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Abstract—Background subtraction plays an important 

role in intelligent video surveillance since it is one of the 

most used tools in motion detection. If scientific progress 

has enabled to develop sophisticated equipment for this 

task, algorithms used should be improved as well. For the 

past decade a background subtraction technique called 

ViBE is gaining the field. However, the original 

algorithm has two main drawbacks. The first one is ghost 

phenomenon which appears if the initial frame contains a 

moving object or in the case of a sudden change in the 

background situations. Secondly it fails to perform well 

in complicated background. This paper presents an 

efficient background subtraction approach based on ViBE 

to solve these two problems. It is based on an adaptive 

radius to deal with complex background, on cumulative 

mean and pixel counting mechanism to quickly eliminate 

the ghost phenomenon and to adapt to sudden change in 

the background model. 

 

Index Terms—Background subtraction, ViBE, adaptive 

radius, cumulative mean, pixel counting, ghost. 

 

I. INTRODUCTION  

Many applications in computer vision initially need to 

find the moving objects in a video frame. As an example 

in video surveillance, we need to detect an intruder in the 

observed scene. To achieve this, we can average images 

overtime in an initialization period[1]. This is with the aim 

of separating moving objects from the static information 

background usually defined as background. The main 

process used for this task is background subtraction. 

Consequently, a wide range of methods for background 

subtraction have been proposed over the years and can be 

grouped into codebook based approach, probabilistic 

based approach, sampled based approach, subspace based 

approach, compressed sensing approach and more 

recently deep learning based approach. In [2] the authors 

propose a good state of art of different background 

subtraction methods from earlier to newer. The details on 

the outlined approaches will be discussed following 

section. 

The rest of the paper is organized as follows, first of all 

Section II give a review on existing background 

subtraction algorithms, then Section III discusses on the 

original ViBE algorithm as well as some recent 

improvements that have already been made. In Section IV, 

the details on EFF-ViBE method are discussed. Section V 

presents the implementation, analysis and results 

interpretations included. Finally, Section VI concludes 

the work by doing an appraisal and by proposing 

amelioration perspectives. 

 

II. BACKGROUND  

Naively, the basic idea behind background subtraction 

will just consist of the difference between the current 

pixel value and the background model value followed by 

the comparison of that difference to a threshold value for 

decision. However, in real life situations there is a lot of 

complexity in the background due to many challenges 

namely illumination changes, dynamic background, 

camera jitter and many other background challenges. This 

leads to the development of more sophisticated 

techniques for background subtraction purpose. 

Probabilistic background subtraction techniques also 

called parametric background subtraction techniques 

generally refer to approaches that model the background 

using a Normal (Gaussian) distribution over pixel’s 

intensity values of an image. Many solutions exist in the 

literature, but one of the first was proposed by Stauffer C 

et al[6]. It was followed by many improved methods  

STGMM[9], SKMGM[10], SKMGM[10], TAPPMOG[11] and 

STAPPMOG[12] (where MOG stands for mixture of 

Gaussian) each of them trying to solve one or more 

insufficiency(ies) of the original algorithm. However, 

dues to its sensitivity, MOG approach cannot be 

accurately tuned and its ability to successfully handle  
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high and low-frequency changes in the background is 

debatable. 

To solve the drawbacks of manually selecting 

parameters in each environment, non-parametric 

approaches were proposed (Ahmed Elgamma[13]). They 

generally refer to sample-based methods but many other 

methods exist such as kernel density estimation (KDE) 

approach[14], the Bayesian approach[15] or recursive 

density estimation (RDE) approach[16].  

Another family of method is codebook approach where 

for each pixel position, the background is modeled by a 

codebook. It was introduced by Kim et al[17]. Here each 

pixel is assign a codeword which consists of intensity, 

color and temporal features. To do the segmentation, the 

intensity and color of incoming pixels are compared with 

those of the codewords in the codebook. Later on, the 

algorithm computes the distances between the pixels and 

the codewords, compare them with a threshold value and 

assign either a foreground label if no match was found or 

a background label otherwise. Later on, the matching 

codeword is updated with the respective background 

pixel. 

We also have subspace based approach[18], in which 

one model is devoted. to accurately detect motion, while 

the other aims to achieve a representation of the empty 

scene. The differences in foreground detection of the 

complementary models are used to identify new static 

regions. In this approach, a collection of images and the 

corresponding mean and covariance matrix are computed. 

This is followed by the computation of PCA of the 

covariance matrix, a projection with a certain number of 

vectors and a comparison of incoming images with their 

projections onto Eigen vectors. Finally a distance is 

computed between the image and the projection and 

compared with the corresponding threshold value to label 

the pixel as foreground or background pixel. 

Moreover we have compressive sensing approaches[19, 

20, 21, 22], which allow reducing the number of 

measurements required to represent the video using the 

prior knowledge of sparsity of the original signal. Its 

theory shows that a signal can be reconstructed from a 

small set of random projections, provided that the signal 

is sparse in some basis as an example in the case of 

wavelets. However these methods impose certain 

conditions on the design matrix. 

