
I.J. Image, Graphics and Signal Processing, 2018, 8, 1-8
Published Online August 2018 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijigsp.2018.08.01

Copyright © 2018 MECS I.J. Image, Graphics and Signal Processing, 2018, 8, 1-8

Efficient 2D Convolution Filters Implementations

on Graphics Processing Unit Using NVIDIA

CUDA

Mouna Afif, Yahia Said, Mohamed Atri
Laboratory of Electronics and Microelectronics (EμE), Faculty of Sciences of Monastir

University of Monastir, 5000, TUNISIA

Email: mouna.afif@outlook.fr

Received: 07 June 2018; Accepted: 03 July 2018; Published: 08 August 2018

Abstract—Convolution algorithms present a key

component and a significant step in image processing

field. Despite their high arithmetic complexity, these

algorithms are widely used because of their great

importance for extracting image properties and features.

Convolution algorithms require significant computing

time, for that we propose a GPU acceleration of these

algorithms by using the programming language CUDA

presented by NVIDIA. Since these algorithms consume a

lot of computing power, we understand the impact of the

implementation of this type of algorithm on the

acceleration of processing. GPU implementation present

a suitable path to achieve better results than other

implementation , for that optimizing time consuming time

consuming of applications became an increasingly

important task in many research areas. The goal of this

work is to try to boost convolution algorithms execution

time by adopting GPU implementations to accelerate

treatments and to achieve real time constraints.

Index Terms—Convolution algorithms, Sobel filter,

Gaussian Blur, CUDA, GPU, CPU.

I. INTRODUCTION

Convolution presents a crucial step in many computer

vision algorithms. Image convolution is widely used in

many fields of research as edge detection [1], image

classification [2], image recognition [3], object detection

[4], etc.

The convolution consists on applying a convolution

mask to the input image pixels along the x and y

directions. In other words, the convolution consists of

performing a parallel and independent calculation of the

pixels of the images, thus validating the relevance of the

implementation of the convolution algorithms on parallel

architectures. Convolution algorithms present a common

process and a primordial step in image processing field,

especially used for object detection and recognition,

image segmentation and features extraction. This type of

algorithms require high level of time consuming because

of repeated calculation of the convolution filter

application for each pixel of the image. Since these

algorithms require a lot of computing time, we

understand the impact of the implementation of these

types of algorithms on the acceleration of processing.

Applying a kernel filter to a given image is an

independent operation between an image pixels and its

neighbor pixel, for that we can calculate image

convolution in a parallel way by adopting GPU

computing. With the great necessity of the acceleration of

the processing of image processing algorithms.

Parallelization of algorithms will be the best choice as

well as the best method to achieve more efficient and

faster results. For this fact, we will need to use

architectures that are more modern and more adapted to

our needs. Exploring parallelism by using GPUs

implementations is a common strategy adopted by

researchers to accelerate process.

GPUs present a very attractive way to harness all its

resources provided to perform parallel algorithms and to

improve much better results than others types of

implementations. The high number of cores present in

GPU architecture allows thousands of threads to be

running simultaneously, yielding to exploit efficiently

GPU resources. Due to its attractive cost- performance

ratio, GPU has become a competing platform and it is

increasingly used to gain in computing resources as well

as algorithms runtime. Developers have exploited on

massively parallel architecture of GPU in order to reduce

computational resources and time consuming of

expensive algorithms. To obtain optimal

implementations of applications on GPU in order not

only require rendering sequential algorithm into parallel

one, but require to pay attention about data transfer

between CPU and GPU, also another important thing to

understand is the bottlenecks and tradeoffs caused by

memory latency.

II. RELATED WORKS

Image convolution is one of the important and crucial

step in image processing algorithms. Convolution as a

basic concept has been used in many fields of research

such as: telecommunication, electrical engineering,

acoustics, optics image segmentation and tracking and

2 Efficient 2D Convolution Filters Implementations on Graphics Processing Unit Using NVIDIA CUDA

Copyright © 2018 MECS I.J. Image, Graphics and Signal Processing, 2018, 8, 1-8

computer graphics. Image convolution is a parallelizable

process, where each input image pixel is affected by a

given convolution mask or kernel. Convolution process is

an independent task between image pixel for that,

exploring parallelism is the better strategy adopted by

developers for accelerating convolution process. Most of

convolution filters algorithms consist of similar

computations for each input image pixels. This fact

means that this category of algorithms is suitable for

implementations on parallel architectures. This type of

algorithms is computationally intensive, which impose

significant power computation, especially when we need

to satisfy real time constraints. Due to their big need to

parallelism, convolution algorithms are better

implemented and performed on parallel architecture such

as FPGAs (Field Programmable Gate Arrays) [5] and

GPUs (Graphic Processing Units) [6].

