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Abstract—This paper presents a heuristic approach to 

approximate a two-dimensional planar shape using a 

thick-edged polygonal representation based on some 

optimal criteria. The optimal criteria primarily focus on 

derivation of minimal thickness for an edge of the 

polygonal shape representation to handle noisy contour. 

Vertices of the shape-approximating polygon are 

extracted through a heuristic exploration using a digital 

geometric approach in order to find optimally thick-line 

to represent a discrete curve. The merit of such strategies 

depends on how efficiently a polygon having minimal 

number of vertices can be generated with modest 

computational complexity as a meaningful representation 

of a shape without loss of significant visual 

characteristics. The performance of the proposed frame- 

work is comparable to the existing schemes based on 

extensive empirical study with standard data set. 

 

Index Terms—Shape Representation, Computational 

Geometry, Polygonal Approximation, Dominant Point. 

 

I.  INTRODUCTION 

Computer vision technology has recently witnessed a 

very rapid growth with the advancement of computational 

processing ability leading to widespread demand for 

automated shape analysis in numerous computer vision 

applications [2], [36], [37]. Extracting meaningful 

information and features from the contour of 2-D digital 

planar curves has been widely used for shape modeling 

[3], [4]. Detection of dominant points (DP) along the 

contour to represent visual characteristics of a shape has 

always been a challenging aspect for effective shape 

modeling. Dominant points are commonly identified as 

the points with local maximum curvatures on the contour. 

Over the years, many algorithms have been developed to 

detect dominant points. Most of them can be classified 

into two categories: (1) Polygonal approximation 

approaches and (2) Corner detection approach [5]. We 

shall confine our discussion to polygonal approximation 

approach. Polygonal approximation of a closed digital 

curve has always been considered as an important 

technique to reduce the memory storage and the 

processing time for subsequent analysis of image objects. 

An exact method to the polygonal approximation problem 

is impractical due to the intensive computations involved. 

However, for many decades researchers have been 

exploring lot of techniques for effective polygonal 

approximation as discussed below. 

A.  Related Work 

The design of a polygonal approximation algorithm not 

only impacts on the compression ratio of the data volume 

but also affects the accuracy of the subsequent image 

analysis tasks [1]. The most popular polygonal 

approximation algorithm proposed by Ramer [6] 

recursively splits a curve into two smaller pieces at a 

point with maximum deviation from the line segment 

joining two curve end points and a threshold value for the 

maximum deviation is preset to terminate the recursive 

process. N.L. Fernandez-Garcia et al. [7] proposed a 

modified symmetric version of Ramer’s polygonal 

approximation scheme by computing normalized 

significance level of the contour points. Sklansky and 

Gonzalez [8] proposed a cone-intersection method to 

sequentially partition a digital curve. Wall and 

Danielsson [9] developed a threshold-based method for 

partitioning a curve by finding the point at which the 

deviance of area per unit length surpasses a stipulated 

value. Ansari and Delp [10] initially found the points 

with the greatest curvature by Gaussian Smoothing 
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method and then used a split-and-merge procedure to 

discover the dominant points. Kankanhalli [11] offered an 

iterative dominant point extraction solution by initially 

specifying four dominant points and their support regions. 

F.J. Madrid-Cuevas et al. [12] adopted an efficient split 

or merge strategy on analyzing the concavity tree of a 

contour to obtain polygonal approximation with modest 

computational complexity. 

