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Abstract—The Poincaré map and its width and length are 

known as a criterion for short-term variations of 

electroencephalogram (EEG) signals. This study 

evaluates the effect of time delay on changes in the width 

of the Poincaré map in the EEG signal during different 

epilepsy states. The Poincaré map is quantified by 

measuring the standard deviation over 1X  (SD1) and the 

standard deviation over 2X  (SD2). Poincaré maps are 

drawn with one to six delay in three sets, including 

normal, inter-ictal, and ictal. The results indicate that the 

width of the Poincaré map increases with increasing 

latency in the ictal state. During ictal state, the width of 

the Poincaré map is achieved by applying a unit delay of 

102 ± 8.7 and a six-unit delay of 305 ± 13.6. The 

Poincaré map is shifted to lower values during ictal state. 

Also, the results indicate that with increasing delay in the 

ictal state, the increasing rate of SD1 value is higher than 

the previous ones, such as inter-ictal and normal. The 

Poincaré map of the EEG signal can discover the 

meaningful changes in the different epilepsy states.  

 

Index Terms—Electroencephalogram, Epilepsy, Lagged 

Poincaré map, Nonlinear analysis.  

 

I. INTRODUCTION  

Epilepsy, also known as seizure disorder, is a fairly 

common neurological disorder and is ranked second after 

stroke, which affects over 50 million people worldwide 

[1]. The diagnosis of epilepsy or seizure allows the 

choice of surgical treatment or medicine [2]. The 

electroencephalogram (EEG) signal is a non-invasive 

approach and widely available biomedical modality that 
can provide valuable information about epilepsy-related 

disorders [3], [4]. The identification of epileptic seizures 

in the EEG signals is an important part of today’s 

research [5], [6]. The features derived from EEG signals 

[3], [4], [7], [8] can be used for discrimination of 

epileptic seizures.  

The representation of the phase-space is one of 

methods that provides an approach to analyze the 

dynamic behavior of a system. The standard Poincaré 

map (first-return map) is an interesting and simple 

nonlinear method, where a signal is plotted against itself 

after a time delay [9]. A lagged Poincaré map (multiple 

lag correlation) is a scatter plot where a timed signal is 

plotted against itself after 𝑙𝑎𝑔 samples. 

Various nonlinear approaches have been used to 

understand the dynamical changes in the information 

processing [3], [8], [10]. Goit et al. proposed [11] a 

Poincaré map analysis of heart rate variability (HRV) in 

control subjects in comparison with patients with 

diagnosed epilepsy. Ali et al. based on Poincaré analysis 

presented [12] children with epilepsy may be particularly 

susceptible to seizure-induced arrhythmias. Moridani and 

Farhadi used [13] HRV signal as a biomarker for epilepsy 

seizure prediction using Poincaré map. The results show 

that the HRV contains valuable information and can be 

used as an epilepsy seizure predictor.  

Selvakumari and Mahalakshmi proposed [14] a seizure 

recognition by analyzing high dimensional phase-space 

using Poincaré section. The CHB-MIT database is used 

for 23 subjects of different age groups. Their results 

obtained 96.77% accuracy, 95.011% sensitivity, and 

97.97% selectivity. Sharif and Jafari proposed [15] an 

optimum Poincaré map for extracting significant samples 

from EEG signals in different epilepsy states. The 

optimum Poincaré plane is achieved with more than 99% 

data information transferred. 

Kamalizonouzi proposed [16] an optimal inertial 

sensor placement to detect seizure episodes in patients. 

The results show that the modified Poincaré map can be 

an effective method for seizure detection. Amiri et al. 

proposed [1] a bifurcation analysis of intracranial EEG 

signals in patients with temporal lobe epilepsy (TLE) 

using Poincaré map. They proposed that the Poincaré 

map is a suitable candidate for evaluating the dynamics of 

neural tissue.  

Zabihi et al. [17] proposed an EEG phase space 

representation via time-delay embedding approach and 

Poincaré section for patient-specific seizure detection. 

The phase spaces were reduced by principal component 

analysis (PCA) before being fed to Naive Bayesian and 

linear discriminant analysis (LDA). Their results showed 

93.21% specificity and 88.27% sensitivity in seizure 

detection. Sharif and Jafari proposed [18] an epileptic 

seizures prediction from EEG signal using analysis of 
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ictal rules on a Poincaré map. Their proposed method had 

an ability in extracting good features from EEG signal. 

