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Abstract—In scientific fields, solving large and complex 

computational problems using central processing units 

(CPU) alone is not enough to meet the computation 

requirement. In this work we have considered a 

homogenous cluster in which each nodes consists of same 

capability of CPU and graphical processing unit (GPU). 

Normally CPU are used for control GPU and to transfer 

data from CPU to GPUs. Here we are considering CPU 

computation power with GPU to compute high 

performance computing (HPC) applications. The 

framework adopts pinned memory technique to overcome 

the overhead of data transfer between CPU and GPU. To 

enable the homogeneous platform we have considered 

hybrid [message passing interface (MPI), OpenMP (open 

multi-processing), Compute Unified Device Architecture 

(CUDA)] programming model strategy. The key 

challenge on the homogeneous platform is allocation of 

workload among CPU and GPU cores. To address this 

challenge we have proposed a novel analytical workload 

division strategy to predict an effective workload division 

between the CPU and GPU. We have observed that using 

our hybrid programming model and workload division 

strategy, an average performance improvement of 76.06% 

and 84.11% in Giga floating point operations per 

seconds(GFLOPs) on NVIDIA TESLA M2075 cluster 

and NVIDIA QUADRO K 2000 nodes of a cluster 

respectively for N-dynamic vector addition when 

compared with Simplice Donfack et.al [5] performance 

models. Also using pinned memory technique with 

hybrid programming model an average performance 

improvement of 33.83% and 39.00% on NVIDIA TESLA 

M2075 and NVIDIA QUADRO K 2000 respectively is 

observed for saxpy applications when compared with 

pagable memory technique. 

 

Index Terms—Central Processing Unit(CPU); Compute 

Unified Device Architecture (CUDA); Graphics 

processing units (GPUs); High Performance 

computing(HPC); Message passing Interface (MPI); Giga 

Floating Point Operations Per seconds(GFLOPs) 

I.  INTRODUCTION 

The parallel computing model is introduced to solve 

large scale HPC applications. HPC rely on several 

computers to perform complex computations; therefore 

we can accomplish improved performance outcomes. On 

multi computer both task and data parallelism is a 

prerequisite to achieve the greatest performance results. 

GPUs are developed gradually to work on data 

parallelism. Most of the HPC applications are developed 

in scientific and engineering fields, which lead to the 

incorporation of HPC accelerators. Hybrid programming 

is the combination of different programming models to 

work on parallel applications. Parallel programming 

model makes uses of OpenMP, MPI and CUDA to solve 

complex problems [15]. Hybrid programming model 

provides a number of possible benefits such as first it 

analyzes the program and specifies the target platform to 

handle the threads to communicate. Communication and 

computation overlap is another benefit where few threads 

will be managed on communications and others will 

concentrate on the computation. By using Hybrid 

Programming model the work will be assigned to 

multiple GPU threads by CPU which results in better 

performance. Shifting from homogeneous to 

heterogeneous (CPUs+GPUs) cluster will have additional 

overhead of partitioning the workload and 

communication between CPUs and GPUs. 

In this work, we are proposing a framework that uses 

an analytical model to predict asymmetric work load 

division between CPUs and GPUs based on its 

computation capabilities and its data transfer rate. The 

framework is built on three programming models i.e MPI, 

OpenMP and CUDA. The hybrid programming model 

uses cudaMemcpyAsync functions to transfer 

computation from CPU to GPU and vice-versa, there by 

come-across from the MPI send/receive overhead. Also 

framework uses pinned memory technique to overcome 

the overhead of data transfer latency between CPU and 
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GPU. To test our framework we have considered HPC 

applications like dynamic computations of N random 

vectors additions and saxpy applications. We have 

evaluated the performance of these applications on 

homogeneous platform one with NVIDIA TESLA 

M2075 and other nodes with two NVIDIA QUADRO 

K2000 on each node of a cluster. 

In case of dynamic computations of N random vectors 

addition HPC application, we have achieved performance 

improvement of 76.06% on homogeneous platform with 

NVIDIA TESLA M2075 and 84.11% on homogeneous 

platform with two NVIDIA QUADRO K2000 on an each 

nodes of a cluster, with respect to application executed on 

Simplice Dogface performance model. 

In case of saxypy applications with pinned memory 

technique, we have obtained on average of 33.83% on 

homogeneous platform with NVIDIA TESLA M2075 

and 39.00% on homogeneous platform with two NVIDIA 

QUADRO K2000 on each nodes of a cluster, 

performance improvement over pagable technique. 

The rest of the paper is structured as follows. Section 2 

brief about related work with respect to hybrid 

programming models. Section 3 explains proposed frame-

work design. Section 4 details about experiments and 

results. Section 5 presents conclusion. 

 

II.  RELATED WORKS  

In this section, we describe the work accomplished so 

far in the area of homogeneous computing using hybrid 

programming model on CPU-GPU platform. 