All of the aforementioned algorithms are mostly aimed 

to offer rapid solutions to the problem sacrificing the 

optimality. The detection of an optimally approximated 

polygon was demonstrated by Dunham [13] with a 

dynamic programming algorithm. Another method of 

computing the polygonal description by analysis of 

coupled edge points followed by grouping them for 

formation of lines or arcs was given by Rosin and West 

[14]. Key feature selection using genetic algorithm has 

always been a popular approach among data scientists for 

reducing redundancy [15]. Huang and Sun [16] pro- 

posed a genetic algorithm-based approach to find the 

polygonal approximation. Xiao et al. [17] adopted a split-

and-merge algorithm for describing curves with robust 

tolerance. Massod’s approach [18], [19] starts from an 

initial set of dominant points where the integral square 

error from a given shape is zero and iteratively deletes 

most redundant dominant points till required 

approximation is achieved. Kolesnikov’s [20] framework 

treats the problem of the polygonal approximation with a 

minimum number of approximation segments for a given 

error bound with L2-norm and the solution is based on 

searching for the shortest path in a feasibility graph that 

has been constructed on the vertices of the input curve. 

E.J. Aguilera-Aguilera’s [21], [22] solution relies on 

Mixed Integer Programming techniques for minimization 

of distortion to obtain optimal polygonal approximation 

of a digital planar curve. Optimal algorithms are best in 

producing polygonal approximation but these are 

computationally very heavy. Therefore, these are of 

hardly any practical use except as reference for 

evaluation of non- optimal results. A near optimal 

algorithm with improvement in computational efficiency 

may be the most suitable option in most applications. 

 

 

Fig.1. Proposed Scheme: Thick-Edged Polygonal Approximation. 

B.  Objective 

Keeping computational efficiency as primary focus, we 

propose a greedy heuristic based framework for near-

optimal detection of dominant boundary-points through 

an optimally thick-edged polygonal approximation 

scheme. It is observed that most of the traditional 

polygonal approximation schemes fail to address the 

presence of bumpy irregularities along the contour 

effectively as they sometimes tend to produce misleading 

polygonal representation either with too many sides or 

with too few sides. Our proposed framework attempts to 

handle such noisy curve using a thick-edge polygonal 

approximation wherein each edge can have reasonably 

varied thickness. Fig. 1 intuitively demonstrates 

suitability of the proposed strategy. 

The paper is organized as follows. In Section 2, we 

intro- duce the proposed framework with formulation of 

the problem from digital geometric perspective. Section 2 

illustrates our employed heuristic search algorithm along 

with its computational complexity. Section 3 details 

about the experimentation for evaluating the merit of our 

method and the experimental results are compared with 

others. 

 

II.  PROPOSED FRAMEWORK 

As mentioned earlier the proposed scheme for 

detecting dominant boundary points is based on 

polygonal approximation of closed curve. In discrete 

geometry, the closed contour of an object can be treated 

as a curve consisting of a sequence of boundary points 

[23]. Usually, contour extraction in terms of discrete 

curve by tracing boundary points using Moor’s strategy 

[1] is a very popular pre-processing technique to work on 

the shape of a digital image object. Below, we formulate 

the problem of approximating a discrete curve in terms of 

optimally thick-line leading to O(n) algorithm for solving 

it. 

A.  Problem Formulation: Fitting Thick Line to a 

Discrete Curve 

A discrete curve consists of a sequence of points in 

discrete space
2Z , where Z is the set of integers. In this 

paper, a geo- metric model is used to describe a thick line 

for approximating a discrete curve by confining the 

sequence of curve points in discrete space
2Z . A few 

terminologies are defined below for illustrating the model 

conveniently with reference to Fig. 2.  

Definition 1. A thick line, denoted by  ,  ,  L a b w , is 

a pair of parallel lines defined by 1 : 0l ax y b   and 

2 : 0l ax y b    where w  specifies the thickness. 

Definition 2. A thick line ( , , )DL a b w  is for a 

sequence of discrete points ( )D L  termed as valid thick 

line if it confines ( )D L  by satisfying following 

condition. 

 
2( ) ( , ) : 0D L x y Z ax y b w           (1) 

 

Definition 3. An optimal thick line ( , , )D

optL a b w   for 

( )D L  is a valid thick line for which the thickness $w$ is 

minimum. It can be mathematically expressed as below.
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( , , ) arg min ( , , )D D

opt wL a b w L a b w              (2) 

 

The pair of parallel lines 
1 2( , )l l defining the thick line 

( , , )DL a b w  for ( )D L essentially forms support lines of 

( )D L and the distance between the pair corresponds to the 

thickness. Using the above described model, the thick 

line fitting problem can be formulated as below. 