It is also important to mention approaches that use 

edge detection[23], or patches detection[24]. While the first 

approach is used most frequently for image segmentation 

based on abrupt changes occurred in image intensities, 

the second one uses patch-based approaches for 

operations such as image denoising.  

A more recent approach developed by Braham and 

Droogenbroeck is the use of convolution neural network 

generally refers as deep learning approach. It uses a fixed 

background model, which was generated from a temporal 

median operation over N video frames [25]. Its architecture 

is very similar to LeNet- 5 network for handwritten digit 

classification[26], except that sub sampling is performed 

with max-pooling instead of averaging and hidden 

sigmoid units are replaced with rectified linear units for 

faster training. However, this method tends to be scene 

specific that is why we will not focus on it in this paper. 

This paper presents an efficient background subtraction 

approach based on ViBE named EFF-ViBE where EFF 

stands for efficient. The proposed approach has three 

main contributions. The first contribution is the 

introduction of a new update mechanism that uses Koenig 

formula to reduce overall computations. This is combined 

with the use of n recent frames to model the background. 

Here the value of n has been chosen empirically. The 

second contribution lies on the introduction of a pixel 

counting mechanism to consider foreground pixels that 

stay for long as background pixels. This usually happens 

when a sudden change appears in the background model. 

Note that these two contributions are to quickly eliminate 

the apparition of ghost phenomenon. Finally the third 

contribution concerns the introduction of a modified 

adaptive radius policy with parameter adjustment which 

enables the algorithm to deal with complex background 

when necessary and behave differently (almost as the 

original ViBE) when the background is relatively simple. 

 

III. VIBE ALGORITHM 

The following section describes original version of 

ViBE algorithm proposed by Barnich et al in[5] as well its 

improvement[27] proposed by the same authors in order to 

handle video sequences. Its background model is a non-

parametric pixel based model where each background 

ground pixel x is modeled by a set of samples.  

 

 NvvvvM ...,, 321                          (1) 

 

It follows the same structure as any background 

subtraction algorithm which has three sub-tasks namely 

background model initialization, segmentation or 

classification and update of the model. 

A. Background Model Initialization 

For each pixel x, the set M(x) is filled randomly with 

samples around the spatial neighborhood of x. It is 

important to mention that those values are taken in the 

first frame and an assumption that neighboring pixels 

share a similar temporal distribution is made. The 

background estimate is therefore valid starting from the 

second frame. If t = 0 indexes the first frame and that 

NG(x) is a spatial neighborhood of a pixel location x, 

therefore 

 

   xNyyM G 00 v                     (2) 

 

where locations y is chosen randomly according to a 

uniform law. 

B. Classification Process 

In practice, ViBE does not estimate any probability 

density function, but uses a set of previously observed 

sample values as a pixel model. If the algorithm wants to 
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classify a value v(x) of a pixel x, it compares this value to 

the closest values among the set of samples by defining a 

sphere SR(v(x)) of radius R centered on v(x). If the 

intersection set of this sphere and the set of samples {v1, 

v2, ..., vN }  is above a given radius #min, then the pixel is 

classified as background pixel. Mathematically, #min is 

compared to: 

 

    Nvvvvxv ...,,)(S# 321R                     (3) 

C. Backgroun Model Update 

To update the model, the algorithm uses three powerful 

techniques namely memory-less update policy, random 

sampling and spatial diffusion. 

 Memory-less update policy 

This consists in choosing randomly the sample to be 

updated. If the probability of a sample present in the 

model at time t being preserved after the update of the 

pixel model is given by 
N

N 1  it will have the value 
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for any further time, t+ dt. This can be rewrite as 
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 Random sub-sampling policy 

This policy decides randomly which pixels are updated. 

By default, the adopted time sub-sampling factor ϕ is 16 

meaning that each background pixel value has 1 chance 

in 16 of being selected to update its pixel model 

 Spatial diffusion policy 

It randomly selects neighbors or the actual pixel and 

updates their set of samples following the previous 

principles. By doing so, a spatial consistency is ensured. 

D. Other Approaches Related to Vibe 

Another update mechanism consists of a first-in first-out 

model update policy such as those employed in[28, 29], 300 

samples cover a time window of only 10 seconds (at 30 

frames per second). A pixel covered by a slowly moving 

object for more than 10 seconds would still be included in 

the background model. More recent techniques such as[30] 

suggest that one frame alone cannot distinguish whether 

pixels belong to the foreground or background. Therefore, 

they propose to use the first n frames of the video 

sequence to complete the initialization of the background 

model. Others such as[31], believe that for complex 

dynamic background, the radius R should be increased 

appropriately, so that the background cannot be easily 

detected as foreground. On the other hand, they also 

believe that for simple static background, R should be 

decreased to detect small changes of the foreground. 

