF. By merging the merits KU/KA operator of CS 

technique with the KH technique. Hence, the KH is 

improved and the CSKH algorithm is evaluated 

numerically.  

The detailed expression of a new variant of KH 

algorithm is given, and the KU operator is adjusted 

dynamically in KU process. In the proposed hybrid 

CSKHA, a greedy option was used, often surpassing the 

standard CS and KH. Moreover, so as to more ameliorate 

the CSKH's exploration, each generation of end KA 

operators will be a small number of poor krill thrown 

away, and replaced by new randomly generated krill. The 

problem of OPF has been expressed as a constrained 

optimization problem where many objective functions 

have been taking into account to decrease the fuel cost, to 

enhance the voltage stability and to improve the voltage 

profile. However, non-smooth piece-wise quadratic cost 

objective function has been deliberated. The feasibility of 

the suggested CS-KHA technique for solving problems of 

OPF is confirm by apply three standard test power 

systems. The results of the simulation prove the success 

and robustness of the suggested method to solve problem 

of OPF in small and large test systems. In addition, the 

suggested methods in this study achieve significantly 

better than several other equivalent optimization 

techniques in obtaining solutions of OPF. Decrease in 

hourly operation cost has been based almost in whole the 

cases studied in the context of this literature. In order to 

add more complex objectives function when solving OPF 

problems, no method is the best way to solve all OPF 

problems. Therefore, there is always a require for a new 

method, capable of successfully solving as many OPF 

problems as possible. However, increased capability is 

often achieved by hybridizing method and deterministic 

optimization techniques. In the future, different settings 

of optimization techniques used in this article are chosen 

by trial and error to improve convergence characteristics 

and these settings can be optimized for improved 

effectiveness. Various types of sources energy, like solar 

cells, wind turbines can be involved in solving OPF 

problems. 
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Fig.3. Convergent curves of Cas3 (bi-objectives) 
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Fig.4. Convergent curves of Case 4 
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Fig.5. Convergent curves of the objectives of Case 5
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Table 7. Summary of statistical indices of the CS-KHA with CS, KHA for Cases 1-10 

                       CS-KHA                                    KHA                                   CS 

Case.no   Best       Worst    Mean     Std dev     Best      Worst    Mean    Std dev     Best     Worst     Mean      Std dev     

Cace1  799.0595   799.4923  799.1761   0.0023    799.4972   799.9512   799.7572  0.024    799.6547   800.1054   799.9513  .0321 

Case2  830.0981   830.6713  830.1625   0.019     830.4199   830.9922   830.6918   0.033    833.5157   833.9145    833.7327 0.029 

Case3  799.5625  799.8921   799.7005   0.03     799.8928   800.41     800.1367   0.043    800.3034   800.9133    800.6723  0.0352 

Case4  835.3821  835.8811   835.5920   0.0015   835.9164   836.5764   836.2321   0.0191    839.0130  839.7700   839.3205  0.027 

Case5  803.6357  803.980    803.8100   0.023    803.6580  804.2104   803.9683  0.03202  803.7306  804.2710    803.9360  0.0331 

Case6  853.1469  853.5361   853.2742   0.0026    854.6579   855.3519   854.9914   0.041     857.3526   857.9720    857.6437 0.03602 

Case7  830.5273  830.9407   830.7204   0.0031    830.3209   830.9859   830.7303   0.0342    831.7243   832.1926    831.9751  0.0284 

Case8  828.8532  829.2302   828.9712   0.038     832.1724   832.8743    832.5126   0.0375   831.1796   831.6991    831.4425  0.0223 

Case9  41660.2273 41660.840  41660.5703  0.04    41673.5922  41674.110  41673.9078  0.051    41717.8801 41718.4713  41718.0721 0.043 

Case10 41712    41712.7701 41712.3923 0.062   41705     41705. 6203  41705.274 0.0421   41791     41791.8912  41791. 4822 .037    

 

Table 8. The control variables’ optimal settings for Cases 9 and 10. 