 

 

Fig.2. Thick Lines for a Discrete Point Sequence. 

Problem: Given a finite sequence of discrete points D, 

obtain ( , , )DL a b w by finding a pair of parallel lines 

such that 

 

(1) The pair forms support lines for D. 

(2) The distance in between the pair of lines is the 

smallest possible distance to confine D. 

 

Observation 1. Given a sequence of discrete two-

dimensional points D and its convex-hull CH(D), there 

exists a valid thick-line ( , , )DL a b w defined by a pair of 

support lines 
1 2( , )l l such that 

 

(1) 
1l  is coincident with an edge ie  of CH(D). 

(2) 
2l  is another straight line passing in parallel with 

1l  through a vertex 
kv  of CH(D) which is 

farthest from ie . The vertex 
kv  is termed as 

antipodal vertex for edge ie . The pair ( , )k iv e  

can be termed as antipodal vertex- edge pair and 

the distance ( , )k id v e  gives the measure of the 

antipodal distance for the pair ( , )k iv e . 

 

Illustration 1. In Fig. 2, a set of valid thick 

lines for a sequence of discrete points ( ( ))D L  are 

shown. Every valid thick line is defined by a pair of 

support lines 
1 : 0l ax y b   and 

2 :l ax y b w    where w  specifies the thickness. 

The convex hull for the sequence can also be generated 

with the vertices 
1 2 3 4{ , , , }v v v v  to confine the 

sequence. In each figure, one of the support lines of the 

corresponding thick-line is coincident with one of the 

edges of the convex hull. For example, in Fig. 2(a) the 

sequence is confined within the thick line 1( )D L  defined 

by a pair of support lines 

1 : 0l ax y b   and
2 1:l ax y b w   .  

Interestingly, 
1l  is coincident with 

1 1 2: ( , )e v v  and 

3v  is antipodal vertex for 
1e  as it is farthest from 

1e  

among all other vertices through which 
2l  passes 

through. The antipodal distance 
3 1 1( , )d v e w  for 

the antipodal vertex-edge pair  
3 1( , )v e  is the thickness 

of 
1( )D L  =

2

1{( , ) : 0 }x y Z ax y b w     . 

Observation 2. Given a sequence of discrete two 

dimensional points D  and its convex-hull ( )CH D  , 

determining an optimal thick-line ( , , )D

optL a b w   for 

( )D L  is equivalent of finding an antipodal vertex-edge 

pair ( , )optv e  for which the antipodal distance is 

minimum. The observation can be expressed 

mathematically as below considering all possible 

antipodal vertex-edge pair of convex-hull ( )CH D  . 

 

 
( , )( , ) arg min {( , )}

i iopt d v e i iv e v e   (3) 

 

Illustration 2. In Fig. 2, as illustrated above a set of 

valid thick lines with different thickness confines a 

sequence of discrete 8-connected points ( )D L  . Every 

thick line corresponds to an antipodal vertex-edge pair 

of the confining ( )CH D . With close observation, it is 

found that the distance 
3 1 1( , )d v e w for the antipodal 

vertex-edge pair 
3 1( , )v e  is minimum among all four-

antipodal vertex-edge pairs. This observation leads to 

the conclusion that the optimal thick line 

1( , , )D

optL a b w  for ( )D L corresponds to the antipodal 

vertex-edge pair
3 1( , )v e . 

Observation 2. Given a convex-hull  ( )CH D  with a 

clockwise sequence of vertices: 1 2{ , ,..., }nv v v  and three 

consecutive vertices 1,i iv v  , and 2iv   , the following 

propositions are true if vertex 
kv  forms an antipodal 

vertex of the edge 1: ( , )i i ie v v  .  