N.P. Karunadasa and D. N. Ranasingh [1] had 

demonstrated Accelerating High Performance 

Applications with CUDA and MPI. They find a few 

factors which improve application performance with 

GPUs. Among them the number of GPU cores is one of 

the important factors, and another factor is core specific 

data processing using adequate number of registers. 

Authors examined MPI and CUDA programming method 

with Strassen and Conjugate Gradient algorithm. They 

have demonstrated that Strassen algorithm works 

effectively in comparison with the Conjugate Gradient 

method. In our work, we have considered hybrid 

programming models such as OpenMP,MPI and CUDA 

with pinned memory technique to achieve better 

performance on HPC applications. 

Qing-kui Chen and Jia-kang Zhang [2] had 

demonstrated the use of MPI and CUDA to build simple 

stream processor cluster system with CPU + GPU using 

the hybrid parallel computing programming environment 

(HPCPE). They used hybrid programming technologies 

to create a parallel computing environment. They 

considered CPU as stream processor cluster system and 

GPU as central calculating tasks on each node. But in our 

work we have considered the CPU to compute part of 

computation, to obtain better performance by proper 

utilization of the available CPU and GPU resources. 

Rong Shi et.al[3] present a novel two level workloads 

partitioning approach for HPL (High Performance 

Linpack) benchmark on CPU-GPU nodes on a het-

erogeneous cluster. In their way authors distributed the 

workload based on the compute power of CPU/GPU 

nodes across the cluster. They also handled multi GPU 

configurations by using techniques such as process grid 

reordering to reduce MPI communication, while ensuring 

load balance across nodes. Authors present detailed 

analysis of performance, efficiency, and scalability of 

their hybrid HPL design across different clusters with 

different configurations. In our work, we are going to 

apply a novel analytic workload division strategy, where 

small amount of workload is assigned to a CPU and 

remaining work load will be allotted to GPU. 

Takuro Udagawa and Masakazu Sekijima [4] proposed 

a new method to balance the workload between CPUs 

and GPUs. Their proposed method is built on formulating 

and observing workloads for statically distributing the 

work. Authors succeeded in utilizing processors more 

efficiently and accelerating simulation using NAMD. It 

gave 20.7% improvement compared to CPU optimal code. 

Their proposed method is demonstrated using molecular 

dynamics (MD) simulation. In our work, an analytic work 

load division technique with hybrid programming model 

was utilized to achieve performance improvement on 

NVIDIA TESLA M2075 and NVIDIA QUADRO K 

2000 respectively for N dynamic vector addition. 

Simplice Donfack et.al [5] present effective hybrid 

CPU/GPU approaches that is portable. It dynamically and 

efficiently balances the workload between the CPUs and 

the GPU. Authors also examined data transfer bottleneck 

between CPU and GPU. In their approach, the amount of 

initial work assigned to the CPU before execution is 

determined by the theoretical model. Then, they 

dynamically balanced the workload during execution in 

order to maintain load balance. But in our modeling 

strategies, nominal amount of work load will be placed 

on the CPU and remaining work load will be assigned to 

GPU. 

Lu, Fengshun et. al [14] utilized two parallel 

programming models of MPI+CUDA and 

MPI+OpenMP+CUDA to parallel three kernels of NAS 

parallel benchmarks separately, and executed on the 

Tianhe-1A supercomputer. In view of the test comes 

about, the creator dissected the execution of 

MPI+OpenMP+CUDA and MPI+CUDA in various 

circumstances, and gave a proposal that developers ought 

to pick an appropriate programming design as per their 

own exploratory conditions in request to expand the 

computing ability of elite framework. 

 

III.  PROPOSED PERFORMANCE DRIVEN FRAME WORK 

As per the previous section, the main drawback of the 

MPI and CUDA programming design is that the 

computational capability of CPUs within each compute 

node is not efficiently used. In order to address this issue, 

in this section, we explained about proposed hybrid 

programming model framework with the OpenMP model 

to exploit the hardware parallelism of multicore CPUs. 
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Fig.1. Performance driven frame work of homogeneous CPU and GPU cluster 

Fig.1, shows proposed novel performance driven 

framework of heterogeneous architecture, where each 

node consists of one CPU and two GPU. The CPU and 

GPU communicate via PCI-E bus. Both CPU and GPU 

have their own storage. Each CPU has many cores. Each 

core has its own cache. The GPU has several Streaming 

Multiprocessors (SMs). The CPU is responsible for 

applications control, distributing tasks between CPU and 

GPU, originating the GPU computation and reading the 

result of the GPU. 

