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Abstract—In this paper we present a novel technique that 

permits to extract the essential on information embedded 

in the product of sine polynomial and Gaussian envelope 

by simply knowing the vertices of the tetrahedral graph.  

The study proves that the matrix of vertices of the 

tetrahedral graph and its variants are the building block of 

both Haar wavelets, Hadamard-Walsh transform, 

wavelets sets and tight frames. We also prove that the 

Berkeley B Gate is a function of the degree matrix and 

the adjacency matrix of the tetrahedral graph.  The latter 

is the Hermitian part of the unitary polar decomposition 

in terms of elementary gates for quantum computation 

[68] which reveals interesting properties of the 

tetrahedral graph in both quantum group, Lie group and 

Pauli group for wavelets sets, quantum image processing 

and quantum data compression. We explore the 

connection existing among graphs theory, wavelets, tight 

frames and quantum logic gates. 

 

Index Terms—Graphs Theory, Schrödinger Equation, 

Sine Polynomial, Haar Wavelets, Quantum Gates, 

Spectral Analysis, Yang-Baxter Equation, Gamma 

Matrices, Hamiltonian, Hadamard-Walsh Transform.  
 

I. INTRODUCTION 

Graphs are mathematical objects that allow 

representing complex structures and facilitate their study 

[1]. In the last decade graph signal processing has been a 

hot subject in signal and information processing for 

different reasons [2]. Graphs are modeling tool suitable to 

many applications such as social and economic networks, 

epidemiology and biological networks, transportation 

networks, information networks, internet blog data, 

power grids arising in large variety of applications, 

generate large sets of raw data from which a detailed 

analysis may extract useful information [3]. Some data on 

this graphs can be modeled as scalar (or vectors) 

functions on each of its nodes, forming what is called 

signal graph [4]. A first step in modelling a graph signal 

consists of the construction of the appropriate signal 

transforms [5]; this would require the modeling of signals 

on graphs characterized by a connectivity or adjacency 

matrix that captures dependencies in the data [7], [6]. The 

eigenvalues of the Laplacian matrix give the discrete 

spectral frequencies [6].  In [7] Sandryhaila and Moura 

defined a shift or translation of the graph using adjacency 

matrix and arrived at notions of graph linear filtering and 

graph Fourier transform (GFT). In this context then the 

graph Fourier transform is defined as a projection on the 

generalized eigenvectors of the Laplacian matrix. This 

operator point of view allows not only to generalize the 

notion of transforms but also the notions of filtering and 

other general linear operations on graph signals [5]. 

There is an extensive literature that explored algebraic 

graph theory, spectral graph theory and wavelets 

transform on graphs [8], [9], [10] and [11] and references 

therein.  

Graphs formally represent a network, which is 

basically a collection of interconnected objects. A 

network picture has been applied to various physical and 

biological systems to understand their governing 

mechanisms intuitively. Utilizing discretization schemes, 

both electrical and optical materials can also be 

interpreted as abstract ‘graph’ networks composed of 

couplings (edges) between local elements (vertices), 

which define the correlation between material structures 

and wave flows [12].  Chensheng Wu et al. [13] used a 

plenoptic wave front sensor to image the distorted beam 

into its 4D phase space. A fast reconstruction algorithm 

based on graph theory was applied to recognize the phase 

distortion of a laser beam and command the adaptive 

optics (AO) device to perform phase compensation. In 

[14] authors provided an experimental demonstration of 

how a fiber network can be treated as an optical oracle 

for the Hamiltonian path problem, the famous 

mathematical complexity problem of finding whether a 

set of towns can be travelled via a path in which each 

town is visited only once. In order to solve this 

Hamiltonian path problem, the graph was implemented as 

a network consisting of optical fibers (roads) that 

connected all of the five nodes (towns), and the network 

was probed using a short optical pulse.  

Quantum computing is at the interface of quantum 

physics, mathematics and computer science. Quantum 

information theory has been investigated in connection 

with quantum algorithms and communication protocols 

using density matrices and operators associated with 
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tensor-product of Hilbert vector spaces. In [15] authors 

showed a strong link between quantum experiments and 

graph theory.  In the experimental setups to realize high 

dimensional multipartite quantum states each of the setup 

corresponded to an undirected graph, and every 

undirected graph corresponded to an experimental set up. 

A link between quantum physics and graph theory has 

been drawn before, but for different reasons [16]. For 

example, in Graph states [17], [18], which are related to 

the resources for measurement-based quantum 

computation [19], the vertices of the Graph correspond to 

qubits in a quantum state, and the edges correspond to 

correlations between two qubits.  In different works, the 

Laplacian of a graph has been interpreted as the density 

matrix of a quantum state [20] with the Hamiltonian of 

such system approximated by the adjacency matrix of the 

graph, and the energy levels and states represented by 

eigenvalues and eigenvectors [21], this allowed to 

investigate new entanglement criteria [22].  