Ronkainen et al. proposed [19] a measurement of inter-

ictal circadian heart rate (HR) dynamics in patients with 

TLE. The results show that TLE is associated with 

diminished HR variability. Kamath proposed [20] an 

approach based on Hilbert transform scatter plots (HTSPs) 

for the analysis of EEG dynamics in normal subjects and 

epileptic patients. The results showed the appropriateness 

of applying the nonlinear method for data analysis. 

Jeppesen et al. proposed [21] an algorithm for epileptic 

seizures detection with a modified HR variability based 

on Lorenz/Poincaré plot. Suorsa et al. proposed [22] 

long-term changes in inter-ictal HRV dynamics in 

patients with TLE using Poincaré map. The results show 

that after the follow-up, the standard deviation over 1X  

(SD1) and the standard deviation over 2X  (SD2) 

features were decreased in refractory TLE patients 

compared to baseline. 

This paper employs a lagged Poincaré map for 

detection of different epilepsy states. The Poincaré map 

and its width and length are known as a criterion for 

short-term variations of EEG signals. This study 

evaluates the effect of time-delay on changes in the width 

of the Poincaré map in the EEG signal during different 

epilepsy states. 

The organization of the paper is as follows. In Section 

II, the EEG dataset description and the proposed 

approach based on lagged Poincaré map are explained. In 

Section III, the qualitative results are presented. In 

Section IV, the discussions are presented. Finally, the 

conclusion is given in the last section. 

 

II. MATERIALS AND METHODS 

The proposed approach includes the description of data 

and lagged Poincaré Mapping. In the following, these two 

steps are briefly described. 

A.  Data description 

The Bonn University EEG database, described by 

Andrzejak et al. [23], is from three states: normal, inter-

ictal, and ictal (epileptic). Fig. 1 shows sample normal, 

inter-ictal, and ictal EEG signals. The EEG database is 

categorized into five sets (denoted A-E) that each of them 

contains 100 single channel EEG segments of 23.6 s 

duration and sampled at 173.61 Hz (each data segment 

has 4096 samples).  

The participants were in awake and relaxed states with 

their eyes open for set A and eyes closed for set B, 

respectively. Sets C and D contained only activity 

measured during inter-ictal state. Finally, set E contained 

only seizure attack activity (ictal state). For more details 

refer to [9], [23]. 

Fig.1. Illustration of the EEG signals. 

B.  Lagged Poincaré map  

Henri Poincaré developed a set of system states 

defined over time [24]. Poincaré map is a well-known 

approach for analyzing the type of attractors. The 

Poincaré map is a nonlinear representation of a signal in a 

Cartesian plane [25] and used to quantify self-similarity 

[26]. The Poincaré map is known as a criterion for short-

term variations of the biomedical signal. A phase space 

allows studying variations in a signal only with respect to 

itself. 

A standard Poincaré map (first-return one-dimensional 

map) is a scatter plot (two- or three-dimensional 

graphical representation) in which a timed signal nX  is 

plotted against its delayed version 1nX   [20]. The line-

of-identity (the diagonal line) is the / 4rad 
imaginary diagonal line on the Poincaré map and the 

points falling on this line has the property 1n nX X  . 

A lagged Poincaré map (multiple lag correlation) is a 

scatter plot where a timed signal nX  is plotted against 

its delayed version n lagX   [20]. The lagged Poincaré 

map can prepare more information about the behavior of 

signal than the standard Poincaré map [27]. This 

coordinate system is transformed by a two-dimensional 

rotation with the same angle  with respect to X -axis. 

The transform is given by 
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The scatter pattern of Poincaré map reflects the 

randomness and variability in the signals. To construct 

the phase space, one of the most interesting 

representations is allowing a signal to be analyzed along 

with its evolution in time as shown in Fig. 2. 

 

 

Fig.2. Phase space construction example. The lagged Poincaré map is a 

nonlinear analytical approach in which a timed signal is plotted against 

itself after lag samples. 

The Poincaré map of a random signal shows around 

oval pattern [28]. Poincaré maps of EEG signals are 

constructed from 6 s epochs of the signal. The time lag is 

set to 1/173.61 s (i.e. 1/173.61 s, about 6 ms). The 

Poincaré map is evaluated quantitatively through the 

computation of the SD indexes of the map, which can be 

obtained by best-fitting an oval to the plot shape as 

shown in Fig. 3. The extracted parameters are the 

intersection of the lines 1X  and 2X  (centroid), SD1, 

SD2, and SD1/SD2. 

 

 

Fig.3. Standard Poincaré map with a unit delay (lag-1) from a sample 

EEG signal. The values of SD1 and SD2 indicate the distribution of 

points on the width and length elliptical axis, respectively. 