 

(1) 
kv  is farthest from 1ie   among the clockwise 

sequence of vertices 2 3{ , ,..., }i i kv v v   . It implies 
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that the antipodal vertex for the edge 
1ie 

 must be 

a vertex belonging to the clockwise sequence 

1{ , ,..., }k k iv v v   with 
kv  being first candidate 

under consideration. 

(2) If 
1 1 1( , ) ( , )k i k id v e d v e    then 

kv   is also an 

antipodal vertex for the edge 
1ie 

 otherwise 
1kv 
 

can be checked against 
2kv 

 as a new candidate 

for the antipodal vertex to the edge
1ie 

 . The 

comparison of 
1kv 

 against 
2kv 

 can be done in 

similar manner with which previous candidate 
kv   

is compared against
1kv 
. 

 

 

Fig.3. Observation 3. 

Proof. The proof is provided with reference to Fig. 3 

which corresponds to the given convex hull with vertices 

being marked in clockwise order as stated in observation 

3. In Fig. 3, a pair of parallel lines namely 
1l  and 

2l  act 

as support lines for the convex hull such that 
1l  is 

coincident with 
ie  and 

2l  passes through the vertex
kv . 

There are another pair of parallel lines 1l


 and  2l

   

wherein  1l

   is coincident with  1ie   and  2l


   passes 

through the vertex
kv . Under such circumstance, the 

following observations are evident in order to satisfy the 

convexity property of a convex hull. 

 

(1) Since 
kv  is farthest vertex from ie , any vertex 

2 3{ , ,..., }j i i kv v v v   must lie to the left side of 

2l  (i.e. on the side where 
1l  lies). 

(2) Since every vertex 2 3{ , ,..., }j i i kv v v v   forms 

a convex vertex, jv  must also lie to the right side 

of the line segment joining vertices 
kv  and 2iv   

(i.e. 2k iv v  ). 

 

These two criteria lead to the fact that any arbitrary 

vertex 2 3{ , ,..., }j i i kv v v v  must lie in the triangular 

region 
1k i kv v u  (Fig. 3). The distance of any point 

lying in  
1k i kv v u  from  

1ie 
  is always less than 

kd  

(i.e. the distance of 
kv   from

1ie 
). Therefore 

kv  is 

farthest from 
1ie 

 among the clockwise sequence of 

vertices
2 3{ , ,..., }i i kv v v 

 . 

 

 
 

Let 
1( , )k k id d v e  and

1 1 1( , )k k id d v e    . If 

1k kd d   then 
1kv 

 must lie in the triangular region 

1k k iv u v  (Fig. 3) to satisfy the property of convexity. 

Any point lying inside 
1k k iv u v  cannot be as far as 

kv  

from
1ie 

. Therefore 
kv  can be treated as the antipodal 

vertex of
1ie 

.  

Based on the previous observation, we now present an 

algorithm (Algorithm 1: FITTHICKLINE) below to find an 

optimal- valid-thick line for a discrete curve. Given a 

discrete curve of n  points, the time complexity of the 

algorithm is ( log )O n n  if we follow graham-scan 

strategy for convex-hull generation. 

B.  Thick-Poly-line Approximation of Contour 

In discrete geometry, a poly-line is a connected series 

of line segments. The poly-line is extensively used for 

approximating a discrete curve with a polygon in order to 

represent its shape [24]. A poly-line is formally specified 

by a sequence of points called its vertices. There are 

many computer vision- b a s e d  applications based on 

shape analysis framework wherein a digital curve 

representing various complex contours need 

simplification. A digital curve can be effectively 

simplified by poly-line without loss of its inherent 
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visual property. Techniques for poly-line approximation 

of digital curve have been driving interest among the 

researchers for decades. The idea of poly-line 

approximation based on digital geometry has recently 

been explored extensively for simplified modeling of a 

shape [24], [23]. In this paper, we have focused on 

developing an approximation strategy to determine 

polygonal representation of a shape using special thick-

poly-line wherein every line segment is an optimal thick 

line corresponding to its respective curve segment. 