In this framework, MPI is used to control the HPC 

application and to implement the communication 

processes between computing nodes in a heterogeneous 

cluster, by calling library routines to send and receive 

messages. MPI also controls the workload distribution 

and process synchronization, while OpenMP offers the 

ability to appropriately parallelize programs by 

introducing compiler directives and invoking subroutine 

calls [12]. All OpenMP programs follow the fork-and-

join performance model and use the work-sharing 

directives to dispense the workload among the threads. 

OpenMP has the drawback of insufficient scalability due 

to the internal thread management overhead and the 

restricted CPU cores within the system. OpenMP is 

usually employed to explore the parallelism within each 

compute node of complex clusters built with multi core 

processors [16] whereas CUDA is used to compute the 

huge complex tasks on the GPU. 

In this work, we have considered only one MPI process 

to handle the part of the work on each node. Each MPI 

process is used to control and communicate with the GPU. 

Due to this, we eliminate the underutilization of the 

device memory. On the other hand, compared with 

multiple MPI process per node, much fewer data transfers 

are performed by the proposed method which improves 

the memory-bandwidth. The MPI process spawns as 

many OpenMP threads as the amount of CPU cores 

within each compute node [6]. Only the master thread 

cooperates with GPU and the others perform relevant 

arithmetic operations in parallel. In general, a MPI 

process initially transfers the input data from CPU to 

GPU through the PCI-E bus [8]. Then, it invokes the 

CUDA kernel, in which all the GPU threads run the 

kernel in parallel. Lastly, the MPI process transfers the 

output data from GPU to CPU and thus improves the 

productivity and performance of the HPC Applications. 

A. Hybrid Programming Approach 

In this framework, we focus on building a strategy to 

cluster with the resources of many core CPU and multi 

core GPU. GPU is usually regarded as a data-parallel 

multi core system. Compute Unified Device Architecture 

(CUDA) is a registered framework from NVIDIA to 

develop applications on GPU [11]. The computational 

elements of algorithms written with CUDA are known as 

kernels, which, consist of many threads to execute the 

tasks in parallel. GPUs can only read/write from memory 

attached to the host. The GPU acquires a block of main 

memory with CUDA interfaces, such as 

cudaMallocHost(). Before GPU kernel starts executing, 

data must be moved from main memory into the device 

memory; and after the execution, results need to be 

moved back to the memory. This is done using 

cudaMemcpy(). 

There are numerous reasons to combine three parallel 

programming approaches of MPI, OpenMP, and CUDA 

on a heterogeneous cluster [13]. A common reason is to 

enable solving problems with a large data size to fit into 

the memory of a single GPU, or that would require an 

unreasonably long compute time on a single node. 

Another factor is to exploit the performance improvement, 

by making use of the CPU as a part of computation. To 

use the CPU as a part of computation, we utilize another 

parallel programming model known as OpenMP. Again 

to exploit the power of distributed architecture we are 

making use of MPI programming model. Due to above 

said observations we are combining 

MPI+OpenMP+CUDA on heterogeneous CPU-GPU 

architecture. 

B. Workload Division Strategy 

This section describes a workload distribution strategy 

in which the workload is assigned to each node on a 

hybrid CPU/GPU cluster [10]. Distribution of the work 

load between CPUs and GPUs is done based upon their 

computation capacity. If we assign too little work to the 
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CPU, it is not enough to keep the CPU busy during GPU 

kernel launch and memory transfer, and thus the latency 

cannot be well hidden. On the other hand, if we assign 

too much work to the CPU then, the GPU kernel has to 

wait for the CPU to finish the tasks before generating the 

result. In this work we are addressing the question, what 

is the optimal CPU and GPU workload for each core 

under different parallel configurations? We plan to 

consider asymmetric work load division, which requires 

division ratio. This is proportional to compute speed and 

hardware specification of the CPU and GPU. To predict 

work load ratio, we are considering multiple factors such 

as problem size, node counts, hardware configurations, 

computational speed, and communication rate of each 

node. By using these parameters in our proposed 

framework, our strategies decide optimal workload for 

the CPU and GPU depending on their computational 

capacity. 

Let W be the size of total workload per cluster, n be the 

number of nodes on CPU-GPU heterogeneous cluster. 

Load per node is represented by Lnode, memory 

bandwidth of CPU and GPU represented by Cpbw, Gpbw, 

Speed of CPU processor and GPU processor by SCP and 

SGP, j is represented as specific CPU, C is represented as 

cores, NC represents number of cores. In the beginning 

when assign the full HPC application workload W to the 

cluster need to compute the load for individual nodes 

[Lnodei] by considering multiple factors such as problem 

size(W), node counts[i=1 to n], hardware configurations 

i.e number of CPU cores [Ncpi] and Number of GPU 

cores [NGpi], computational speeds of processors[SCPi 

and SGPi], computing capability [Cnodei=∑ * Sj where 

Cnodei represents computing capability and Sj represents 

calculation intensity of task j] of each node in a cluster 

communication rate and kernel memory bound at each 

node we balance the load according to the realistic 

memory bandwidth values [Cpbwi, Gpbwi]. A good 

CPU+GPU execution must take the different 

computational speeds into interpretation. Failing to do so 

will normally lead to a severe load imbalance since the 

fast GPU will continuously wait for the slow CPU to 

complete its workload, and thus to poor performance. 