IV. DESCRIPTION OF EFF-VIBE TECHNIQUE 

In this section, we are going to explain in details the 

EFF-ViBE approach. The overall functioning can be 

divided as the original ViBE in three main parts namely 

background model initialization, background 

segmentation and background model update. The idea is, 

rather than using the first frame to initialize the N sample 

values of each pixel, we instead use the n first frames. 

This enables to take into consideration the relationship 

between the n recent frames and thus acts as a filter. In 

addition, pixel counting mechanism comes and reinforces 

the process, if a foreground pixel stays in the foreground 

during K consecutive frames; it has certainly become a 

background pixel since it is now a static pixel in the scene 

To see the advantage in using n recent frames to model 

the background we can analyze Fig 1. It shows the 

difference in the results between the use of one frame and 

the use of n recent frames in comparison to the perfect 

waited output. We can easily see that it is better to choose 

the n recent frames for, the results are more accurate. The 

drawback of this approach is that it needs a little bit more 

computational resources (especially memory and time) 

than the one using one frame but, it is acceptable 

compared to the results obtained. 

 

 

Fig.1. Comparison of the results on overpass dataset (a) the ground truth 

(b) the output using one frame (c) the output using n recent frames  

On the other hand, when some modifications occur in 

the background as in the case of movement of branches, 

of the air, of small particles or even small waves at a sea 

surface, we have to handle this complexity. This is 

because those elements in movement do not belong to the 

foreground and thus must be treated as background 

elements. Yet, using a fix radius R can mistakenly 

classify those pixels as foreground pixels. That is why we 

use an adaptive radius  (we have decided to denote it Rad) 

that tends to be steady if the mean distance between the 

current pixel and its N sample background values 

increases gradually for complex dynamic background and 

tends to lightly decrease if the mean distance tends to be 

steady. 

 

 

Fig.2. Comparison of the results on boats dataset (a) the ground truth (b) 

the output using a fixed radius (c) the output using an adaptive radius. 
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Fig 2 shows the difference in the results between the 

use of a fixed radius and the use of an adaptive radius in 

comparison to the perfect waited output. The drawback is 

still the same as the previous one so it is acceptable.  

All this has enabled us to formalize the whole process 

schematically and it is presented on Fig 3 

The proposed EFF-ViBE method has three main parts 

namely background initialization, background 

segmentation and background update as shown in Fig 3. 

The first part is performed during the initialization 

process. While the first n frames are gathered to compute 

the cumulative mean for each pixel, the sample values are  

initialized as well. At the same time, an adaptive radius 

Rad is also computed for each pixel. The second part is 

the segmentation part that classifies a pixel as 

background or foreground pixel if conditions in the 

segmentation block of Fig 3 are verified or not. The third 

part is performed after the segmentation process. It uses 

each new incoming frame to update its parameters. In this 

part, we try to update the parameters used with a 

particular approach. Since computing the mean and the 

standard deviation (at each iteration) for every pixel is 

costly, we use the fact that to compute a new mean, we 

only need to retrieve the first pixel's history value and add 

the new value on the previous mean and do the same for 

the standard deviation.  Consequently the new mean will 

be function of the previous mean, the first value and the 

new observed value. The new standard deviation will use 

the same principle meaning that it will be function of the 

previous standard deviation, the first value and the new 

observed value. In addition, to compute the new adaptive 

radius, we also avoid computing it (at each iteration) 

instead we compute a new radius if and only if the history 

values of the corresponding pixel have changed. In a 

generic manner if we denote by “change” the variable 

that indicates if the history values of a pixel have changed 

or not, the update mechanism will use the history of the 

pixel and the “change” value to compute the new radius. 

The details on the method will be given in the following 

subsections, where the mathematical expressions are 

given. 

A. Modified Background Model Initialization 

To initialize the background model we use three 

techniques. Firstly, we use the initialization process of the 

normal ViBE method to model each background pixel 

with N sample values taken from their direct 

neighborhood. Secondly, we use the n first frames as in[30] 

but with a modification of its value, for we have noticed 

that increasing the number of frames also increase the 

accuracy of the results. On the other hand, if n is too high 

the algorithm becomes slower. That is why we have 

chosen n equal to 30 instead of 20 as in the original paper. 

The chosen frames are used to compute the mean value of 

each pixel and we add this value to the sample values to 

have N + 1 sample values. This leads each pixel to be 

modeled by 
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Thirdly we use the N sample values as in[31] to compute 

an adaptive radius for each pixel. We have obtained our 

values empirically in relation to the values chosen in the 

original paper. After several tests we have noticed that 

the original values can be modified that is c , increased 

a little bit and d decreased. Consequently we have 

chosen c equal to 0.08 rather than 0.06 and d equal to 

0.35 rather than 0.4. We have chosen to denote the 

adaptive radius Rad as      
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Where  xDi
 is the distance between pixel x and 

sample value vi. 

B. Modified Background Model Segmentation 

If we denote by B the segmented image, B(x) will be 

the value of the pixel x in matrix B which is equal to 0 if x 

is a background pixel and 255 if x is a foreground pixel. 