The objective of this paper is to investigate the product 

of the sine polynomial and the Gaussian envelope which 

yields the matrix of vertices of the tetrahedral graph. The 

spectral analysis shows interesting properties of the 

Laplacian matrix, adjacency matrix and the eigenvalues 

matrix of the tetrahedral graph with applications in matrix 

representation of quantum gates. This paper is organized 

as follows:  section II overviews the background and 

concepts from quantum graph, quantum logic gates and 

quantum wavelet transforms. Section III discusses the 

like Schrödinger Equation for the wavelet function 

consisting of a sine polynomial of four sinusoidal waves 

into a matrix of vertices of the tetrahedral graph. Section 

IV discusses the results out of this paper that include the 

modelling of quantum logic gates using the matrices 

derived from the tetrahedral graph. Finally, section V 

winds up with the conclusion highlighting an open up for 

future research directions that will arise out of this work 

linking the graph theory, the wave propagation theory, 

quantum theory and molecular orbital structures. This 

paper will obviously serve as a foundation for a variety of 

useful applications of graph theory to quantum image 

processing and quantum data compression and related 

areas. 

 

II. RELATED WORKS 

Quantum computation and quantum information are 

modern developments taking advantage from the 

Quantum Mechanics features to propose technological 

applications. Quantum mechanics deals with microscopic 

objects like atoms, molecules, etc. Here the consideration 

is given to only those quantities which may be measured. 

The evolution of quantum systems is completely 

determined by its Hamiltonian. The latter describing the 

quantum system exponentiated to produce a unitary 

operator. In the case of time-evolution, it is possible to 

achieve the same unitary transformation with different 

Hamiltonians, since the former is only concerned with the 

input and output of the transformation and not the 

intermediate state of the system.  This is one reason for 

why there are so many different proposals for performing 

quantum computation in different physical settings [23]. 

The evolution of quantum systems is completely 

determined by its Hamiltonian. Pauling introduced 

quantum graphs of connected one-dimensional wires 

some decades ago [24]. Later Kuhn used Pauling’s idea 

[25] to describe organic molecules by free electron 

models. Some of the physical systems modeled by 

quantum graphs include electromagnetic waveguides [26], 

[27], mesoscopic systems [28], quantum wires [29], [30], 

excitation of fractons in fractal strictures [31], [32]. 

Quantum graphs with external leads (antennas) have been 

analyzed in detail in [33], [34]. In [35] authors 

investigated Wigner’s reaction matrix using tetrahedral 

microwave networks that correspond to graph with the 

time reversal symmetry 1 . In [36] the author 

attempted to model electrical network using graph theory. 

The most fundamental concept of classical computation 

and classical information is Bit (binary digit). This is a 

system that can take on one of two values, such as true 

and false or 0 and 1. Qubit (Quantum bit) is the quantum 

analog of a bit. Classical computer circuits consist of 

wires and logic gates. In a similar way, quantum 

computer has a quantum gates from which quantum 

computing devices are designed. Quantum gates on a n-

qubit can be described by a n2 by n2  matrices. Because 

of the normalization condition that requires 
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there constrain for matrices which can be used as 

quantum gates. The matrix U describing the quantum 

gate should be unitary that is, ,† IUU  where I is the 

identity matrix [37]. The action of quantum logic gates is 

always logically reversible [38]. Construction of quantum 

gates from the elementary braid matrices of the stocks 

prices closely follows the work of L. S. Geogiev [45], 

[46], [47]. Hadamard gate, Pauli gates or Controlled-Z 

gate are some of the elementary quantum gates that are 

identified in the stock market structure [48]. The Fourier 

and Walsh-Hadamard transforms have been the ones 

studied most extensively by the quantum computing 

community [39], [40], [41]. The quantum Fourier 

transform (QFT) is now recognized as being pivotal in 

many known quantum algorithms [42]. Amir and Colin 

derived efficient, complete, quantum circuits for two 

representative quantum wavelet transforms, the quantum 

Haar and quantum Daubechies )4(D transforms. Their 

approach was to factor the classical operators for these 

transforms into direct sums, direct products and dot 

products of unitary matrices. They found that permutation 

matrices play a pivotal role in the development of 

wavelets transform and arise explicitly in the packet and 

pyramid but also in the factorization of wavelet kernels. 

they considered the particular set of permutation matrices 

arising in quantum wavelet transforms and developed 

efficient quantum circuits that implement them. Wavelet 

transforms are useful for quantum image processing and 
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quantum data compression. It is natural therefore to 

consider how to achieve a quantum wavelet transform 

[39], [43]. The author in [44] calculated the admissibility 

constant and the demonstrated the covariant of Morlet 

wavelets, and hence eliminated two of the barriers to full 

use of this powerful technology for the analysis of 

foundational questions in quantum mechanics. He took 

the four-dimensional mother Morlet wavelet as the direct 

product of four one-dimensional mother Morlet wavelets, 

one for each coordinate. 