SD1 and SD2 parameters represent the magnitude of 

the width (minor axis) and length (major axis) axes of the 

ellipse, respectively. SD1 and SD2 can be defined as (3), 

 

1 var( 1)

2 var( 2)

SD X

SD X





                          (3) 

 

where var( )X is the variance of X [29]. For more 

details see [30]. 

 

III. RESULTS 

Simulations have been done in MATLAB. Fig. 4 

shows the temporal dynamic of 20 points of similar 

intervals of a record in (a) normal, (b) inter-ictal, and (c) 

ictal. Fig. 4(a) shows the chaotic behavior of the EEG 

signal in the normal state. Figs. 4(b) and 4(c) show the 

behavior of EEG signals in inter-ictal and ictal, 

respectively, as well as the movement towards the order. 
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(c) Ictal state 

Fig.4. The temporal dynamic of 20 points from similar intervals of a 

record in (a) normal state, (b) inter-ictal state, and (c) ictal state. 

The standard Poincaré map with a unit delay of a 

record for a single brain signal segment is presented in 

Fig. 5, for (a) normal state, (b) inter-ictal state, and (c) 

ictal state. During ictal state, the width of the Poincaré 

map is achieved by applying a unit delay of 8.1 ± 1.2 and 

a six-unit delay of 15.9 ± 0.8. The results indicate that the 

width of the Poincaré map increases with increasing 

latency during the ictal state. 

 

 
(a) Normal state 

 
(b) Inter-ictal state 

 

 
(c) Ictal state 

Fig.5. Standard Poincaré map with a unit delay from an EEG segment, 

(a) normal state, (b) inter-ictal state, and (c) ictal state. 

As shown in Fig. 5, there are significant differences 

between Poincaré maps in terms of width and length of 

the plan. Also, during the ictal state, the shape points of 

the Poincaré map have been reduced to lesser values. The 

Poincaré map with a delay of one to six (1-6) for the EEG 

signals is calculated, and the width of Poincaré maps in 

each delay is calculated.  

Poincaré map with lag-6 in (a) normal state, (b) inter-

ictal state, and (c) ictal state is shown in Fig. 6. 
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(a) Normal state 

 

 
(b) Inter-ictal state 

 

 
(c) Ictal state 

Fig.6. A Poincaré map with lag-6 in (a) normal state, (b) inter-ictal state, 

and (c) ictal state. 

The quantitative descriptors SD1 and SD2 are used to 

compare the results obtained from the different epilepsy 

states. Poincaré maps with six lags (1-6) are constructed, 

and the width of the Poincaré map for each lag is 

calculated. During ictal, the width of the Poincaré map is 

achieved by applying a unit delay of 102 ± 8.7 and a six-

unit delay of 305 ± 13.6.  

 

IV. DISCUSSION 

The Poincaré map idea is interesting because it 

describes a global perspective on the dynamics of neural 

tissue, which may make more accurate models [1]. We 

performed geometrical analysis that is commonly used in 

neuroscience. When the state-space method is used to 

analyze the EEG signal, the suitable embedding 

dimension should be selected to achieve the useful 

information. Although some approaches for estimating 

the embedding dimension have been proposed, it is not 

possible to accurately determine the optimal dimensions 

because the dimensionality of the attractor is not constant 

and is usually unknown for experimental data, which 

follows the dynamic of the time course. 

Researchers have shown interest in maps with different 

time-delays to achieve a better view into the signal. 

Usually, the time-delay is multiple of the sampling time 

or the cycle length of the signal [31]. This research has 

investigated the effect of increasing the delay in the 

Poincaré map on EEG signal in different epileptic states. 

In the Poincaré map, SD1 and SD2 are significantly less 

in patients with epilepsy. The width of the Poincaré map 

increases with increasing latency. The results show that in 

various epileptic states, Poincaré maps with different 

delays have different shapes. The Poincaré map is also 

shifted to lower values during ictal state. It is also shown 

that with increasing delay in the ictal state, the increasing 

rate of SD1 value is higher than the previous ones, such 

as inter-ictal and normal. 

 

V. CONCLUSION 

The simplicity of calculating the width of the Poincaré 

map and its adaptation to the chaotic nature of vital 

signals can be useful for evaluating the brain signal in 

different states of epilepsy. During ictal, the width of the 

Poincaré map is achieved by applying a unit delay of 102 

± 8.7 and a six-unit delay of 305 ± 13.6. Specifically, the 

analysis of data has shown that the proposed lagged 

Poincaré map can be an effective tool for detecting 

different epilepsy states.  
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