As a convolution filter, among the most used

algorithms for filtering and edge detection we find the

Sobel filter. This method used especially for edge

detection to facilitate features extraction process from

images and videos. Several attempts to accelerate sobel

filter algorithm on GPU are present in literature.

Chouchene and Al [7] have implemented the sobel filter

algorithm on GPU by using CUDA NVIDIA technology

[8]. They achieve good speed ups comparing to the same

treatment performed on CPU. Other attempting of sobel

filter algorithm acceleration by using GPU

implementation presented in our previous work [9]. We

have achieved good accelerations of our algorithm by

using CUDA as a programming language. Accelerations

achieved comes up to 15 time comparing to the CPU

implementation. Our results achieved outperform those

obtained by Chouchene and Al.

Another much known convolution technique in image

processing field and specifically for image smoothing and

removing visual noise is the Gaussian filter. However the

implementation of this type of technique require heavy

computational resources, for that many applications of

image convolution where implemented on parallel

architecture such as GPUs and FPGAs. Cabello and Al

[10] have adopted a parallel implementation of the

Gaussian filter based on FPGA. During their algorithm

implementation authors have used many different kernel

sizes where set from [3x3], [5x5], [7x7] to [41x 41].

Buzkurt and Al [11] propose a Gaussian filter

implementation using the GPU programming tool CUDA.

In their study, the authors apply Gaussian blur technique

for different image resolution to test their algorithm

efficiency. They compare also their algorithm’s GPU

implementation performances with traditional CPU

implementation. Experimental results implementations

showed the big efficiency of the algorithm

implementation on GPU comparing to the CPU

implementation.

With the increasing development of image processing

algorithms, and due convolution algorithms minimal

complexity computation, developers have to benefit from

the increasing GPUs capacities. As shown in [12] Perrot

and al attempt to benefit from the GPU NVIDIA by
implementing their 2D convolution filter PCRF (Parallel

Register- only Convolution Filter) on an NVIDIA K40,

this work have shown the efficiency of the convolution

filter implementation by their well use of the GPU

resources.
This paper will be organized as follows:

In section II, we will give an overview of our proposed

methods: the Sobel filter and the Gaussian Blur. Section

III is devoted to differentiate between CPU and GPU

architectures. Experiments and results are detailed and

discussed in section IV. Section V ends the paper by

some remarks and conclusions.

III. CONVOLUTION ALGORITHMS

A convolution presents a scalar product between the

convolution mask and the image pixels within a window.

Actually, convolution algorithms are parallel operations

that require massive parallel computation, this present a

very suitable case for a parallel implementation based on

CUDA NVIDIA to achieve best results.

A convolution operation requires N x M

multiplications, where N and M present the width and the

height of the convolution filter (filter kernel). The kernel

size of the convolution is a choice, but 3 x 3 kernel size is

the most used. These different kernels contain different

patterns, for that we obtain different results after image

convolution.

Convolution operations present essential tool in image

processing field and typically the responsible for the

biggest fraction of the algorithm’s execution time.

Runtime of convolution applications, can be considerably

deceased by adopting implementations via parallel

processors (GPUs). GPUs provide suitable architecture to

perform convolution applications.

Convolution is a technique widely used in image

processing field, among these uses: smoothing and edge

detection.

A 2D convolution operation applied to an input image

using a 3 x 3 convolution mask is illustrated in the

following figure.

 Efficient 2D Convolution Filters Implementations on Graphics Processing Unit Using NVIDIA CUDA 3

Copyright © 2018 MECS I.J. Image, Graphics and Signal Processing, 2018, 8, 1-8

Fig.1. Convolution process

A. Edge detection: Case of Sobel filter

In our method, we use the Sobel filter. This is one of

the simplest operators that gives correct results. The

operator uses convolution matrixes. The 3 × 3 matrix is

convoluted with the image to calculate approximations of

the horizontal and vertical derivatives. Let I be the input

image, Gx and Gy are two images, which at each point

contain approximations respectively of the horizontal and

vertical derivative of each point. These images are

calculated as follows:

𝐺𝑥 = [
+1 0 −1
+2 0 −2
+1 0 −1

] ∗ 𝐼 𝐺𝑦 = [
+1 +2 +1
0 0 0

−1 −2 −1
] ∗ 𝐼 (1)

At each point of the image, the approximations of the

two images previously calculated combined as follows to

obtain an approximation of the gradient norm:

𝐺 = √𝐺𝑥
2 + 𝐺𝑦

2 (2)

The direction gradient calculated as follow:

𝜃 = 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝐺𝑦

𝐺𝑥
) (3)

B. Smoothing: Case of Gaussian Blur

Smoothing and noise cancellation from image, present

a crucial step in many image-processing applications.