 

III. SCHRODINGER LIKE EQUATION FOR WAVELETS  

Computation of high frequency waves is a necessity in 

many scientific applications [72]. Fields requiring such 

computations include the semi-classical limit of the 

Schrödinger equation, communication networks, radio 

antenna engineering, laser optics, under water acoustics, 

seismic wave propagation, and reflection seismology [32].  

Christopher L. Mueller [49] and H. Kogelinik and T. Li 

[50], used the concept of electromagnetic wave beams to 

describe mathematical techniques for Resonant 

Interferometer and Laser beams resonators. Gaussian 

beams are approximate high frequency solutions to PDEs 

which are concentrated on a single ray through space-

time. The quantum amplitude  linked to a quantum 

object satisfies the differential wave equation: 

 

                    

2
2

2t
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                              (2) 

 

where  is the Laplacian operator and  represents a 

space filling and time-dependent physical field [51]. It is 

known that in most cases the laser beam is similar to 

plane waves; except that their intensity distribution is not 

uniform [50]. In this paper we will attempt to use the 

optical differential wave equation and the sine 

polynomial windowed by a Gaussian envelope to model 

some optical, microwave and radar system elements and 

some quantum phenomena based on the matrix of 

vertices of the tetrahedral graph to easy the computation  

complexity of PDEs.  

In this paper, we consider the modulated wave form 

given by Eqn. (3) whose plane representation is shown in 

Fig.1. 
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Applying Euler’s formulae on Eqn. (3) and simplifying 

expressions transforms it into a family of sine 

polynomials given in Eqn. (4). 
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Given the Schrödinger wave equation: 
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 is the Plank’s constant divided by 2 and m is the 

mass of the particle that is traveling through 

space, ktsin is an eigenfunction of the Schrödinger 

equation, the eigenvalue 2k is the energy. The compact 

form of the Schrödinger equation is: 

 

H E                               (7) 

 

where 
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is the energy operator, 
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is the energy eigenvalue or energy whereas ktsin  is 

the wave function. The complete solution with boundary 

conditions is the linear combination of partial solutions; 

then we have: 
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Note that n is a quantum number [70]. The 

mathematical model describing the higher order light 

beams is a product of Hermite function and Gaussian 

functions [50]. 
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From Eqn. (4) we define the phase-space 

transformation matrix given by: 
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After performing some operations on the 

transformation P  then we get the  matrix representing the 

vertices of the tetrahedral graph given by: 

 

1 1 1 1

1 1 1 1

1 1 1 1

R

    
 
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The column vectors are the vertices of a family of 

tetrahedrons defined in a 3-dimension real space .3R  The 

coordinates of the tetrahedron at the origin and those of 

the dual tetrahedral graph refer to [52]. Therefore the 

tetrahedron set of vertices V has the cardinality of 4 

 4# V i.e. four vertices and the set of edges E has the 

cardinality  6# E  i.e. six edges. Note that the 

tetrahedron, the octahedron, and the cube are the only 

“Platonic” solids that exist in any dimension [53]. For the 

properties of tetrahedral graph refer to [54]. Each vertex 

of the tetrahedral graph corresponds the quantum number. 

 

IV. RESULTS ANALYSIS 

A. Spectral Analysis 

In this section, we are interested in computing the 

product of the Matrix P  and its transpose as follow: 

 
TF P P                            (14a) 

 

we get the following matrices: 
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The product of the transformation matrix R and its 

transpose PPT   indicates that the transformation 

representing the wavelet transform on a bipartite regular 

undirected graph. We realize that the product F  is a 

linear combination of three Gram matrices U , V  and 

W  , where TU uu , TV vv  and TW ww  
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Multilevel block partitioning is of interest only if the 

blocks of the levels exhibit some structure [55]. U , V  

and W  exhibits block structures. U  and W  have the 

following block structures: 
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where C is the Temperley-Leib generator given by: 
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For the Ising anyons model, the Kauffman variable 

is 8




i

ei  , and the quantum dimension of the spin 

2/1 is 2d  

Alternatively, matrices U, V and W can be expressed 

as follows: 
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Fig.1. Plot of the wavelet transform in Eqn.(3) 2302 2 for
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with ADL   being the Laplacian matrix, A , the 

adjacency matrix, D  the degree matrix and ADQ   , 

the signless matrix of the tetrahedral graph.  The 

eigenvectors corresponding to different eigenvalues are 

orthogonal and therefore the adjacency A matrix is 

orthogonally diagnosable. The diagonisation means that 

there exists a diagonal matrix  such that: 

 
1 T

A A A A A AA V V V V               (19) 