Therefore, to classify a pixel as background pixel or 

foreground pixel we use the following equations for: 
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The parameter Umin will be set to 2 as in[5,30,31], and β 

will be set to 3 as in[30]. In addition, we have noticed that 

in the specific situation of camera jitter and thermal 

condition choosing a factor of 1.5 rather than 4.5 as in the 

original paper to update the last history of the background 

model leads to better results 
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C. Proposed Background Model Update 

To update our model we use the following assumptions. 

Firstly, as stated in[5], we consider that neighboring 

background pixels share a similar temporal distribution 

and that a new background sample of a pixel should also 

update the models of neighboring pixels. For that reason, 

we use the same memory-less up date policy as well as 

the time sampling policy. This enables the sample values 

of each pixel to adapt to background change. 

Secondly, we use a pixel counting mechanism that 

classifies a pixel that stays in foreground within K 

consecutive frames as background pixel. To achieve this 

purpose, we maintain a matrix with the size of the frame. 

In that matrix, each element represents the number of 

time the pixel has appeared in the foreground during K 

consecutive frames. So when a pixel is classified as 

foreground pixel the algorithm increments it 

corresponding counter in the matrix. If the counter is 

greater than a maximum value denoted countermax, the 

pixel is classified as background pixel. It has been shown 

by experiments that a value of 10 for countermax leads to 

good results. 

Thirdly, we update other parameters such as σ, v0(x) 

and dmean. To avoid computing algorithm parameters after 

each new frame, we use the Koenig formula which does a 

better job. To update the parameters we just need to add 

the new value and subtract the first one 

So rather than storing mean and standard deviations, 

we store the sum and the sum of squares. This gives rise 

to the following equations: 
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So if we denote by        xxvxxv tttt 11

00 ,,, 
  the 

value of the cumulative mean and standard deviation at 

time t and t + 1 respectively, we will update them using 

the following formula: 
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Now to update dmean we use the fact that a new value 

for a given pixel should be computed if its sample values 

have been updated. So we use a Boolean matrix where all 

the elements are initialized to false and each time the 

sample values of a given pixel are changed we affect true 

to the element at the corresponding position in the 

Boolean matrix. Each time we want to compute 

Euclidean distance to verify that sample values of a pixel 

belong to the circle of radius Rad, we verify if its 

corresponding Boolean is set to true. If it is the case, a 

new dmean is computed using equation 9 in order to deduce 

the new Rad. Otherwise nothing is done, this technique 

enables to considerably reduce unnecessary computations. 

The decision process will use Equation 6 to Equation 13 

replacing  xv0  by  xv
t 1

0


and   by 

1t  . 

 

V. IMPLEMENTATION AND RESULTS 

Our implementation was done using C/C++ language, 

openCV 3.0 platform[32]. Note that openCV was used here 

just to benefit from its powerful functions to capture 

images. The operating system used is Linux distribution 

Ubuntu 16.04 on a laptop of type Dell INSPIRON 1545 

core duo 2.3MHz X 2 with a RAM of 3GB.The dataset 

used to measure the performance of the algorithms is the 

one provided by changedetection.net dataset[33]. The 

parameters of the proposed method are gathered in Table 

1 

The implementation co de is based on[34] release in July 

2014 thanks to Marc Van Droogenbroeck. We have also 

used the BSLibrary[35] to do our simulations. It is a 

framework that has up to 53 background subtraction 

algorithms already implemented from the oldest to the 

most recent and challenging. We have therefore modified 

the framework to add three new algorithms namely the 

improved ViBE that uses n recent frames to model the 

background, the adaptive ViBE that changes the radius 

accordingly and the proposed EFF-ViBE. The following 

results were obtained 

A. Fast Elimination of Ghost Phenomenon 

When a series of pixels are detected as moving targets, 

but these pixels are not really moving objects[27], we have 

the apparition of ghost phenomenon. The algorithm 

therefore needs to quickly eliminate it apparition. 

However the original ViBE do not delete it as quick as 

we want, this is one of its major drawbacks. To overcome 

this difficulty, we use the cumulative mean computed 

using the n recent frames to reinforce the pixel 

classification. 
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Fig.3. Functional architecture of the system. Here, all the parts of the system are shown. 

Table.1. Parameters used in our implementation 

parameters values 

number of frames 30 

Umin 2 

  3 

time sampling ϕ 16 

countermax 10 

c  
0.08 

d  
0.35 

  
5 

 

The justification of the choice of value n has been 

mentioned in section IV.A. We also introduce the pixel 

counting mechanism which classifies as background a 

pixel that stays in foreground for more than countermax 

consecutive frames. This enables to boost up ghost 

elimination. To clearly illustrate how our approach 

eliminates ghost quicker than the original ViBE, we have 

used the winter Driveway dataset where two cars are at a 

 

 

 

stationary position for a long period (more than 1800 

frames) before one of the two decides to move. The 

following observations have been made: 

 

 The original ViBE proposed in 2011 (see line c of 

Figure 4) needs a longer period (more than 600 

frames) to eliminates ghost apparition 

 For version proposed in 2014 by the same author 

(see line d of Figure 4), ghost phenomenon 

elimination is much better. However the accuracy 

and quality of results have decreased. 