This type of algorithms have an unfortunate side effect,

which could obfuscate and camouflage important image

information and results bad effects in the following

applications. Gaussian filter present a nonlinear

smoothing algorithm that comes at a heavy cost in

computational speed, especially when it is used in lager

images, since this algorithm perform a great work for

each image pixel, however the runtime can be greatly

reduced through parallelization as the treatment for each

pixel can be done simultaneously.

The convolution performed through multiplexing the

input image pixels by a convolution mask (matrix).

Gaussian filter is used to attenuate noise that corrupts

images. This function is applied in numerous field, it

define a smoothing operator, it gives idea about the

probability distribution for noise and it is widely used in

mathematics. The Gaussian function is as follow:

G(x) =
1

√2𝜋𝜎2
𝑒

−
𝑥2+𝑦2

2𝜎2 (4)

 is the standard deviation of the distribution (blur factor).

E: Euler number.

x: Horizontal distance to the center pixel.

y: Vertical distance to the center pixel.

The Gaussian function is continuous, so we have to

discretize this continuous function to obtain a

convolution mask of 5 x 5 pixels as follow:

Fig.2. Gausian Blur kernel

4 Efficient 2D Convolution Filters Implementations on Graphics Processing Unit Using NVIDIA CUDA

Copyright © 2018 MECS I.J. Image, Graphics and Signal Processing, 2018, 8, 1-8

Fig.3. Gaussain distribution for (x,y) = (0,0) and  = 1

IV. GRAPHICS PROCESSING UNIT (GPU) ARCHITECTURE

Graphic processor units have dramatically developed

and evolved during the last decade, they achieve more

computational performances comparing to those obtained

on CPU. Graphic processors keep getting faster thanks to

their architecture, which consist of thousands of cores.

Exploring parallelism is the best path to follow for

implementation to achieve considerable speed-ups. GPU

computing based on heterogeneous programming, which

consist on using the graphic processor simultaneously

with the CPU (central processor) in a heterogeneous co-

processing computing model. GPU is widely use since its

appearance. Graphic processor present a very advanced

architecture composed by thousands of cores that are

suitable to treat thousands of operations concurrently. This

allows developers to achieve considerable accelerations in

their implementations. During our implementations in the

next section, we will use an NVIDIA GPU cards

belonging to the tesla [13] range, which are essentially

made for scientific computing applications.

Fig.4. Tesla graphic card

A. Différence between CPU and GPU architectures

If we put side by side the representations of the

architectures of CPU and GPU, we understand why the

GPUs are dedicated mainly for the acceleration of the

treatments and the massively parallel computations. This

is achieved thanks to the large number of ALUs present in

these architectures. Whereas GPU architectures use a big

number of threads for processing, which is the cause of

the considerable accelerations achieved in processing.

Fig.5. The difference between CPU and GPU architectures[14]

Indeed execution part ALUs present the biggest part in

the GPU architecture. GPU deals with complex tasks that

require computational parallelization to achieve high

speed-up. GPU is very suitable to parallelize tasks,

because it consist on a huge number of transistors that are

used for sequential tasks as memory latency performance.

However, GPU is limited in memory bandwidth and

speed, but its capacity to perform thousands of operations

concurrently makes it faster than CPU. GPU offer

advanced capabilities, where used for 3D game rendering.

GPU accelerated computing became increasingly process

adopted by developers to optimize computing time of

many applications in many fields of research.

B. CUDA

In 2006, NVIDIA, the leading manufacturer of high-

end GPUs, developed a particular programming language.