 

𝐿𝑛𝑜𝑑𝑒𝑖 =
𝑊

∑ (𝑆𝐶𝑃𝑖,𝑆𝐺𝑃i,𝐶𝑝𝑏𝑤𝑖,𝐺𝑝𝑏𝑤𝑖 ,𝑁𝐶𝑝𝑖,𝑁𝐺𝑝𝑖,𝐶𝑛𝑜𝑑𝑒𝑖)𝑛
𝑖=1

    (1) 

 

After computing varying workload to individual nodes, 

then on each nodes of a cluster a fraction of the workload 

is dynamically distributed among CPU cores and GPUs 

based on their performance capabilities. 

Let T[Cpi+Gpi]execution time of the HPC 

applications on the CPU+GPU and TGpi execution time of 

the HPC applications on the GPU and P[Cpi+Gpi] 

performance(GFLOPs) presented for target HPC 

applications on the CPU+GPU and PGpi 

performance(GFLOPs)presented for target HPC 

applications on individual nodes in a cluster are 

computed using eq(5). Hence, the load on the CPU [LCPi] 

is computed using eq(2). 

 

𝐿𝑐𝑝𝑖 = [𝐿𝑛𝑜𝑑𝑒𝑖 ∗ (1 − (
𝑃𝐺𝑝𝑖

𝑃𝐺𝑝𝑖+𝑃(𝐺𝑝𝑖+𝐶𝑝𝑖)
))]          (2) 

 

After dynamically computing fraction of load on the 

CPU, Now the load per core on each CPU of the 

respective nodes in a cluster LCPi/Cj is computed using 

eq(3). Here, we divide the fraction of the load is among 

numerous available cores NC on CPU. 

 

𝐿𝐶𝑃𝑖/𝐶𝑗 =
𝐿𝐶𝑃𝑖

𝑁𝑐𝑗
                                           (3) 

 

Now load on GPUs is obtained LGPi by using eq (4). 

After determining the fraction of the workload ratio to the 

CPU, and assign the remaining work load to the available 

number of GPUs in the respective nodes in a cluster. 

 

𝐿𝐺𝑃𝑖 = (𝐿𝑛𝑜𝑑𝑒𝑖 − 𝐿𝐶𝑃𝑖)                                 (4) 

 

By using the above eq(2), eq(3) and eq(4), we compute 

GPU workload and CPU workload. Workload can 

potentially be distributed properly to the computation 

resources of a heterogeneous system, and therefore 

achieve better performance with suitable work load 

division between CPU and GPU. Our CPU+GPU 

programming approach (MPI+OpenMP+CUDA) is able 

to utilize the   different processing units and maximize 

overall FLOPS (Floating point operations per second). 

C.  Performance Evaluation 

The overall goal of homogeneous implementation is to 

utilize the computational resources efficiently to achieve 

peak applications performance. The implementation of 

HPC applications on the proposed framework of 

heterogeneous CPU+GPU cluster using hybrid 

programming model(MPI+OpenMP+CUDA) should 

perform better when compared to that of GPU (CUDA). 

In this work, we are comparing applications performance 

by measuring execution time and GFLOPs. The GFLOPs 

is computed using the eq (5). 

 

𝑔𝑓𝑙𝑜𝑝𝑠 = [
𝑁𝑜𝑝

𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛_𝑡𝑖𝑚𝑒
] ∗ 1.0𝑒−9               (5) 

 
Where, 

 

Nop is Number of operations 

Execution _Time= (ElapsedTime *1.0e-3) 

ElapsedTime=(Process_end_time)-(process_start_time) 

D.  Hybrid Implementation of Dynamic Computation of N 

Random numbers 

The random numbers are intended to produce a 

sequence of numbers which appear at random. There are 

different types of random numbers. They are custom 

random numbers, pseudo random numbers and dynamic 

random numbers. Custom random numbers function 

displays the numbers within the specified upper and 

lower limit, but for dynamic random numbers there are 

no upper and lower range limits. Some of the applications 
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of dynamic random numbers are modern electronic 

casino game and electronic noise studies in physics. 

Another application of the random number is in the field 

of operational research. In this application, random 

numbers are used to provide optimal or near optimal 

solution to decision making problems. 