 On the other hand, EFF-ViBE (see line e of Figure 

4) needs less than 200 frames to perform the same 

task. In addition, the detected ghost is quickly 

eliminated (already eliminated at frame 2100) 

while it is still present at frame 2100 and at frame 

2200 in both original and improved ViBE. The 

approach therefore outperforms the existing ViBE 

algorithms so can be adopted in complex 

background. 
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B. Effect of Adaptive Radius 

As said earlier, for complex dynamic background, the 

radius should be increased appropriately, so that the 

background cannot be easily detected as foreground. This 

is because in basic ViBE algorithm, model matching 

always uses a fixed global radius. Yet, Le Chang et al[31] 

have shown by experiments that the simple radius policy 

ignores the complexity of the local environment and the 

uncertainty of changes. So it is therefore difficult to detect 

the target effectively in complex environment. That is why 

our third contribution consists of computing for each pixel 

a modified adaptive radius (we have decided to denote Rad) 

that depends on a variable parameter dmean computed using 

equation 9. It also uses fixed parameters εd = 0.08, εd = 

0.35, δ = 5.  

 

 

 

Fig.4. A target moves from a stationary position (winter  Drive way). (a) the 1900th,2000th, 2100th, 2200thframe; (b) ground truth images provided by 

the dataset; (c) the detection results of the original ViBE; (d) the detection results of improved version of ViBE;(e) the detection results of EFF-ViBE 

proposed method. 

To illustrate the effect of adaptive radius we have used 

the canoe data-set which consists of a canoe moving on 

sea disturbed by win that creates small waves on the sea 

surface. The following observations have been made: 

 

 Normally the disturbance at the sea surface belongs 

to background but the original ViBE (see line c of 

Figure 5) tends to detect it as foreground  

 The improvement (2014) tries to solve this failure 

(see line d of Figure 5), but the quality of the 

detected moving boat becomes poorer. 

 EFF-ViBE on other hand solves these problems by 

computing the radius in an adaptive manner, 

consequently the effect of the waving background 

is considerably reduced (see line e of Figure 5). 

Once more our approach outperformed original 

ViBE so can be used in complicated background. 

C. Measure of Performances 

We have recorded the precision, recall and F-measure 

of nine algorithms: the original ViBE algorithm, the 

execution of ViBE using cumulative mean and pixel 

counting mechanism, the execution of ViBE using 

adaptive radius, the proposed EFF-ViBE method and 

some challenging algorithms such as Codebook[17], 

KDE[14], MOG[6], PBAS[36] and SUBSENSE[37]. The 

results are shown in Table 2, Table 3 and Table 4. 
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Fig.5. Evaluation of the adaptive radius (canoe). (a) the 600th,900th, 960th, 1040thframe;(b) the real background corresponding with (a); (c) the detection 

results of the original ViBE;(d) the detection results of improved version of ViBE; (e) the detection results of EFF-Vibe proposed method. 

The datasets used are those of CDNet 2014 and to have 

the results we have used the BMC-wizard software to 

compute those values. The process is as follows, we take 

the segmented images obtained by the chosen algorithm 

as first set of parameters and the second set of parameters 

to the BMC-wizard is the original ground truth of the 

input data provided by the dataset. 

Mathematically, the precision Pr, recall R and the F-

measure F- measure are computed using the formula 

 

 
FPTP

TP
ecision


PrPr                       (18) 

 

 
FNTP

TP
Rcall


Re                          (19) 

 

 
R

R
FMeasureF






Pr

Pr2
                  (20) 

 

where TP denote the number of foreground pixels truly 

classified as foreground, FP the number of background 

pixels wrongly classified as foreground and FN the 

number of foreground pixels wrongly classified as 

background. 

 

 

 

 Quantitative analysis 

The analysis of Table 2 shows how EFF-ViBE 

performs in terms of recall compared to the mentioned 

algorithms and it can be seen that it outperforms all the 

chosen algorithms with an average percentage of 65% of 

the cases (i.e among the 53 different challenging 

background situations proposed by the dataset) except 

PBAS algorithm where it outperforms only on 30% of the 

cases. The same observations can be made on Table 3, 

and here the results are even better for the average 

percentage of out-performance is about 90% for the other 

algorithm and 50% for PBAS algorithm. Finally 

combining these results to measure the F-measure (also 

called F-score) gives rises to Table 4 where the average 

percentage of outperformance is 85% for other algorithms 

and 40% for PBAS algorithm. 