                          Case 9                                            Case 10 

Control variable   CS-KHA      KHA        CS              CS-KHA      KHA         CS          

PG1 (MW)         143.4297     145.0358     140.9221          140.6795     141.9955      146.9150 

PG2 (MW)         87.0645      98.1294      77.7157           94.9802      92.1514      100.0000  

PG3 (MW)         45.1917      47.2053      40.0000           47.1461      45.7668      40.0000  

PG6 (MW)         67.0035      54.0795      100.0000          66.5315      78.1945      100.0000 

PG8 (MW)         459.5789     472.6903     453.4311          460.6278    460.5117      478.9845    

PG9 (MW)         99.7951      81.2897      100.0000          94.4812      89.2280      30.0000  

PG12 (MW)        363.2292     367.0996     354.6953          362.1398    358.8398      371.7001   

V1(p.u)           1.0713       1.0695       1.0552            1.0206      1.0198        1.1000 

V2(p.u)           1.0746       1.0734       1.0577            1.0244      1.0253        1.1000 

V3(p.u)           1.0603       1.0611       1.0461            1.0119      1.0155        1.1000   

V6(p.u)           1.0597       1.0594       1.0654            1.0150      1.0264        1.1000     

V8(p.u)           1.0755       1.0778       1.1000            1.0384      1.0503        1.1000  

V9(p.u)           1.0710       1.0699       1.0739            1.0240      1.0329        1.1000     

V12(p.u)           1.0582       1.0562       1.0453            1.0040      1.0070        1.1000 

Qc18(Mvar)         6.8293       4.8640       20.0000           10.8442     8.0117        0 

Qc25(Mvar)        14.0936      16.3750      9.1658            6.4490      15.9809       15.1607 

Qc53(Mvar)        11.2626      17.1950      20.0000           13.4479     11.0521       20.0000      

T4–18                     1.0432        0.9608       0.9000            0.9583      1.0192        0.9000   

T4–18                     0.9543        1.0416       1.1000            1.0017      0.9868        1.1000  

T21–20                    0.9981        1.0422       1.1000            0.9981      0.9773        1.1000   

T24–25                    1.0345        1.0436       1.1000            0.9680      0.9543        0.9000 

T24–25                    1.0039        1.0439       0.9000            0.9574      1.0740        1.1000          
T24–26                    1.0175        1.0326       1.0668            1.0298      1.0136        1.0171 

 T7–29                     0.9975        1.0014       1.0565            0.9801      0.9951        1.0648  

 T34–32                    0.9533        0.9558       0.9000            0.9283      0.9354        0.9388  

 T11–41                   0.9016         0.9495       0.9000            0.9000     0.9001        0.9000   

 T15–45                   0.9869        0.9883       0.9795            0.9509     0.9513        1.0178            

 T14–46                   0.9832        0.9756       0.9796            0.9527     0.9606        1.1000       

  T10–51                   0.9948        0.9876       0.9951            0.9725     0.9861        1.0697     

  T13–49                   0.9579        0.9450       0.9000            0.9170     0.9177        0.9738    

  T11–43                  1.0219         0.9863       1.1000            0.9418     0.9782        1.1000    
 T40–56                   0.9860        0.9959       1.1000            1.0432      0.9771        0.9000      
 T39–57                   0.9993        0.9698       0.9869            0.9218      0.9373        1.1000   
 T9–55                   1.0120         1.0285       1.1000            1.0029      1.0128       1.1000  

Fuel cost ($/h)    41660.2273    41673.5922    41717.8801        41712      41705        41791  

VD              1.5991        1.6959       1.7060            0.6940      0.7004       1.5878    

 Lmax            0.2816        0.2800        0.2775             0.2931     0.2935        0.2870  

Emission (ton/h)   1.3566        1.4117       1.3269            1.3554     1.3507        1.4690 

Ploss (MW)       14.4929       14.7297      15.9645           15.7861    15.8877       16.8061   

Table 9. The results obtained are compared for Cases 9 and10. 

     Case 9                                Case 10 
 

Algorithms Fuel cost($/h)          Algorithms    Fuel cost($/h)    VD (p.u)     

 CS-KHA      41660.2273            CS-KHA      41712        0.6940 

  KHA        41673.5922            KHA         41705        0.7004 

  CS         41717.8801            CS          41791        1.5878 

  MSA [33]   41673.7231           MSA [33]   41714.9851   0.67818  

 ICBO [32]   41697.3324          FPA [33]    41726.3758   0.69723 
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Fig.6. Convergent curves of Case 9. 
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Fig.7. Convergent curves of Case 10. 

Table 10. The control variables’ optimal settings for case11. 