 

 

Fig.4. Greedy Best-First Spitting Strategy. 

Cost of Fitting Optimal-Thick-line: Given a discrete 

curve segment with end points 
1P  and

NP , its 

confining optimal thick line ( , )i jThickLine P P  as 

illustrated before also associates a cost in terms of its  

thickness. Cost associated with fitting a ( , )i jCurve P P  

using ( , )i jThickLine P P : 

 

 ( ,  =) ( , )i j i jCost P P Thickness P P               (4) 

 

Splitting Scheme: A curve is split into two segments at 

one of its convex-hull-vertices 
iQ  and the vertex at 

which the curve is split is termed as PivotVertex  in 

our scheme. Every convex-hull-vertex 
iQ  except the 

curve end points can split the curve into two proper 

segments but only one vertex would be chosen as 

PivotVertex  depending on an optimal criterion as 

expressed through following equations. 

1( , , )N iSplitCost P P Q denotes the heuristic cost associated 

for choosing 
iQ   as PivotVertex  and it is computed 

based on thick-line-fitting-costs of the sub-segments 

generated on splitting the 
1( , )NCurve P P   at

iQ  . The 

objective criteria of selecting PivotVertex  is to 

minimize aggregate costs of two split-segments as well as 

difference between their individual costs. 

1( , , )N iSplitCost P P Q  considers both aggregate-cost 

and cost-difference of two split-segments as expressed 

below. In Figure. 4 at root level 
1 2 3 4QQ Q Q  represents 

vertices of the convex hull of a 
1( , )NCurve P P  and as 

per our scheme, the curve can be split at two convex-hull-

vertices namely 
2Q  or 

4Q  but 
2Q  is selected as 

PivotVertex  because 
1 2( , , )NSplitCost P P Q   is less 

than
1 4( , , )NSplitCost P P Q . The splitting scheme under 

repetitive application based on greedy Best-First-

Heuristic [25] exploration leads to the generation of a 

tree-like decomposition flow-structure as presented in 

Figure. 4. 

 

1 1

1 1

1 1 1

1

( , , ) ( , ) ( , )

( , , ) ( ( , ) ( , ))

( , , ) ( , , ) ( , , )

arg min ( , , )
i

N i i i N

N i i i N

N i N i N i

Q N i

CostSum P P Q Cost P Q Cost Q P

CostDiff P P Q ABS Cost P Q Cost Q P

SplitCost P P Q CostSum P P Q CostDiff P P Q

PivotVertex SplitCost P P Q

 

 

 



 

                                                                       (5) 

 

Greedy Best-First-Heuristic Based Exploration 

Strategy: Greedy Best-First-Heuristic process explores 

a search-tree by expanding the most promising node 

chosen according to heuristic cost [25]. The above 

illustrated splitting scheme under greedy Best-First-

Heuristic based exploration generates a tree-like 

decomposition flow-structure as presented in Figure 4. 

Each node of the decomposition tree represents a curve 

segment and undergoes further splitting operation if the 

termination condition is not met. The termination of 

the repetitive splitting operation takes place whenever 

number of leaves representing yet-to-be decomposed 

curve segments in the recursion tree reaches the user-

specified intended number of dominant points. Under 

such exploratory repetitive splitting strategy, at every 

step until termination, we are to select a tree-node 

representing a curve segment which is split on the next 

move. The selection is performed based on greedy best- 

first-heuristic [25] strategy which considers most 

promising node with minimum 
1( , , )N iSplitCost P P Q  

for subsequent exploration. The proposed best-first-

heuristic strategy examines tree-nodes which are not 

yet decomposed and selects a node from them whose 

heuristic cost is minimum among all yet-to-be 

decomposed nodes irrespective of tree-levels. At every 

splitting step, two more child-curves are generated 

leading to generation of two new curve segments as 

candidates for subsequent exploration. 
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C.  Proposed Algorithm 

 
 

The greedy best-first-heuristic algorithm (Algorithm 

2: DOTHICKPOLYLINEAPPROX) developed for 

approximating a closed digital curve with thick-poly-line 

is formally presented in this section. The digital curve is 

stored as an ordered list of two-dimensional points. Our 

proposed algorithm repetitively splits the curve leading 

to generation of a tree like exploration as described 

earlier wherein each tree-node represents a curve segment. 