 Qualitative analysis 

After having analyzed quantitatively the results, let us 

look at the quality aspect. Figure 6 presents the results 

obtained from different executions of algorithms for 

frames taken randomly in four datasets namely blizzard 

(1), park (2), sofa (3) and turnpike (4). Line (A) is the 
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input frame, Line (B) is the ground truth image, Line (C) 

execution of PBAS algorithm, Line (D) execution of 

Subsense algorithm, Line (E) execution of Original ViBE 

algorithm, Line(F) execution of improved ViBE 

algorithm with n frames initialization, Line (G) execution 

of adaptive ViBE algorithm and Line (H) execution of 

EFF-ViBE algorithm. 

 

It can therefore be seen how accurate are our proposed 

approach results compared to the other algorithms in 

relation to the ground truth image. 

We can also notice that, even though at the quantitative 

analysis, the PBAS results were outperforming our 

approach; it is no more the case if we analyze the pictures. 

This was because PBAS detects a lot of background pixel 

as foreground pixel which was leading to modification of 

detection parameters (TP, FP and FN) and consequently 

good quantitative results were obtained. 

 

 

Fig.6. Analysis of results 
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Table 2. Recapitulating table of Recall 

Category Dataset PBAS SUBSENSE ViBE ViBE A. ViBE I. EFF-ViBE 

Bad weather blizzard 0.508 0.508 0.503 0.503 0.503 0.506 

skating 0.535 0.535 0.528 0.528 0.532 0.536 

snowfall 0.498 0.508 0.481 0.506 0.508 0.506 

wet snow 0.507 0.506 0.504 0.509 0.501 0.507 

Baseline highway 0.664 0.599 0.570 0.577 0.570 0.598 

office 0.613 0.582 0.548 0.591 0.599 0.553 

pedestrians 0.707 0.518 0.611 0.632 0.658 0.521 

pet2006 0.542 0.544 0.527 0.521 0.527 0.542 

Camera jitter badminton 0.607 0.529 0.529 0.521 0.514 0.549 

boulevard 0.565 0.519 0.516 0.557 0.549 0.513 

sidewalk 0.565 0.526 0.516 0.517 0.516 0.523 

traffic 0.577 0.545 0.571 0.550 0.545 0.579 

Dynamic 

background 
boats 0.513 0.513 0.502 0.508 0.505 0.509 

canoe 0.525 0.506 0.536 0.535 0.530 0.530 

fall 0.643 0.544 0.541 0.529 0.526 0.559 

fountain1 0.566 0.502 0.505 0.525 0.524 0.508 

fountain2 0.669 0.502 0.526 0.523 0.524 0.503 

overpass 0.554 0.512 0.511 0.511 0.511 0.512 

Intermittent 

object motion 
abandon B. 0.543 0.533 0.479 0.488 0.497 0.524 

parking 0.534 0.500 0.517 0.519 0.513 0.500 

sofa 0.710 0.576 0.609 0.604 0.590 0.770 

streetlight 0.615 0.520 0.552 0.549 0.542 0.570 

tram stop 0.553 0.526 0.512 0.507 0.515 0.574 

Win.D.W.S. 0.557 0.501 0.538 0.535 0.531 0.602 

Low frame 

rate 
port017fps 0.534 0.499 0.508 0.507 0.507 0.500 

tram C. 0.544 0.512 0.534 0.532 0.530 0.515 

Tunnel E. 0.514 0.500 0.515 0.514 0.514 0.515 

turnpike 0.589 0.533 0.547 0.544 0.541 0.538 

Nigth video bridge E. 0.542 0.501 0.501 0.503 0.502 0.503 

busy B. 0.534 0.501 0.501 0.501 0.501 0.501 

fluid high. 0.581 0.505 0.503 0.548 0.543 0.543 

StreetC.A.N. 0.510 0.503 0.502 0.502 0.502 0.502 

tramstation 0.551 0.514 0.508 0.518 0.508 0.508 

wint. Street 0.604 0.508 0.525 0.525 0.539 0.510 

PTZ Cont. p. 0.540 0.507 0.518 0.505 0.524 0.522 

Intermi.  p. 0.527 0.511 0.515 0.512 0.519 0.521 

Cam. PTZ 0.548 0.541 0.532 0.522 0.517 0.531 

Zoom 0.586 0.505 0.438 0.439 0.450 0.458 

Shadow backdoor 0.599 0.542 0.541 0.538 0.536 0.525 

bungalows 0.651 0.589 0.583 0.581 0.577 0.561 

bustation 0.728 0.567 0.566 0.564 0.566 0.526 

copy M. 0.675 0.655 0.537 0.536 0.532 0.578 

cubicle 0.683 0.558 0.621 0.619 0.612 0.532 

people S. 0.740 0.606 0.588 0.583 0.581 0.576 

Thermal corridor 0.738 0.622 0.604 0.601 0.590 0.610 

dining r. 0.699 0.614 0.612 0.607 0.594 0.670 

lakeside 0.634 0.538 0.548 0.545 0.531 0.589 

library 0.612 0.591 0.567 0.564 0.555 0.624 

park 0.670 0.509 0.628 0.503 0.627 0.677 

Turbulence turbulence0 0.533 0.502 0.500 0.5003 0.500 0.501 

turbulence1 0.513 0.501 0.503 0.503 0.503 0.518 

turbulence2 0.500 0.501 0.501 0.501 0.501 0.500 

turbulence3 0.527 0.506 0.504 0.504 0.503 0.529 



 EFF-ViBE: An Efficient and Improved Background Subtraction Approach based on ViBE 11 