Control variable  CS-KHA    KHA       CS Control variable          CS-KHA     KHA     CS 

PG1 (MW)        366.9132  385.4828   368.0476 VG1 (p.u)        1.0322  1.0169   1.0043 

PG4 (MW)        30.0000  30.0000    40.4392 VG4 (p.u)        1.0515  1.0342   1.0224 

PG6 (MW)        30.8504  30.0000    30.0056 VG6 (p.u)        1.0349  1.0323   1.0137 

PG8 (MW)        30.0000  36.5892    30.5938 VG8 (p.u)        1.0742  1.0906   1.0714 

PG10 (MW)        32.1926  30.0951    30.6092 VG10 (p.u)        1.0786  1.0965   1.0833 

PG12 (MW)        322.0172  337.7073   298.7903 VG12 (p.u)        1.0353  1.0238   1.0114 

PG15 (MW)        66.9864  67.3679   73.6602 VG15 (p.u)        1.0383  1.0268   1.0176 

PG18 (MW)        34.9502  31.6466   34.1581 VG18 (p.u)        1.0476  1.0328   1.0167 

PG19 (MW)        30.0126  30.1197   34.9399 VG19 (p.u)        1.0464  1.0356   1.0192 

PG24 (MW)        31.2758  40.0241   32.0601 VG24 (p.u)        1.0571  1.0634   1.0366 

PG25 (MW)        30.0890  30.3142   30.7494 VG25 (p.u)        1.0939  1.0568   1.0337 

PG26 (MW)        152.1116  160.5087   124.9473 VG26 (p.u)        1.0835  1.0689   1.0860 

PG27 (MW)        210.4531  212.1246   213.9664 VG27 (p.u)        1.0684  1.0325   1.0148 

PG31 (MW)        30.0107  30.0000   32.9586 VG31 (p.u)        1.0559  1.0328  1.0147 

PG32 (MW)        32.1135  32.1022   32.1000 VG32 (p.u)        1.0628  1.0410  1.0174 

PG34 (MW)        30.1433  30.0000   30.0574 VG34 (p.u)        1.0699  1.0429  1.0476 

PG36 (MW)        30.9994  32.3755   37.3000 VG36 (p.u)        1.0709  1.0615  1.0452 

PG40 (MW)        37.2945  31.1420   39.2771 VG40 (p.u)        1.0584  1.0335  1.0348 

PG42 (MW)        32.7803  40.1303   32.0453 VG42 (p.u)        1.0728  1.0407  1.0430 

PG46 (MW)        30.5901  30.0504   61.3421 VG46 (p.u)        1.0779  1.0699  1.0825 

PG49 (MW)        35.7090  35.7110   35.7293 VG49 (p.u)        1.0838  1.0856  1.0880 

PG54 (MW)       150.1344  159.3915   147.9769 VG54 (p.u)        1.0743  1.0686  1.0785 

PG55 (MW)        45.0829  45.1069   46.4248 VG55 (p.u)        1.0661  1.0609  1.0791 

PG56 (MW)        30.2316  30.1951   30.0706 VG56 (p.u)        1.0747  1.0669  1.0783 

PG59 (MW)        41.1021  34.2682   31.4284 VG59 (p.u)        1.0929  1.0880  1.0949 

PG61 (MW)       128.9333  126.3616   116.7174 VG61 (p.u)        1.0857  1.0959  1.0989 
PG62 (MW)       119.4878  104.4463   108.5139 VG62 (p.u)        1.0857  1.0980  1.0949 

PG65 (MW)        30.0414  30.6740   33.8130 VG65 (p.u)        1.0886  1.0891  1.0524 
PG66 (MW)        274.4206  296.6764   274.6836 VG66 (p.u)        1.0981  1.1000  1.0983 

PG69 (MW)        290.2244  273.8381   285.3788 VG69 (p.u)        1.0819  1.0947  1.0921 

PG70 (MW)        33.8793  31.0321   30.0310 VG70 (p.u)        1.0760  1.0680  1.0753 
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PG72 (MW)        30.0000  30.0000   30.5010 VG72 (p.u)        1.0847  1.0782  1.0618 

PG73 (MW)        35.0183  30.0011   34.5178 VG73 (p.u)        1.0807  1.0823  1.0806 

PG74 (MW)        30.0000  34.6584   30.0089 VG74 (p.u)        1.0614  1.0721  1.0635 

PG76 (MW)        31.1843  30.0000   30.0515 VG76 (p.u)        1.0481  1.0534  1.0537 