This programming language called CUDA[16] (Unified

Device Architecture). This language is reserved only for

NVIDIA brand graphics processors. CUDA is the greatest

success story to date in harnessing GPU resources and

optimizing parallel calculations. In CUDA technology a

program consisting on two parts, the host part deals with

the sequential part of the code and the data transfer and

the device part, which perform operations in a massively

parallel way (parallel portion of the code). In other words

the CPU and the GPU parts. Data transfer between CPU

and GPU can be done via a bus (PCI Express). Operations

performed in a CUDA program called “kernels”, which

are executed on device threads under many copy

simultaneously, this process allow developers to achieve

much better results than other implementations based on

other GPU programming languages. Because of the big

number of threads [15] present in cuda architecture,

CUDA provide the concept of block and grid to manage

them efficaciously. Threads performing the same kernels

are organized on a grid of threads block. Threads

belonging to the same thread block are carried out under

the same stream multiprocessor (SM). Also threads within

the same threads block can share information and

cooperate via shared memory, we note that threads from

different threads block can never cooperate.

 Efficient 2D Convolution Filters Implementations on Graphics Processing Unit Using NVIDIA CUDA 5

Copyright © 2018 MECS I.J. Image, Graphics and Signal Processing, 2018, 8, 1-8

Fig.6. Tesla GPU computing [8]

In CUDA NVIDIA arccchitecture, parallelization is

obtained through the execution of thousands of tasks

similtaniously on Stream Processor (SP) or CUDA cores.

CUDA stream processors can be used to execute integer

and floating point instructions. CUDA NVIDIA GPU-based

architecturesupports and presents different memoy spaces:

global memory, local memory, texture memory, constant

memory, shared and register memory.

All blocs-threads can access global memory. Threads

within the same bloc can access to the shared memory,

while registers presents a local storage for each stream

processor.

Fig.7. CUDA architecture [16]

V. EXPERIMENT AND RESULTS

The implementation steps on CUDA NVIDIA adopted

for our integral image algorithms are shown in the figure 8

bellow.

GPU consist on numerous [17] SMs (stream

multiprocessors) which are composed by stream

processors (SPs), which launch a high amount of threads

running concurrently. This allows for high level of

parallelization, especially [18] SIMD (Single Instruction

Multiple Data) i.e (high number of threads running the

same task), this technique is very suitable for convolution

algorithms as each pixel is treated by the same algorithm.

Exploring GPU computing will influence the runtime of

developer’s algorithms. Based on what we have presented

for our algorithms implementations we will use the

programming language CUDA developed for NVIDIA

GPU to optimize calculation and to accelerate our

convolution algorithms treatments.

Fig.8. Image Convolution algorithm as implemented on NVIDIA

CUDA

To come up with efficient implementation of both

Sobel filter and Gaussian Blur algorithm to satisfy real

time impositions, we adopt GPU implementation based

on the CUDA language. In this section, we propose

efficient implementations of our algorithms on the

programming language CUDA. We evaluate our

algorithms of Sobel filter and Gaussian Blur implemented

on CUDA, we compare also our algorithms performances

by the same algorithms when they are implemented on

CPU and to others previous GPU implementations.

Firstly, we have to present our environment tools and

materials used for our implementations, and then a

discussion of results achieved will be presented.

A. Image processing step on GPU CUDA

1) Image loading: in this step we load the input image

from the CPU (host) to the GPU (device) memory,

therewith we can apply GPU treatments to the

copied image.

2) GPU procesing using CUDA: In this step we have

to allocate threads appropriate to the application,

we select the number of threads on the GPU

architecture. By this way each thread selected

perform its processing on the input image pixel.

After the thread allocation step we apply the

CUDA processing to the input image. CUDA

program are also called “kernels”, whch are

executed using threads selected in the previous step.

3) Results desplaying: After procesing applied to the

input image, results are transferred from the GPU

memory to the CPU memory. Results presented in

our case by using the graphic library OpenCV for

(Open Computer Vision). The data transfer

between the GPU and the CPU memories present

an additional cost for the applicaction.

6 Efficient 2D Convolution Filters Implementations on Graphics Processing Unit Using NVIDIA CUDA

Copyright © 2018 MECS I.J. Image, Graphics and Signal Processing, 2018, 8, 1-8

B. Hardware environment

Our experiments were carried out under the GPU

programming language CUDA, the version used in our

case is 5.0 and for the software implementation we have

used visual studio 2010 combined with the graphic

library OpenCV of version 2.3.1. Table I summaries the

hardware used in this paper.