 

where 
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where 
4S is the set of 44 positive semi-define 

matrices and )(XTr is the trace of the matrix X .  This 

means that the matrices LDWVU ,,,, and Q  having the 

same trace equal to one and  belong to the same 

spectrahedron of  the tetrahedron which is the subject of 

investigation. The matrices U, V and W, are circulant 

matrices and we know that circulants are a special type of 

Toeplitz matrix and have unique properties. Looking at 

the tetrahedral graph we see that its adjacency matrix is 

symmetric and we can find its eigenvalues. They are 

obtained by solving the characteristic polynomial to zero. 
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The roots which are eigenvalues having the following 

values: 
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The eigenvalues matrix associated with the adjacency 

matrix A of the tetrahedral graph is:   
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The square of the matrix AV   diagonalizing  the 

adjacency matrix is described by: 
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The vectors of AV form an orthonormal basis of .4R  

The Laplacian characteristic polynomial 
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The eigenvalues of the Laplacian matrix 
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and we realize that the square of the  matrix LV   

diagonalizing  the Laplacian matrix is described by: 
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We have the following matrix equations from the 

tetrahedral graph: 
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where
4,4KA ,

4CA and 
4KA are the adjacency matrices of 

the complete bipartite graph, the cyclic graph and the 

complete graph respectively.  

(xi)The degree matrix D is also a product of a Haar 

transform matrix of order 4 and its transpose, that is,  
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B. Generalize Gell-Mann Matrix Basis 

In this paper, we will discuss three different bases that 

can be used to decompose the matrices derived from the t 

tetrahedral graph. We begin with the generalized Gell-

Mann matrices which are higher–dimensional extensions 

of the Pauli matrices (for qubits) and the Gell-Mann 

matrices (for qutrits), they are the standard )(NSU  

generators[84]. The  six symmetric Gell-Mann matrices 

of )4(SU are given below: 

 























0000

0001

0000

0100

13
s       























0010

0000

1000

0000

24
s
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





















0001

0000

0000

1000

14
s      























0000

0010

0100

0000

23
s (25a) 























0000

0000

0001

0010

12
s       























0100

1000

0000

0000

34
s  

 

Let us express the adjacency matrix A of the 

tetrahedral graph as a function of the generalized Gell-

Mann matrices: 

 
14 23

s sA                             (25b) 

 

From Eqn. (23a) and (25a) then the degree matrix D is 

given by: 

 

       
2 2 2 2

12 13 14 23

s s s sD            (25c) 

 

with 

 
14 23 23 14 0s s s s                     (25d) 

 

Since the two matrices are linearly independent. We 

can see that at the center of the matrix 23
s there is the 

submatrix of adjacency matrix Hamming cube of order 

one. The consequence of the above statement is that the 

Laplacian matrix L is given by: 

 

   
2 2

23 14 23 14( )s s s sL D A            (25e) 

 

and therefore, the signless matrix Q is equal to: 

 

   
2 2

23 14 23 14

s s s sQ D A           (25f) 

 
2 2 2 2 2 2

1 2 2 1 1 2( ) ( )A A A A A A            (25g) 

 
13 24

s sM                            (25h) 

 

 
12 34

s sN                             (25i) 

 

       
2 2 2 2

24 13 14 23

s s s s                  (25j) 

 
24 13 0s s                              (25k) 

 

 

C. Frames and Hadamard-Walsh Transform  

Frames are generalizations of bases which lead to 

redundant signal expansions. In recent years, frames have 

been used in signal processing for sampling techniques, 

detection problems, error correction codes, analysis and 

design of packet-based communication systems [74], [75], 

[76], [77] & [78]. 

In this section we consider the frame  

43212 ,,, VVVVF   defined by the following vectors: 

 































1

1

1

1

1V  , 































1

1

1

1

2V   , 































1

1

1

1

3V  and































1

1

1

1

4V  (26) 

 

is a group under component wise multiplication. Any 

group of order p or 2p , p a prime is necessarily abelian 

[57]. The matrix 
2FW corresponds to the character table  

of the point group hC2  symmetry where following 

equations: 

 

1

2 2

3

4h

E V u

C V v

i V w

V

 

 

 



                             (27) 

 

4321 VVVV   

432 VVV   

423 VVV   

324 VVV                               (28) 

 

Let us consider the  matrix 
2FW made of the column 

vectors of the frame 2F ,  

 

2

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

FW

 
 

 
 
  
 

  

             (29a) 

 

2 4F TW W P                      (29b) 

 

where 

 




























1111

1111

1111

1111

TW and 























0010

0001

0100

1000

K  
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are the Walsh transform matrix for a 4x4 image and the 

permutation of coordinate axes respectively. It is easy to 

show that: 

 
2 3 4 5, , ,K N K M K D K A          (29c) 

 

Using Eqn. (29c) then Eqns. (17a), (17b) and (17c) 

become: 

 
3 4 2 5V K K K K                 (29d) 

 
2 4 3 5W K K K K                  (29e) 

 
4 52 2 2V W K K L                   (29f) 

 

From Eqn. (23d) and (29c) one can obtain 

 
2A M K                           (29g) 

 

From the result in [71] and Eqn. (25c) we realize that 

the integration of the cross-product of two Walsh 

function vectors is the degree matrix of the tetrahedral 

graph: 

 

   
1

2 2
14 23

0

( ) ( )T

s sW t W t                  (30) 

 

The matrix 
2FW  defined by the frame 2F contains four 

Dirac matrices. Reference to Table IV [58] given by M. 