PG77 (MW)        30.8112  30.0330   35.3680 VG77 (p.u)        1.0530  1.0533  1.0694 

PG80 (MW)        353.3451  328.0506   339.0098 VG80 (p.u)        1.0578  1.0871  1.0748 

PG85 (MW)        30.4117  34.3764   30.0251 VG85 (p.u)        1.0698  1.0849  1.0867 

PG87 (MW)        31.2043  31.2010   31.2000 VG87 (p.u)        1.0883  1.0856  1.0802 

PG89 (MW)        373.0515  343.3753   383.0308 VG89 (p.u)        1.0766  1.1000  1.0966 

PG90 (MW)        30.0217  30.0053   30.0816 VG90 (p.u)        1.0543  1.0908  1.0790 

PG91 (MW)        30.1360  31.2499   33.4771 VG91 (p.u)        1.0621  1.0926  1.0810 

PG92 (MW)        30.0000  31.6228   30.0239 VG92 (p.u)        1.0568  1.0932  1.0839 

PG99 (MW)        31.5839  30.1290   32.1729 VG99 (p.u)        1.0515  1.0699  1.0605 

PG100 (MW)       161.0126 174.5208   163.4482 VG100 (p.u)       1.0395  1.0786  1.0654 

PG103 (MW)       42.2950  42.1514   42.2731 VG103 (p.u)       1.0212  1.0726  1.0593 

PG104 (MW)       30.8340  31.1019   30.1950 VG104 (p.u)       1.0060  1.0641  1.0498 

PG105 (MW)       30.1658  30.0082   30.0294 VG105 (p.u)       1.0123  1.0751  1.0472 

PG107 (MW)       30.7389  30.1938   30.7178 VG107 (p.u)       0.9973  1.0717  1.0433 

PG110 (MW)       32.0056  30.6153   30.4068 VG110 (p.u)       0.9894  1.0791  1.0417 

PG111 (MW)       40.8006  40.8581   40.8015 VG111 (p.u)       0.9980  1.0890  1.0528 

PG112 (MW)       30.6941  30.1776   35.3112 VG112 (p.u)       0.9775  1.0721  1.0298 

PG113 (MW)       30.5556  30.1612   43.2123 VG113 (p.u)       1.0584  1.0584  1.0260 

PG116 (MW)       31.5470  30.1511   30.6720 VG116 (p.u)       1.0928  1.1000  1.0466 

Qc5 (Mvar)        1.0968  0.1341  0.4603        T (8–5)                     1.0269        1.0527   1.0180 

Qc34 (Mvar)       0.0395  0.0656  7.8806 T (26–25)                 1.0551      0.9293 1.0770 

Qc37(Mvar)       1.7660  7.3596  2.7258 T (30–17)                 0.9923      1.0165 1.0267 

Qc44(Mvar)       10.4951  0.3568  0.0083 T (38–37)                 0.9561      0.9903 0.9672 

Qc45(Mvar)       0.0001  2.6926 1.0940 T (63–59)                 0.9402      0.9071 0.9072 

Qc46(Mvar)       6.3599  0.6672 17.7909 T (64–61)                 1.0339      0.9722 0.9434 

Qc48(Mvar)       0.3103  0.6422 0.3959 T (65–66)                 1.0317      1.0952 1.0250 

Qc74(Mvar)       0.5937  0.0949 12.9769 T (68–69)                 1.0046      1.0947 0.9504 

Qc79(Mvar)       0.4359  1.0046 1.7815 T (81–80)                 1.0284      0.9213 0.9667 

Qc82(Mvar)       2.6580  0 2.5440  

Qc83(Mvar)       2.7523  0 2.0127 Objective functions  

Qc105(Mvar)      1.1846  2.5892 10.9604 Fuel cost ($/h)  135260.45  135400.78  135610.321 

Qc107(Mvar)      4.1717  0.0284 4.9321 Ploss (MW)      56.4548     58.1287 53.3527
 

Qc110(Mvar)      4.0167      0.5725 0.0614  

Table 11. The results obtained are compared for Case 11. 

Case Algorithms     Fuel cost ($/h) 

                  CS-KHA            135260.45 

Case 11          KHA               135400.78 

                  CS                 135610.321 

                   BSA [37]            135333.4743 

                   ABC [37]            135304.3584 

                   BBO [37]            135263.7289 
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