Copyright © 2019 MECS                                                          I.J. Image, Graphics and Signal Processing, 2019, 2, 1-14 

Table 3. Recapitulating table of precision 

Category Dataset PBAS SUBSENSE ViBE ViBE A. ViBE I. EFF-ViBE 

Bad weather blizzard 0.698 0.703 0.714 0.714 0.714 0.714 

skating 0.539 0.634 0.632 0.634 0.692 0.692 

snowfall 0.497 0.704 0.472 0.715 0.545 0.711 

wet snow 0.651 0.655 0.631 0.548 0.507 0.645 

Baseline highway 0.867 0.854 0.844 0.844 0.842 0.852 

office 0.833 0.839 0.834 0.594 0.616 0.827 

pedestrians 0.746 0.856 0.592 0.627 0.693 0.848 

pet2006 0.833 0.858 0.857 0.590 0.621 0.843 

Camera jitter badminton 0.612 0.632 0.616 0.590 0.637 0.639 

boulevard 0.677 0.694 0.623 0.690 0.686 0.567 

sidewalk 0.554 0.545 0.511 0.531 0.531 0.538 

traffic 0.687 0.688 0.678 0.687 0.684 0.679 

Dynamic 

background 
boats 0.702 0.699 0.544 0.575 0.553 0.628 

canoe 0.659 0.654 0.629 0.629 0.628 0.639 

fall 0.643 0.848 0.669 0.657 0.666 0.648 

fountain1 0.817 0.763 0.612 0.688 0.687 0.633 

fountain2 0.837 0.821 0.699 0.705 0.703 0.807 

overpass 0.826 0.801 0.728 0.740 0.737 0.792 

Intermittent 

object motion 
abandon B. 0.514 0.513 0.494 0.496 0.499 0.509 

parking 0.507 0.503 0.506 0.506 0.506 0.504 

sofa 0.652 0.873 0.884 0.878 0.885 0.824 

streetlight 0.534 0.608 0.521 0.521 0.524 0.522 

tram stop 0.509 0.508 0.502 0.501 0.503 0.506 

Win.D.W.S. 0.737 0.518 0.689 0.691 0.686 0.675 

Low frame 

rate 
port017fps 0.543 0.440 0.530 0.530 0.528 0.557 

tram C. 0.530 0.529 0.533 0.532 0.532 0.529 

Tunnel E. 0.545 0.504 0.573 0.573 0.573 0.573 

turnpike 0.569  0.601 0.598 0.598 0.598 0.598 

Nigth video bridge E. 0.521 0.504 0.508 0.517 0.513 0.521 

busy B. 0.523 0.506 0.511 0.513 0.512 0.511 

fluid high. 0.631 0.542 0.542 0.617 0.620 0.620 

StreetC.A.N. 0.631 0.627 0.590 0.579 0.579 0.596 

tramstation 0.585 0.575 0.569 0.553 0.579 0.569 

wint. Street 0.558 0.519 0.515  0.516 0.531 0.536 

PTZ Cont. p. 0.559 0.539 0.539 0.513 0.562 0.554 

Intermi.  p. 0.532 0.552 0.535 0.537 0.551 0.558 

Cam. PTZ 0.529 0.583 0.550 0.565 0.581 0.574 

Zoom 0.596 0.516 0.423 0.424 0.425 0.430 

Shadow backdoor 0.845 0.829 0.775 0.779 0.776 0.822 

bungalows 0.777 0.790 0.746 0.749 0.758 0.785 

bustation 0.740 0.841 0.604 0.610 0.617 0.857 

copy M. 0.712 0.905 0.708 0.721 0.713 0.884 

cubicle 0.818 0.879 0.660 0.662 0.677 0.889 

people S. 0.878 0.877 0.674 0.672 0.680 0.880 

Thermal corridor 0.869 0.911 0.937 0.937 0.935 0.868 

dining r. 0.794 0.849 0.802 0.818 0.860 0.842 

lakeside 0.784 0.875 0.879 0.882 0.910 0.890 

library 0.634 0.816 0.818 0.816 0.820 0.816 

park 0.668 0.738 0.687 0.527 0.724 0.678 

Turbulence turbulence0 0.609 0.679 0.529 0.527 0.530 0.631 

turbulence1 0.541 0.659 0.561 0.561 0.558 0.675 

turbulence2 0.501 0.721 0.509 0.509 0.512 0.720 

turbulence3 0.645 0.651 0.598 0.599 0.598 0.642 
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Table 4. Recapitulating table of F-measure 