Karlsson.  we can express the matrix 
2BW in terms of four 

matrices as follows: 

 

2

2 2

1 1

F jk

k j

W D
 

                     (31a) 

 

Equivalently we have: 

 

2 11 12 21 22FW D D D D            (31b) 

 

2

3

114
F

W D                        (31c) 

 

Therefore, the square of the sum of the Dirac matrices 

12D and 21D  becomes  

 

 
2 2

2
2 3

12 21 33

1
2 2

4
F FD D W W A D D

 
      

 
   (31d) 

 

Now we consider the tight frame characterization of 

the multiwavelet vector [59] in terms of the polyphaser 

matrices: 

  

1

0,
( ) ( )

m
l

l
P H 
 



 
                   (32a) 

 

with 

 

1

2

1
( ) ( )

det( )

l i lH e H A

A



 


 



          (33b) 

 

where ddZA  is an expanding dilation matrix. Each 

polyphaser matrix contains the degree matrix D of the 

tetrahedral graph and it is expressed in term of matrices 

in Eqn. (33f) as follows: 

 
~ ~ ~

0 1 40 1 4D B B B B B B                 (33c) 

 

The matrix of eigenvalues of the adjacency matrix is 

given by: 

 
2 2

2 34 4A B B                     (33d) 

 

The permutation matrix N is the sum of two matrices 

22B and 22B   i.e.  

 

2 32 2N B B                   (33e) 

 

Where [59] 

 



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




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
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


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0000
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2

1
0B ,


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
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













 


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0011

2

1
0

~

B  




















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0000

2

1
1B ,























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1100

0000
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2

1
1

~

B  























0100

1000

0000

0000

2

1
2B , )33(

0000

0000

0001

0010

2

1
3 fB





















  






















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2

1
4B ,

























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2

1
4

~

B  

 

Therefore, the square of the matrix  diagonalizing the 

Laplacian matrix  22
QL VV   can be written as: 

 
~ ~

2 2 2

0 0 1 1 1 24LV B B A A B B B              (34a) 
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The following equations describe the connection 

among frames, wavelets, quantum measurement and the 

tetrahedral graph [58], 59 & [83]: 

Using Eqn. (25c) and (33c) one can obtain 

 

   
~ ~ ~2 2

14 23
0 1 40 1 4s sD B B B B B B           

                  (34b) 

 

Using Eqn.(25i) and (33e) one can obtain 

 
12 34

2 32 2s sN B B                  (34c) 

 

Using Eqn.  (23d), (25b) and (34c) above, one can 

obtain 

 

   )34(22
1

32
231424131 dBBANM ssss

   

 

Such that  

 

 
~ ~2

13
0 10 1s B B B B                   (34e) 

 

 
~2

24
44s B B                        (34f) 

 

 
~ ~2

14 2
00 1 1 24s B B B B B                  (34g) 

 
~ ~2

23 2
1 41 4 22 2 4s B B B B B           (34h) 

 

The matrix 
2BW of the column vectors of the frame 

2F is the Hadamard matrix 4H of the  order 4. The 

quaternion units ,00DD  13iD , 30iD and AD01 link 

Williamson type and related Hadamard matrices [81].The 

Hadamard matrix 4H can be expressed in terms of the 

Hadamard matrix second order 2H  as follows: 

 

2 2

4

2 2

H H
H

H H

 
  

 

                        (35a) 

 

The characteristic equation of the  Hadamard 

matrix 4H  

 

4

2 2( ) ( ) ( 2) ( 2)HP I A              (35b) 

 

and  

4
2H A                               (35c) 

 

where A is the eigenvalue matrix as defined in Eqn.(21a)  

The matrix 
2FW of the frame contains the matrix R  of 

the vertices of the tetrahedral graph .  In the Hadamard 

matrix of order 4 the first three columns constitute the 

matrix R  defined by the vertices of the tetrahedron. 

Hadamard transform finds practical application in many 

areas such as data encryption, signal processing, quantum 

information processing and data compression algorithms. 

The Fast Walsh Hadamard transform (FWHT) is used to 

obtain local structure of images.  FWHT can be 

considered as a sparse factorization of the transform 

matrix, and refer to each factor as a stage. The property 

that relates matrix H with its inverse is given by: 

 

  1
 nnn HRRHR                     (35d) 

 

 where nHR Radix-R Walsh Hadamard transform; 

nR radix-R factorizations n input element.The 

special aspects of WHT are the saving of time (48% 

compared with DF) [60]. Sasikala and Neelaveni [61] 

approached the problem of multimodality medical image 

with a fundamental concept of correlation coefficient as a 

matching measure and showed that the FWHT is faster 

than the Walsh transform (WT) reducing time 

consumption for medical image registration.  