Once the application is deployed to the CPU, user need 

to provide the maximum limit. Depending upon the 

number of CPU cores, OpenMP threads will be 

established for each core. Then each thread, creates two 

sets of threads. The first set of threads is responsible for 

generating N Dynamic Random numbers vectors and 

controlling the GPU of the same node in the cluster. In 

the first set of threads, once some of the threads transfer 

the data to the GPU memory CUDA kernels compute N 

dynamic random numbers vector additions. While other 

threads in a set of threads perform the generation of N 

dynamic random vectors on CPU concurrently. The 

threads in the second set are busy with computing N 

random vector numbers. This approach holds the extra 

benefit of thread synchronization, in that one thread set 

will not disturb the threads in the other set. In this 

application, some threads in the host generate the N 

dynamic random numbers using OpenMP. Others 

OpenMP threads are busy in controlling GPUs and to 

transfers generated random numbers from host memory 

to device memory for computation. Using CUDA, it does 

the computation in device memory and sends the 

computation results to host memory MPI is used to 

transfer data to other nodes in a cluster. Hence by running 

the applications on homogeneous platform, we are in a 

position to utilize the compute resources efficiently. 

E. Hybrid Implementation of Pinned and pageable data 

transfer for SAXPY application 

Inter-process communication is a process of 

exchanging data among numerous computing devices 

with specific procedures by means of communication 

protocols. Single-Precision A•X plus Y (SAXPY) is one 

of the benchmark applications in HPC. It is a function in 

the standard Basic Linear Algebra Subroutines library. 

SAXPY is a combination of scalar multiplication and 

vector addition. It takes two input vectors of floating 

point values for X and Y with N elements each, and a 

scalar value A. It multiplies each element X by A and 

adds the result to Y. 

 

Z=A*X+Y 

 

Here X, Y and Z are vector and A are a scalar value. 

By utilizing a MPI process, will communicate with other 

nodes in a cluster pinned and pagable data transfer 

technique, we compute the GFLOPs of the application 

respectively. The memory of the host is pageable default. 

When the Device wants to access the Host memory it 

directly cannot access in pageable data transfer. Hence, a 

separate memory is used to store the host memory to 

access from the device. This memory is called as 

pageable memory. For data transfer, a separate memory is 

utilized to store data temporarily which consumes extra 

memory. To avoid this, a pinned data transfer technique 

is utilized. In pinned data transfer, there is no requirement 

for temporary memory storage in the host. If a device 

wishes to access the data from the Host, it directly 

accesses from the Pinned memory. Hence it avoids the 

momentary storage of memory. Using this pinned 

memory technique. We are computing the GFLOPS with 

different data size using eq(5). 

To overlap computations and communications with the 

intra-node data exchanges, we adopted a hybrid 

programming model that involves MPI, OpenMP and 

CUDA. In such a methodology, task parallelism is 

important. Some of the OpenMP threads are committed to 

the part of the computation i.e generation of vector X and 

vector Y, while the remaining OpenMP threads handle 

other tasks, such as data movement between the CPU and 

GPU in a node.  MPI process will communicate with 

other nodes in a cluster. While CUDA is used to make 

computation i.e it multiplies each element vectors X by A 

and adds the result to vector Y and intra-node 

communication, Subsequent CPU-GPU data 

conversations are implemented via cudaMemcpyAsync. 

By applying pinned memory technique, we overcome the 

overhead of data transfer between the CPU and GPU in 

our hybrid programming model approach 

(MPI+OpenMP+CUDA) on hybrid CPU+GPU cluster. 

 

IV.  EXPERIMENTS AND RESULTS 

A. Experimental setup 

Experiments were conducted validating the proposed 

hybrid framework in terms of GFLOPs of the benchmark 

applications. We conducted experiments on in-house 

cluster, which is under our administrative control. The 

experiments were conducted on eight heterogeneous 

nodes. 

 

1.Three nodes with Six-core/socket Intel(Xeon(R) E5-

2620 CPUs, GPU (NVIDIA Tesla M2075) with 32GB 

RAM which is expandable up to 500GB with 447 cores. 

2. Five nodes with Six-core/socket Inter Xeon CPU 

processor at 2.40 GHzx of 31GB RAM with two GPUs 

(NVIDIA Quadro K2000) configuration include the 

system type that is Dell precision R5500 with 227 cores. 

 

Each node is configured with MPICH2-1.2 MPI library 

to make communication between nodes in a cluster. The 

compilers used are GCC version 4.4.7 and NVIDIA nvcc 

version 5.0. 