Category Dataset PBAS SUBSENSE ViBE ViBE A. ViBE I. EFF-ViBE 

Bad weather blizzard 0.588 0.590 0.590 0.590 0.590 0.592 

skating 0.537 0.604 0.575 0.577 0.601 0.604 

snowfall 0.498 0.590 0.476 0.591 0.526 0.591 

wet snow 0.570 0.572 0.560 0.528 0.504 0.567 

Baseline highway 0.752 0.704 0.686 0.685 0.680 0.703 

office 0.706 0.687 0.661 0.593 0.608 0.662 

pedestrians 0.743 0.645 0.601 0.629 0.675 0.645 

pet2006 0.657 0.666 0.653 0.554 0.570 0.666 

Camera jitter badminton 0.609 0.576 0.569 0.554 0.569 0.590 

boulevard 0.616 0.593 0.564 0.616 0.610 0.539 

sidewalk 0.559 0.535 0.514 0.524 0.524 0.531 

traffic 0.627 0.608 0.620 0.611 0.607 0.625 

Dynamic 

background 
boats 0.593 0.591 0.522 0.539 0.528 0.562 

canoe 0.585 0.570 0.579 0.578 0.575 0.579 

fall 0.643 0.663 0.598 0.586 0.587 0.600 

fountain1 0.669 0.605 0.553 0.596 0.594 0.564 

fountain2 0.744 0.623 0.601 0.600 0.600 0.620 

overpass 0.663 0.625 0.600 0.605 0.603 0.622 

Intermittent 

object motion 
abandon B. 0.528 0.523 0.486 0.492 0.498 0.517 

parking 0.520 0.502 0.511 0.513 0.509 0.502 

sofa 0.680 0.694 0.721 0.715 0.708 0.795 

streetlight 0.572 0.524 0.536 0.534 0.533 0.545 

tram stop 0.530 0.517 0.507 0.504 0.509 0.538 

Win.D.W.S. 0.635 0.509 0.605 0.603 0.599 0.637 

Low frame 

rate 
port017fps 0.538 0.468 0.519 0.518 0.517 0.527 

tram C. 0.537 0.520 0.533 0.532 0.531 0.522 

Tunnel E. 0.529 0.502 0.543 0.542 0.542 0.543 

turnpike 0.579 0.565 0.571 0.570 0.568 0.571 

Nigth video bridge E. 0.531 0.502 0.504 0.510 0.507 0.512 

busy B. 0.529 0.503 0.522 0.507 0.507 0.506 

fluid high. 0.605 0.523 0.522 0.581 0.581 0.579 

StreetC.A.N. 0.564 0.558 0.542 0.538 0.538 0.546 

tramstation 0.567 0.543 0.537 0.535 0.539 0.537 

wint. Street 0.581 0.513 0.520 0.521 0.535 0.523 

PTZ Cont. p. 0.550 0.522 0.529 0.509 0.542 0.538 

Intermi.  p. 0.530 0.531 0.525 0.524 0.534 0.539 

Cam. PTZ 0.538 0.561 0.541 0.542 0.547 0.551 

Zoom 0.591 0.511 0.430 0.431 0.432 0.443 

Shadow backdoor 0.701 0.656 0.637 0.636 0.634 0.641 

bungalows 0.708 0.674 0.655 0.655 0.655 0.655 

bustation 0.737 0.678 0.584 0.586 0.591 0.652 

copy M. 0.693 0.760 0.611 0.615 0.610 0.699 

cubicle 0.744 0.683 0.640 0.619 0.643 0.666 

people S. 0.803 0.717 0.628 0.625 0.622 0.696 

Thermal corridor 0.798 0.739 0.735 0.733 0.724 0.717 

dining r. 0.744 0.712 0.699 0.697 0.703 0.746 

lakeside 0.701 0.666 0.675 0.674 0.671 0.709 

library 0.622 0.685 0.670 0.667 0.662 0.708 

park 0.669 0.602 0.656 0.513 0.672 0.677 

turbulence turbulence0 0.568 0.577 0.514 0.513 0.514 0.558 

turbulence1 0.527 0.569 0.530 0.531 0.529 0.585 

turbulence2 0.500 0.591 0.505 0.505 0.506 0.590 

turbulence3 0.580 0.570 0.547 0.547 0.547 0.580 
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VI. CONCLUSION 

This paper has presented an efficient background 

subtraction algorithm based of ViBE for complex 

background. For that, we studied related work done on 

the original ViBE algorithm with some improvements. 

Later on, the EFF-ViBE proposed method has been 

explained in details with all the needed parameters. It 

combines an improved ViBE that uses a cumulative mean 

and a pixel counting mechanism to quickly eliminate 

ghost and on an adaptive ViBE that computes an adaptive 

radius depending on background variation. Finally, the 

obtained results have been presented showing the 

efficiency of the method in comparison with the existing 

ones. With an average frame rate of 30fps it can also been 

used in real time applications. For future work, we intend 

to speed-up the proposed method and see how it can be 

adapted for further applications. 
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