D. Qubits Solution to Yang-Baxter  

Yang-Baxter equation has been studied as the master 

equation in integrable models in statistical mechanics and 

quantum field theory [54].  Many scientists have found 

solutions for the Yang-Baxter equation; however, the full 

classification of its solutions remains an open problem 

[55]. The problem of finding solutions to the Yang-

Baxter equation that are unitary turns out to be 

surprisingly difficult [56]. Dye H. [57] described all 

unitary solutions to the Yang–Baxter equation in 

dimension four.  

In this section, we consider the following Yang-Baxter 

equation: 

 

        (36 )R I I R R I I R R I I R a        

 

where the matrix R is  the unitary solution of the Yang-

Baxter equation and I  denotes the identity operator of 

order two. The matrix solution R  is the universal 

quantum gate known as the familiar change-of-basis 

matrix from the standard basis to the Bell basis of 

entangled states. The above unitary braid matrix can be 

expressed in terms of the degree matrix and adjacency 

matrix of the tetrahedral graph as follows. 

 

 01

1

2
R D D A                      (56b) 

where D and A are the degree matrix and the adjacency 

matrix of the tetrahedral graph respectively. We have the 

following identities: 

 

01 01( ) ( )D A A A D A                    (57a) 

 
2 2 2 2( ) ( )A L A LV V A A V V                (57b) 

 
2 2 2 2

01 01( ) ( ) ( )( )A L A LD A V V V V D A      (57c)
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2 2 2 2 2

01( ) ( )A LD A V V A D          (57d) 

 

2 2

01

0 1 0 1

1 0 1 0
A LV V D A

   
      

   
    (57e) 

 
2 2

01 A LD V V A                     (57f) 

 

is the gamma matrix as defined in [58]. The matrix 

representation of the SWAP gate S : 

 

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

S

 
 
 
 
 
 

                       (58a) 

 

The SWAP gate 

 

  
2

14 23

s sS                           (58b) 

 

The quantum logic gate appears in the reduction of the 

four-dimension Lorentz transformation to spinor 

representation form in the electric field [61]. J.M De 

Freitas and MA. Player used the matrix 

  ,23214
ssB   in the polarization effect in 

heterodyne interferometry [73]. It is not difficult to show 

that 

 

        )58(
2232142132122 cDS ssss   

 

The adjacency matrix A and the opposite of the degree 

matrix D of the tetrahedral graph  are the simplified 

unipolar forms of Bipolar NOT Gate and Bipolar 

Negation Gate respectively [60]. Circulant matrices are 

applicable to many areas of math and science such as 

physics and differential equations. They are also useful in 

digital image processing [62]. There is no circulant  

Hadamard matrix of size NN  , for any 4N [63]. The 

only known circulant Hadamard matrices are described 

by the following matrices expressions: 

 

)( NMDA  ; ( )A D M N          (59a) 

)( 0301 iDMDAD  ; )( 0301 iDMADD   

 

come from the vectors:  

 

   

   

1, 1, 1, 1 , 1, , 1, ,

1, 1, 1, 1 , 1, , 1,

i i

i i

           

         
           (59b) 

 

From Eqn. (29c), circulant Hadamard matrices in Eqn. 

(59a) can be written as: 

 

 

 

 

 

5 4 3 2

5 4 3 5

5 4 3

01 03

4 5 3

01 03

K K K K

K K K K

D K K K iD

K D K K iD

   

   

   

   

             (59c) 

 

where 01D and 03D are Dirac matrices given in [58]. 

At 4N the conjugate of the Fourier matrix is given 

by:  

1 1 1 1

1 11

1 1 1 12

1 1

i i
F

i i



    
 
   
 
    
 
    

         (60) 

 

Thus the vector   F are indeed those in the 

statement. 

 

2

1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

F 

 
 
 
 
 
 

                  (61a) 

 

We therefore have the above  matrix 2F  expressed in 

terms of Gell-Mann matrices as follows: 

 

 
2

2 13 24

s sF                     (61b) 

 

From Eqn. (60) then the conjugate of the Fourier  

matrix of order 4 ( 4N ) to the power 4  gives the 

degree matrix of the tetrahedral graph, that is 

 

 
4F D                              (61c) 

 

The quantum controlled –Z (CZ) gate is given by: 

 

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

CZ

 
 
 
 
 

 

                    (62a) 

2

LCZ V                           (62b) 

 

Therefore, using Eqn. (33f) then the quantum 

controlled –Z (CZ) gate is written as: 

 
~ ~

2 2

0 0 1 1 1 24CZ B B A A B B B          (62c) 

 

The square of the matrix diagonalizing the adjacency 

matrix 2
AV and the square of the matrix  diagonalizing the 
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Laplacian matrix  22
QL VV   are solutions to the Yang-

Baxter equation and hence represent  universal gates, see 

criteria in [54].  