We have tested our homogeneous framework for two 

different benchmark applications i.e Dynamic 

computation of N random numbers vector addition and 

saxpy applications. The application parameters for 

Dynamic computation of N random numbers vector 

addition are two input vectors of N size random numbers 

and for saxpy applications two input vectors of N size of 

elements each. For each input size, we will consider the 

average performance in GFLOPs. 
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B. Results of Dynamic Computation of N Random numbers: 

In these HPC applications, once the application is 

launched to the cluster, total workload is divided among 

the nodes in a cluster. By using eq(1) load per node is 

computed and assigned to the individual nodes in a 

cluster. In each node of a cluster workload is dynamically 

distributed among CPU and GPUs based on their 

computing capabilities. By using eq(2) and eq(3) part of 

the total assigned load to node(Lnode) is assigned to the 

CPU and it’s cores and remaining workload is computed 

by using eq(4) and assigned to the GPUs. In these HPC 

applications, we will generate two vectors of N dynamic 

random numbers and compute the vector additions. Here, 

instead of deploying full computation to GPU. We 

assigned small portion of workload i.e to generate the N 

dynamic random numbers to CPU. CPU uses parallel 

programming model OpenMP to generate the N dynamic 

random numbers. Then, MPI is to communication 

between the nodes in a cluster. Then by using CUDA, 

concurrently compute the N dynamic random numbers 

vector addition to device memory and sends the 

computations results to host memory. 

Table.1, list the size of dynamic random numbers and 

performance of N dynamic random number vector 

addition computation in GFLOPs using our hybrid 

programming model [MPI+OpenMP+CUDA] and 

compared against Simplice Donfack Hybrid 

programming model and using three nodes of a cluster 

each has one GPU( NVIDIA Tesla M2075) and one CPU 

of Intel(Xeon(R) E5-2620. 

Table 1. Test Results of N Dynamic Random Numbers vector addition for three TESLA Nodes in cluster 

Sizes of 

Random Numbers GFLOPs on 

Simplice Donfack 

Hybrid programming model 

GFLOPs on Hybrid Programming 

Model 

 

  % of Performance Improvement 

against Simplice Donfack 

Hybrid Programming Model  

   

     

100000 6.9015E-05 0.002813731  97.54720627 

200000 8.76824E-05 0.001461027  93.99857955 

400000 9.87596E-05 0.000526759  81.25148139 

600000 0.000102807 0.000556168  81.51507155 

800000 0.000122579 0.00026578  53.87947414 

1000000 0.000125694 0.00024264  48.19742478 

 

 

Fig.2. Execution time of dynamic N random number vector addition for three TESLA nodes in a cluster 

Fig.2, shows execution time of Simplice Donfack 

Hybrid programming model and our hybrid parallel 

programming model[MPI+OpenMP+CUDA], for 

different problem sizes of dynamic N random numbers 

addition computation. In the figure, X-axis shows size of 

the dynamic random numbers and Y-axis shows the 

Execution time in seconds. As the random number size 

increases the execution time of the hybrid programming 

model is also increases because during the initial stage of 

experimental small chunk of the load is shared among 

more number of CPU-GPU cores, then it takes less time. 

But as the load increases it takes more number of CPU-

GPU cores and data transmission between CPU-GPU 

leads increase in execution time. But as our proposed 

hybrid model gives better execution time over Simplice 

Donfack hybrid programming model. 
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Fig.3. Performance results of dynamic N random number for vector addition three TESLA nodes in a cluster 

After computation of execution time, we computed the 

GFLOPs using eq(5). Fig.3, plots the performance 

improvement in hybrid programming model for different 

problem sizes of dynamic N random numbers vector 

addition computation over Simplice Donfack Hybrid 

programming model. In the figure, X-axis shows size of 

the dynamic random numbers and Y-axis shows the 

performance in GFLOPs. We find that during the initial 

experiment, the percentage of performance improvement 

is high. For smaller problem size such as 100000 we are 

able to achieve 97.54% over Simplice Donfack Hybrid 

programming model. In later stage percentage of 

performance improvement is low i.e for 1000000 random 

numbers 48.19% performance improvement. As dynamic 

random numbers size increases, the percentage of 

performance (in floating point operations per seconds) 

improvement in hybrid programming model will decrease 

because of CPU-GPU data transmission (communication) 

time that prevents GPU to exploit it’s parallel computing 

capacity completely. But the proposed hybrid 

programming model gives better performance i.e for 

varying problem sizes, we have achieved on an average 

performance improvement of 76.06% comparatively with 

Simplice Donfack Hybrid programming model. 

Table.2, lists sizes of N dynamic random numbers and 

performance of N dynamic random numbers vector 

addition computations in GFLOPs using our hybrid 

programming model[MPI+OpenMP+CUDA]. And 

compared against simplice donfack hybrid programming 

model with five node each has two GPUs (NVIDIA 

Quadro K2000) and one CPU of Intel(Xeon(R) E5-2620 

on each node of a cluster. 