At every exploratory step, the best-first-strategy of the 

proposed method selects the most suitable node which 

is yet to be split and subsequently the splitting scheme 

of the proposed framework splits the curve segment 

corresponding to the selected node into two smaller 

segments. The repetitive splitting operation terminates 

whenever number of leaves i.e. yet-to-be 

decomposed curve segments in the recursion tree 

reaches the user-specified desired number of dominant 

segments. 

Illustration of the Proposed Algorithm 2. Figure 4 

represents a tree-like decomposition flow-structure 

rendered while tracing our proposed algorithm 

(DOTHICKPOLYLINEAPPROX) to fit a given curve with 

five poly-lines generating ten dominant points. Our 

proposed strategy splits the original curve at node- 1 into 

two curve segments at node-2 and node-3 respectively 

based on previously described splitting-scheme. Since, the 

cost of the curve at node-3 is found to be larger than that 

of node-1, the curve at node-3 is selected next for further 

decomposition. The sequential order in which the 

nodes in Figure 4 would be selected for successive 

decomposition depends on greedy best-first-heuristic 

strategy [25]. For a given curve as shown in Figure 4, 

the exploration of our proposed algorithm would select 

candidate nodes in a specific sequential order driven by 

the greedy best-first-heuristic strategy. For the stated 

example, node-1 is selected first and then node-3 is 

chosen as next decomposition candidate followed by 

selection of node-5, and lastly node-2 gets selected to 

undergo splitting operation. Ultimately on termination, 

the proposed scheme produces five curve segments at 

node-4, node-6, node-7, node-8 and node- 9 

respectively as leaves of the decomposition tree, 

thereby generating ten dominant points. 

Average Time Complexity:  The average time 

complexity of the algorithm for a curve of N points is given 

by the recurrence relation 6. At every exploratory step, 

the proposed thick-line fitting algorithm involves 

generation of a convex hull and determination of optimal-

valid-pair for finding optimal thick-line. Convex-hull 

generation takes  logO N N  time complexity as we 

have used Graham-Scan [1] method while the 

determination of optimal-valid-pair requires ( )O N  time 

complexity. Considering both, the proposed thick-line 

fitting algorithm effectively causes   logO N N  time 

complexity. Additionally, at each step, the curve splitting 

heuristic scheme of the proposed framework explores the 

vertices of convex-hull of the given curve as spitting 

candidate pivot points which also involves the same time 

complexity as required for convex-hull generation. The 

average time complexity of the overall algorithm can be 

proved to be approaching  logO N N . 

 

 
   

1

2

1
log { 1 }, 2.

2

0, otherwise.

N

i

N N T i T N i N

T N N





     

 








  

III.  EXPERIMENTAL RESULTS AND ANALYSIS 

Evaluation of performance is a crucial problem for 

such frameworks, mainly due to the subjectivity of the 

human vision-based judgment. The performance of 

such frameworks has commonly been evaluated by 

conducting experiments on the Teh Chin Curves [26] 

and some figures of mpeg-7 database [27]. The merit 

of such a scheme depends on how closely a polygon 

comprising small but significantly important dominant 

points can represent the contour. It is intuitive that the 

best way to compare results qualitatively can only be 

performed by visual observation which fails to assess the 

relative merits of the various algorithms precisely. 

Therefore, quantitative approach is inevitable for 

automated measuring performance of such frameworks. 