We now represent the Berkeley B Gate with the 

Hamiltonian in terms of the degree matrix and adjacency 

matrix of the tetrahedral graph as follows:  

 

(2 )
8

H X X Y Y


            (63) 

 

where the gate is given by iHeU   and  

 

)2(
8

YYXX

eB






 

Therefore,  

 

3 3
cos sin

8 8
B D iA

    
    

   
            (64) 

 

This means that the Berkeley B Gate is a linear 

combination of  the degree matrix D and adjacency 

matrix A of the tetrahedral graph. The special 2-Qubit 

Gates, iSWAP arises naturally in superconducting 

quantum computing via Hamiltonians implementing the 

so-called XY model [72]. 
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      (65) 
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Controlled-SIGN Gate (CSIGN) 
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CSIGN
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                    (67) 

 
~

2 2

3 1 1 24 2 2 4CSIGN B B B B             (68) 

 

CSIGN arises naturally in Quantum Linear Optical 

Computing (LOQC) [64].  

We distinguish two versions of the CNOT gate, 

topCNOT and botCNOT conditioned on the top and 

bottom lines respectively: (i) botCNOT exchanges 

1101   i.e. CNOT controlled by the top line, and (ii) 

topCNOT exchanges 1110   [65]. Those gates can 

be represented by matrices equations: 

1 2

3 24 2topCNOT AK B B               (69a) 

 

 2 FbotCNOT  (the square of F  )           (69b) 

 

it is a universal gate of 2-level for the Bell basis. 
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0 0 1 0

CNOT

 
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 
 
 

                   (70a) 

 

From Eqn. (29g) one can compute CNOT as follows: 

 
1CNOT MK AK                   (70b) 

 

Using Eqn. (29a), (70a), (70b) then  the  universal 

gate 2F  is described by: 
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  (70c) 

 

Using Eqn. (33f), the phase gate CSIGN is related to 

controlled NOT (CNOT) gate as follows:  

 
~

2

1 1 2 22 2 2 4CSIGN CNOT B B B B           (71a) 

 
~

2 2

1 1 3 22 2 4 4CSIGN B B B B              (71b) 

 

The controlled phase shift gate is given by the 

following matrix equation: 
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2 2
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Therefore, the NOT operation on the second qubit of a 

two-qubit system is represented by the unitary 

matrix, and we realize that NU NOT  . The Toffoli or 

simply the three-bit Toffoli gate, T3 applies a NOT to the 

third bit if the first two bits are in 〈11〉, but otherwise 

having no effect [66].   It can be represented as follows: 

 

1

D O D O D O

O CNOT O MK O AK 

     
      

     

      (73) 

 

The Fredkin (controlled-SWAP) is universal for 

classical reversible computing and has the following 

representation:
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D O

O S

 
 
 

                              (74) 

 

where D is the degree matrix of the tetrahedral graph. 

The adjacency matrix A is the Hermitian P part of the 

unitary polar decomposition of EUE f
*  ,  

where  
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*E and fU are the entangler gate, the disentagler gate 

and black-box gate respectively. the entangler gate is 

useful for breaking down arbitrary two-qubit 

computations into elementary gates [65]. fU  swaps 

0100  . 
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Consider the elementary braid matrices for 6 quasi-

particles defined in [67], Eqn.(33e), (33f), (23a) and (25a), 

one can obtain  
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Therefore, the Hadamard gate 1H acting on acting on 

qubit 1  and the Hadamard gate 2H  acting on the qubit 2 

are given by:  

 

 12 2 2 1 1 1

1 2 3 1 2 14 4 ( ) ( ) ( )sH B B              (78) 

 

See Eqn.(21a) and (33d) 
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respectively. 
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See Eqn. (25a) and(33f) 

The Controlled-Z gate is given by the square of the 

matrix diagonalizing the Laplacian matrix. 

 
2 1

1 3 5( ) ( ) ( )LCZ V                   (80) 

 

V. CONCLUSION 

This research has aimed at investigating the product of 

the sine polynomial consisting of a sum of four sine 

waves equivalent to the superposition of four plane waves. 