Table 2. Test Results of N Dynamic Random Numbers vector addition for  Five nodes each with two GPUs(Quadro K2000) in a cluster 

 

Sizes of Dynamic 

Random Numbers 

GFLOPs on 

Simplice Donfack 

Hybrid programming model 

% of Performance Improvement 

GFLOPs on 

         against Simplice Donfack 

Hybrid Programming Model   

Hybrid Programming Model 

 

 

 

 

 

 

100000 5.91856E-05 0.000877886 93.25816761  

200000 7.75627E-05 0.002308403 96.63998511  

400000 9.01941E-05 0.002174386 95.85197345  

600000 9.29875E-05 0.001165230 92.01981254  

800000 9.96532E-05 0.000533853 81.33321043  

1000000 9.66594E-05 0.000177678 45.59851531  
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Fig.4. Execution time of Dynamic N Random number vector addition for five nodes with each has two GPUs(QUADRO) on each nodes in a cluster 

Fig.4, demonstrates execution time of Simplice 

Donfack Hybrid programming model and our hybrid 

parallel programming model[MPI+OpenMP+CUDA], for 

various data input sizes of dynamic N random numbers 

vector addition computation. In the figure, X-axis shows 

size of the dynamic random numbers and Y-axis shows 

the execution time in seconds. As the random number 

sizes increase the execution time of a hybrid 

programming model also increases because during the 

initial stage of experimental small chunk of a load is 

shared among more number of CPU-GPU cores, then it 

takes less time. But as the load is raised takes more 

number of CPU-GPU cores and data transmission 

between CPU-GPU leads increase in execution time. But 

our proposed hybrid model gives better execution time 

over simplice donfack hybrid programming model 

 

 

Fig. 5. Performance results of Dynamic N Random number vector addition for Five nodes with each has two GPUs(QUADRO) on each nodes in a 

cluster. 

After calculation of execution time, we processed the 

GFLOPs utilizing eq (5). Fig.5, plots the percentage of 

performance improvement in our hybrid programming 

model for varying problem sizes of dynamic random 

numbers vectors addition computation, over simplice 

donfack hybrid programming model. In the figure, X-axis 

shows sizes of the dynamic random numbers and Y-axis 

shows the performance in GFLOPs. We find that during 

the initial experiment, the percentage of performance 

improvement is high. For smaller problem sizes such as 

100000 we are able to achieve 93.25% over Simplice 

Donfack Hybrid programming model. In later stage 

percentage of performance improvement is low i.e for 

1000000 random numbers 45.59% performance 

improvement is achieved. As dynamic random numbers 

size increases, the percentage of performance (in floating 

point operations per seconds) improvement in our hybrid 

programming model will decrease because of CPU-GPU 

data transmission(communication) time that prevents 

GPU in exploiting it’s parallel computing capacity 

completely. But still proposed hybrid programming 

model for different problem sizes we have achieved on an 

average improvement of 84.11%. Performance 

comparatively with simplice donfack hybrid 

programming model. 

C. Results Pinned and pageable data transfer for SAXPY 

applications. 

In this application, using OpenMP generate the two 

vectors X and Y then with CUDA multiplies each 
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element vectors X by A and adds the result to vector Y it 

happens concurrently with OpenMP, for Pinned and 

pageable data transfer technique by varying different 

size(Gb) of input data. Table. 3, lists size of data transfer 

rate for pageable and pinned memory on three nodes of 

cluster where each node has NVIDIA Tesla M2075 for 

hybrid programming model. 

Table 3. Test results of performance of saxpy on hybrid programming model on tesla node 

Sizes of Data transfer GFLOPs in GFLOPs in % of Performance Improvement in 

in Gb Pagable Technique Pinned Technique Hybrid Programming Model 

    

0.03125 1.27438E-11 2.20574E-11 42.22444278 

0.06250 1.96079E-11 3.21419E-11 38.99583633 

0.12500 3.23627E-11 5.1427E-11 37.07050331 

0.25000 5.4256E-11 8.49039E-11 36.09720068 

0.50000 7.23413E-11 8.49039E-11 14.79626757 

 

 

Fig.6. Execution time of saxpy on hybrid programming model varying data transfer for TESLA Node 

Fig.6, shows the execution time of pagable and pinned 

memory technique for saxpy applications on hybrid 

programming model for varying data transfer size(Gb) on 

TESLA 2075 based cluster. The X-axis indicates size of 

data transfer in Gb and Y-axis indicates execution time in 

seconds. In the graph, we can no-tice that pinned memory 

technique take less execution time when compared with 

pagable memory technique. 

After computation of execution time, we computed 

performance of saxpy in GFLOPs using eq(5). The Fig.7, 

plots comparison of pageable and pinned memory for 

saxpy applications on a hybrid programming model. 

Where the X-axis indicates size of data transfer in Gb and 

Y-axis indicates performance in GFLOPs. Using pinned 

memory technique, different problem sizes we have 

achieved an average improvement of 33.83% during the 

initial experiment, the percentage of performance 

improvement is high. For smaller problem size such as 

0.03125Gb. 