The most widely used criteria, for estimating 

effectiveness of the scheme considers–a) Amount of 

data reduction and b) Closeness to the original curve. 

Generally, amount of data reduction is measured as 

the Compression Ratio (CR) and the closeness to the 

original shape is popularly measured in terms of 

Integrated Square Error (ISE) or Average Max Error 

(AvgMaxErr) [28]. These values are obtained using 

following expressions where n is the number of contour 

points and nd is the number of Dominant Points (DP).  
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1

1

1

11

{ }

max{ }

1
{ }

,

d

n

i i

i

i
i n

n

i

id

d

ISE error error

MaxErr error

AvgMaxErr MaxErr
n

n CR
CR FOM

n ISE





 



 





 




 

Table 1. Result: thick-edge polygonal approximation: a) bell-10, b) device6-9, c) chicken-5 
 

                                                RDP                                                                         Carmona Proposed 

 

 

 

 

 

 

 

 

 

 

 

 

 

                             a) DP = 110, W E2 = 1.52 a) DP = 104, W E2 = 3.96 a) DP = 36, W E2 = 0.72 

 

 

 

 

 

 

 

 

 

 

                  b) DP = 50, W E2 = 0.30 b) DP = 22, W E2 = 0.65  b) DP = 39, W E2 = 0.20 

 

 

 

 

 

 

 

 

 

 

 

                 c) DP = 255, W E2 = 9.98 c) DP = 134, W E2 = 8.74 c) DP = 66, W E2 = 3.68 

 

 

There must be a tradeoff between the two parameters 

since high compression ratio leads to high ISE whereas 

sustaining low ISE may lead to lower compression ratio. 

This means that comparing algorithms based on only 

one measure is not sufficient. In order to justify this 

trade off, Sarkar [29] combined these two measures as a 

ratio, producing a normalized figure of merit (FOM) 

which can be computed as ration of CR and ISE.  

Unfortunately, the FOM as proposed by Sarkar turns 

out unfit for comparing approximations with different 

number of points [30] and a parameterized version 

of weighted sum of squared error (
n k

ISE
WE

CR
  ) has 

been proposed in [31]. Carmona [32], [33] showed that 

the value k = 2 leads to the best performance.  

In summary, when the number of DPs is same, FOM 

can be considered as the most sensible quantitative 

parameters for comparison of polygonal approximation 

results [19]. However, in case of different number of 

DPs, we have relied on Carmona’s [33] observation 

considering weighted sum of squared error (WE2) as 

evaluating measure to draw comparative observations.  
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These comparative observations are presented in Table 1 

along with figures. Comparative results with same 

number of DPs are carried out on popular Teh- Chin 

curves. The outcomes of our proposed algorithm with 

various possibilities of dominant points are presented in 

Table 2 to demonstrate qualitative differences 

depending on varying number of DPs. Table 3 lists the 

results of proposed algorithm in comparison with some 

commonly referred algorithms [18] on the basis of FOM 

while keeping compression ratio (CR) identical with 

respective comparative algorithms. In overall 

assessment, the performance of the proposed algorithm 

is reasonably good as compared to others. In addition 

to the quantitative parameters as discussed above there 

are also few other factors which must also be explored 

while evaluating any polygonal approximation algorithm. 

These are discussed below. 

Table 2. Result: thick-edge polygonal approximation: a) chromosome, b) semicircle, c) leaf 
 

DP = 10 DP = 20 DP = 30 

 
 
 
 
 
 
 
 
 
 
 
 

 
a) AvgM axErr = 0.58                                 a) AvgM axErr = 0.22                    a) AvgM axErr = 0.06 

 

 

b) AvgM axErr = 1.65                               b) AvgM axErr = 0.47                               b) AvgM axErr = 0.19 

                          c) AvgM axErr = 2.12    c) AvgM axErr = 0.47        c) AvgM axErr = 0.26 
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Table 3. Comparative results 

 

Table 4. Result: effect of thickness on no. Of dps 

 
 

Consistency: Consistency guarantees that if the 

number of DPs is plotted against the error measure, 

the error value should monotonically decrease with the 

increase in number of DPs. Most of the algorithms are 

found to be non- monotonic [30] which can pose a 

problem for a user as it is difficult to select an 

appropriate parameter if the effect of change in value 

is not predictable. Fig. 5 shows how thickness governs 

number of DPs and Fig. 6 shows the influence of 

number of DPs on error-measure in the proposed scheme. 