First, we have transformed it into a phase-space yielding 

the matrix of the vertices of the tetrahedral graph. Next 

we have derived the adjacency and the Laplacian 

matrices of the tetrahedral graph. Then we have presented 

different matrix bases which are useful to the 

decomposition of the matrices derived from the 

tetrahedral graph. Finally, the spectral domain analysis of 

the tetrahedral graph under study manifested huge 

potential attracting properties of the spectrahedron in 

image processing, quantum information processing and in 

the design of quantum logic gates. The adjacency matrix 

and the opposite of the degree matrix of the tetrahedral 

graph are the simplified unipolar forms of Bipolar NOT 

Gate and Bipolar Negation Gate respectively. It is also 

the Hermitian part of the unitary polar decomposition in 

terms of elementary gates for quantum computation. In 

this paper, we have also showed that the square of the 

matrices diagonalizing both the adjacency matrix and  

Laplacian matrix 2
AV and 2

LV respectively, are solutions to 

the Yang-Baxter equation and hence represent universal 

gates. The Berkley B gate is a function of adjacency 

matrix and degree matrix. The powers of the permutation 

matrix K  describe circulant Hadamard matrices and 

hence the tetrahedral. The results presented in this paper 

permit to extract the essential signal information by 

simply knowing the tetrahedral graph vertices. This paper 

obviously serves as a foundation for a variety of useful 

applications of graph theory to quantum image 

processing and quantum data compression and related 

areas. The link among the tetrahedral graph, wavelets, 

frames and quantum logic gates opens up new directions 
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for future [69] research. The findings of this work 

deserve more deep investigations in the areas of signal 

processing techniques, optical communication systems, 

coding theory and orbital structures applications. 
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[81] H. B ölcskei, F. Hlawatsch, and H. G. Feichtinger, 

“Frame-theoretic analysis of oversampled filter banks,” 

IEEE Trans. on Signal Processing, vol. 46, no. 12, pp. 

3256–3268, Dec. 1998. 

[82] P. J. S. G. Ferreira, “Mathematics for multimedia signal 

processing II — discrete finite frames and signal 

reconstruction,” in Signal processing for multimedia, J. S. 

Byrnes, Ed., pp. 35–54. IOC Press, 1999. 

[83] Yonina C. Eldar and G. David Forney, Jr., Optimal Tight 

Frames and Quantum Measurement, March 2018. 

[84] Reinhold A. Bertlmann, and Philipp Krammer, Bloch 

Vectors for Qudits, June 2008. 

 

 

 

 

file:///F:/AppData/Local/Temp/STOCK%20QUANTUM.pdf
file:///F:/AppData/Local/Temp/AppData/Roaming/Microsoft/Word/IJIGSP%20FINAL%20DRAFT%20OCTOBER306263261394916073/Drive/QUANTUM%20QUINCUNX%203.pdf
file:///F:/AppData/Local/Temp/STOCK%20QUANTUM.pdf
file:///F:/AppData/Local/Temp/AppData/Roaming/Microsoft/Word/IJIGSP%20FINAL%20DRAFT%20OCTOBER306263261394916073/Drive/QUANTUM%20OPTIC%20BEAM%20SPLITTER.pdf
file:///F:/AppData/Local/Temp/AppData/Roaming/Microsoft/Word/IJIGSP%20FINAL%20DRAFT%20OCTOBER306263261394916073/Drive/QUANTUM%20OPTIC%20BEAM%20SPLITTER.pdf
http://mathscinet.ru/files/Williamson_1965.pdf
http://www4.ncsu.edu/~franzen/public_html/CH736/lecture/Particle_in_a_box.pdf
http://www4.ncsu.edu/~franzen/public_html/CH736/lecture/Particle_in_a_box.pdf


24 Quantum Wavelet Transforms Generated by the Product of the Sine Polynomial and the   

Gaussian Envelope on the Tetrahedral Graph 

Copyright © 2018 MECS                                                        I.J. Image, Graphics and Signal Processing, 2018, 7, 11-24 

Author’s Profile 
 

Eng. Jean Bosco Mugiraneza is a PhD 

student at the University of Rwanda 

(UR), African Centre of Excellence in 

Energy for Sustainable Development 

(ACE-ESD). He serves at the Board of 

Directors of the “Société Internationale 

d’Electricité des Pays des Grands Lacs”. 

He is the former Chief Executive Officer 

of Rwanda Energy Group Limited and 

former Board Member of the Executive Committee of the 

Association of Power Utilities of Africa. Eng. Jean Bosco 

Mugiraneza is a Professional Electrical Engineer, Fellow of the 

Association of Engineers Rwanda (FIER) and Member of 

International Association of Engineers (MIAENG). He 

graduated from the City University of New York & Graduate 

Centre in USA with the Master of Engineering Degree in 

Electrical Engineering in 2006. His research interest includes 

the applications of Julia Sets and the dynamics of Rational 

Maps in wavelets analysis as well as Quantum wavelet 

transforms in electrical power systems. He has published some 

papers on Continuous Wavelets Transforms in the Dynamics of 

Rational Maps. He is the co-author of the book on Principles of 

Engineering Analysis. 

 

 

 

 

 

How to cite this paper: Jean Bosco Mugiraneza, "Quantum Wavelet Transforms Generated by the Product of the Sine 

Polynomial and the Gaussian Envelope on the Tetrahedral Graph", International Journal of Image, Graphics and Signal 

Processing(IJIGSP), Vol.10, No.7, pp. 11-24, 2018.DOI: 10.5815/ijigsp.2018.07.02 
 