 

 

Fig.7. Performance saxpy in hybrid programming model varying data transfer for TESLA Node 
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We are able to achieve 42.22% over pagable memory 

technique. In later stage percentage of performance 

improvement is low i.e for 0.5Gb data transfer 14.79% 

performance improvement. As data input size increases, 

percentage of performance (Floating point operations per 

seconds) of data transfer rate decreases. 

Table. 4, list size of data transfer rate in Gb for 

pageable and pinned memory on five nodes, each has two 

GPUs (QUADRO K2000) in each nodes of a cluster 

using hybrid programming Model. MPI is used to make 

communication between nodes in a cluster. Where some 

of threads of OpenMP are used in computation and others 

are in controlling GPU. CUDA multiplies each element 

vectors X by A and adds the result to vector Y happens 

concurrently with OpenMP. 

Table 4. Test results of performance of saxpy in hybrid programming model on QUADRO based cluster 

Sizes of Data Transfers GFLOPs in GFLOPs in % of Performance Improvement in 

in Gb Pagable Technique Pinned Technique Hybrid Programming Model 

    

0.03125 1.52334E-11 2.97221E-11 48.74716150 

0.06250 2.0502E-11 3.13249E-11 34.55056131 

0.12500 3.65677E-11 6.01359E-11 39.19157683 

0.25000 4.85294E-11 8.12054E-11 40.23868186 

0.50000 8.21209E-11 1.21305E-10 32.30230863 

 

 

Fig.8. Execution time of saxpy on hybrid programming model for varying data transfer for QUADRO Node 

The Fig.8, shows the execution time of pagable and 

pinned memory technique for saxpy applications on a 

hybrid programming model for varying data traffic size in 

Gb. The X-axis indicates size of data transfer in Gb and 

Y-axis indicates execution time in seconds. In the graph, 

we can notice that pinned memory technique take less 

execution time when compared with pagable memory 

technique. 

After computation of execution time, we computed 

performance of saxpy in GFLOPs using eq(5). Fig.9, 

plots comparisons of pageable and pinned memory for 

saxpy applications on a hybrid programming model. 

Where the X-axis indicates size of data transfer in Gb and 

Y-axis indicates performance in GFLOPs. Using pinned 

memory technique, for different problem size we have 

achieved on an average improvement of 39.00%. We 

have determined that during the initial experiment. 

 

 

Fig.9. Performance result saxpy on hybrid programming model for varying data transfer for QUADRO Node 
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The percentage of performance improvement is high. 

For smaller problem size such as 0.03125Gb, we are able 

to achieve 48.74% over pagable memory technique. In 

later stages percentage of performance improvement is 

low i.e for 0.5Gb data trans-fer 32.30% performance 

improvement is achieved. As data input size increases the 

percentage of performance (oating point operations per 

seconds) of data transfer rate also decreases. 

 

V.  CONCLUSION 

In order to  effectively emprise the computational 

capability of heterogeneous HPC systems, must utilize 

the appropriate hybrid programming pattern 

[MPI+OpenMP+CUDA] is practically suitable to 

accelerate the HPC applications to define essential 

parallelism characteristics compared to Simplice Donfack 

Hybrid programming model. In this work, we have 

constructed a hybrid computing platform 

[MPI+OpenMP+CUDA] for hybrid CPU+GPU clusters 

and introduced analytical workload division strategy to 

distribute the potion workload dynamically between CPU 

and GPUs according to their relative computational 

capacities within eight compute nodes cluster. And by 

launching one MPI process to each compute nodes in a 

cluster. We have described our experience by 

implementation of two benchmark HPC applications 

namely N dynamic vector addition and saxpy. Later we 

compared our framework with hybrid platform 

[MPI+OpenMP+CUDA] against Simplice Donfack 

Hybrid programming model. After exhaustive study of 

experimental results, we have obtained the observations 

such as, utilizing hybrid programming model boosts the 

performance (GFLOPs) than that of conventional 

programming model. We have observed that using a 

hybrid programming model an average performance 

improvement of  76.06% and 84.11% is observed on 

NVIDIA TESLA M2075 cluster and NVIDIA 

QUADROK 2000 cluster respectively for N dynamic 

vector addition when compared with Simplice Donfack 

Hybrid programming model. Also using pinned memory 

technique with hybrid computing model an average 

performance improvement of 33.83% and 39.00% on 

NVIDIA TESLA M2075 and NVIDIA QUADRO K 

2000 clusters respectively is observed for saxpy 

applications when compared with pageable memory 

technique, because of its varying hardware configurations 

and cores. 

As a future work, this work will be extended for more 

number of nodes in a cluster and optimizing the workload 

division among CPUs-GPUs heterogeneous architecture 

in order to utilize resources efficiently to improve the 

performance of HPC applications. 
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