Table 1. Hardware configuration

Product

GeForce GT 620

CUDA Driver Version /

Runtime version

5.0

Memory band width

14,4 GB/S

Memory size

1024MB DDR3

Memory bus width

64

OpenGL

4,2

DirectX

11

Bus type

PCI_ Express 2.0 x 16

Memory interface

64 bit DDR3

Maximum digital resolution

2560 x 1600

CUDA cores

96

C. Sobel filter implementation

In this section, we tried to evaluate our Sobel filter

algorithm on NVIDIA Tesla platform. To ensure the

performance obtained by our algorithm, we launched the

execution many times and for different image sizes. We

compared experiment results obtained on both CPU and

GPU. The software execution time are obtained by using

the predefined function of time library under C++, while

the GPU time are obtained by using the NVIDIA

compute visual profiler of CUDA Toolkit 5.0.

In table 2, we present our experiments results of Sobel

filter implementation for different image sizes in both

CPU and GPU architectures, we note the significant

reduction in time consuming by using NVIDIA CUDA

GPU. Indeed the execution. Time reduction margin

obtained between CPU and GPU varies between 15 and

2047. We note, when we increase the size of the input

image we obtain a higher acceleration. The 2048 x 2048

image size used just for algorithm implementation

evaluation.

For more details, we present the bar chart of speed-ups

obtained of the Sobel filter algorithm implementation

using CUDA.

Table 2. Execution time of sobel filter on CPU and GPU

Fig.9. Speed-up factor of sobel filter on CPU and GPU

D. Gaussian Blur implementation

In this section, we will be interested to the Gaussian

Blur by studying its performances, capacities and its

speedup achieved by comparing our experimental

implementations results obtained on CPU and GPU

architectures. According to results obtained in table 3, we

can conclude that GPU implementation boosts the

algorithm performances and decrease the time consuming

comparing to the same algorithm on CPU. In table3 we

provide all experimental results obtained for different

image sizes, we summaries results obtained under Tesla

GT620 platform, we note a wide gain in execution time

by using GPU implementation instead of a CPU

implementation. Results showed in table 3 demonstrates

the innumerous gain obtained by GPU platform. When

the input image size increase, the execution time gain

factor increase. Experimental implementations results

shows the importance of using GPU platforms for

applications implementations. According to Table3, the

time-consuming gain margin vary between 2 times for 64

x 64 image size and 245 times for the 1024 x 1024 image

size.

Sp
e

e
d

-U
p

Image Size

0

500

1000

1500

2000

2500

CPU/GPU

Image size

Sobel filter computing time

(ms)

Speed-up

CPU GPU

64 x 64 1.5 0.0962 15

64 x 128 2 0.0963 20

128 x 128 4 0.0965 41

256 x 256 14 0.0966 144

512 x 512 52 0.0969 536

1024 x 1024 199 0.0972 2047

2048 x 2048 786 0.0975 8061

 Efficient 2D Convolution Filters Implementations on Graphics Processing Unit Using NVIDIA CUDA 7

Copyright © 2018 MECS I.J. Image, Graphics and Signal Processing, 2018, 8, 1-8

Table 3. Execution time of Gaussian Blur on CPU and GPU

We present bellow for more details the bar chart of

speedups achieved of Gaussian Blur algorithm

implementation.

Fig.10. Speed-up factor of Gaussian Blur on CPU and GPU

VI. CONCLUSION

Convolution algorithms, present a basic component in

image processing tool and characteristically responsible

for the large portion of code requiring high execution

time. In this paper, we propose an efficient

implementations of two convolution algorithms in our

case the Sobel filter and the Gaussian blur on GPU using

the application-programming interface CUDA. Results

show the high efficiency of our algorithms for all filters

algorithms and for all images sizes. We achieve much

lower runtime by performing algorithms on GPU

NVIDIA CUDA comparing to CPU implementations and

to other previous GPU implementations.

REFERENCES

[1] Rafael C Gonzalez and Richard E Woods. Digital Image

Processing. Pearson, 3rd edition, 2007.

[2] Alex Krizhevsky, Ilya Sutskever, and Geo_rey E Hinton.

Imagenet Classi_cation with Deep convolutional Neural

Networks. In NIPS, pages 1097{1105, 2012.

[3] Karen Simonyan and Andrew Zisserman. Very Deep

Convolutional Networks for Large-Scale Image

Recognition. CoRR, abs/1409.1556, 2014.

[4] Ross Girshick, Je_ Donahue, Trevor Darrell, and Jitendra

Malik. Rich Feature Hierarchies for Accurate Object

Detection and Semantic Segmentation. In CVPR, pages

580{587, 2014.

[5] Xilinx. Available from: http://www.xilinx.com, 2006.

[6] NVIDIA. NVIDIA CUDA Programming Guide 2.0. 2008.

[7] M. Chouchene, H. Bahri, F.E. sayadi and M. Atri. “Image

Processing Application on Graphics processors”. IEEE

Conference on Computer Vision and Pattern Recognition

International Journal of Image Processing (IJIP) volume

(8): Issue (3), 2014.

[8] S. Jubertie, NVIDIA CUDA Compute Unified Device

Architecture, Laboratory of Computer Science of Orleans,

2011.

[9] Afif, M., Said, Y., Bahri, H., & Atri, M. (2016,

November). Efficient implementation of sobel filter based

on GPUs cards. In Image Processing, Applications and

Systems (IPAS), 2016 International(pp. 1-4). IEEE.

[10] Cabello, F., León, J., Iano, Y., & Arthur, R. (2015,

September). Implementation of a fixed-point 2D Gaussian

Filter for Image Processing based on FPGA. In Signal

Processing: Algorithms, Architectures, Arrangements, and

Applications (SPA), 2015 (pp. 28-33). IEEE.

[11] Bozkurt, F., Yaganoglu, M., & Günay, F. B. (2015).

Effective Gaussian Blurring Process on Graphics

Processing Unit with CUDA. International Journal of

Machine Learning and Computing, 5(1), 57.

[12] Perrot, G., Domas, S., & Couturier, R. (2016). An

optimized GPU‐based 2D convolution

implementation. Concurrency and Computation: Practice

and Experience, 28(16), 4291-4304.

[13] Lindholm, E., Nickolls, J., Oberman, S., & Montrym, J.

(2008). NVIDIA Tesla: A unified graphics and computing

architecture. IEEE micro, 28(2).

[14] Cuda_c_programming_guide_2.3.

[15] D. Kirk, W. mei Hwu, Chapter 3: CUDA Threading

Model, NVIDIA, 2006.

[16] S. Jubertie, NVIDIA CUDA Compute Unified Device

Architecture, Laboratory of Computer Science of Orleans,

2011.

[17] Yang, Z., Zhu, Y., & Pu, Y. (2008, December). Parallel

image processing based on CUDA. In Computer Science

and Software Engineering, 2008 International Conference

on (Vol. 3, pp. 198-201). IEEE.

[18] Harish, P., & Narayanan, P. J. (2007, December).

Accelerating large graph algorithms on the GPU using

CUDA. In HiPC (Vol. 7, pp. 197-208).

Authors’ Profiles

Mouna AFIF Received her master degree in

micro and nano electronics from Monastir

University in 2016. Currently she is a PHD

student at the faculty of sciences of Monastir.

She is working on image and video processing

implementation on GPUs.

Yahia SAID received the Master„s Degree in

Micro-electronics from Faculty of Science of

Monastir, Tunisia in 2010. Since 2011, he has

been working as a Research Scientist at the

Laboratory of Electronics & Micro-electronics,

Faculty of Science of Monastir where he

Sp
e

e
d

-U
p

Image Size

0

50

100

150

200

250

CPU/GPU

Image size

Gaussian Blur computing

time (ms)

Speed-up

CPU GPU

64 x 64 0.5 0.293 2

64 x 128 1 0.241 4

128 x 128 2 0.244 8

256 x 256 6 0. 246 24

512 x 512 19 0.247 76

1024 x 1024 61 0.248 245

2048 x 2048 180 0.249 722

8 Efficient 2D Convolution Filters Implementations on Graphics Processing Unit Using NVIDIA CUDA

Copyright © 2018 MECS I.J. Image, Graphics and Signal Processing, 2018, 8, 1-8

prepares his thesis. His areas of interest include Embedded

Processor, Embedded System, Image and Video Processing, and

HW/SW Co-design.

Mohamed ATRI received his Ph.D. Degree in

Micro-electronics from the University of

Monastir, Tunisia in 2001. He has obtained the

HDR degree from the University of Monastir in

2011.

He is currently a member of the Laboratory of Electronics &

Micro-electronics, Faculty of Science of Monastir. His research

includes Circuit and System Design, Image processing,

Network Communication, IPs and SoCs.

How to cite this paper: Mouna Afif, Yahia Said, Mohamed Atri, " Efficient 2D Convolution Filters Implementations

on Graphics Processing Unit Using NVIDIA CUDA ", International Journal of Image, Graphics and Signal

Processing(IJIGSP), Vol.10, No.8, pp. 1-8, 2018.DOI: 10.5815/ijigsp.2018.08.01