 

 

Fig.5. Thickness vs Number of DPs, Shape: bell-10. 

 

Flexibility: A flexible algorithm for polygonal 

approximation should be able to determine polygonal 

approximation for any reasonable number of DPs. 

Proposed algorithm can meet such flexible requirements. 

Generally, flexibility in an algorithm is introduced by 

certain parameters. In the proposed framework, thickness 

of the approximating polygon-side can also be specified 

by the user instead of specifying number of DPs to be 

produced and such a scheme automatically deter- mines 

possible number of DPs with user specified thickness of 

approximating polygonal side. The effect of thickness on 

the number of DPs is shown in Fig. 5 and in Table 4. It is 

clear that with the increase of thickness, lesser number of 

DPs is produced in the approximation. 

 

 

Fig.6. Number of DPs vs ISE, Shape: semicircle. 

Computational Efficiency: Optimal algorithms are 

best in producing polygonal approximation but these are 

computationally very heavy. Therefore, these are of 

hardly any practical use except acting as reference for 

evaluation of non-optimal results. A greedy algorithm 

with improvement in approximation accuracy may be 

the most suitable option in most applications. Results of 

the proposed greedy algorithm can be rated as close to 

acceptable accuracy with computational time reasonable 

enough for any standard shape. Fig. 7 presents a graph 

showing computational time plotted against number of 

DPs along with the impact of boundary length on 

computational time. It has been observed experimentally 

as evident in Fig. 7 that the execution time grows at 

moderate rate with the increase of shape contour length. 

 

 

Fig.7. Graph: Execution Time vs Shape Boundary Size (n).

Thickness = 10 Thickness = 20 Thickness = 50 

   

DP = 16 DP = 7 DP = 3 

 

Shape Method CR FOM 

Chromosome 

(n = 60) 

Ray and Ray [34] 3.33 0.59 

 Proposed 3.33 0.82 

 Wu [5] 3.53 0.70 

 Proposed 3.53 0.80 

 Teh and Chin [26] 4.00 0.55 

 Proposed 4.00 0.75 

Semicircle 

(n = 102) 

Ray and Ray [34] 3.52 0.29 

 Proposed 3.52 1.01 

 Ansari and Huang [35] 3.64 0.20 

 Proposed 3.64 0.86 

 Wu [5] 3.78 0.41 

 Proposed 3.78 0.86 

 Teh and Chin [26] 4.64 0.22 

 Proposed 4.64 0.42 

Leaf 

(n = 120) 

Ray and Ray [34] 3.75 0.25 

 Proposed 3.75 0.40 

 Teh and Chin [26] 4.14 0.27 

 Proposed 4.14 0.38 

 Wu [5] 5.22 0.25 

 Proposed 5.22 0.29 

 



 A Heuristic Strategy for Sub-Optimal Thick-Edged Polygonal Approximation of 2-D Planar Shape 57 

Copyright © 2018 MECS                                                        I.J. Image, Graphics and Signal Processing, 2018, 4, 48-58 

IV.  CONCLUSION 

This paper presents a new idea for dominant point 

detection on an object’s contour using a special thick-

edge polygonal approximation framework. Experimental 

results have shown that the proposed algorithm can 

generate efficient and effective polygonal approximations 

for digital planar curves. The new proposal explores a 

unique idea of piece-wise thick-line-fitting to a curve 

based on digital geometry and uses greedy best-first 

heuristic strategy to repetitively split a curve for 

generating dominant points. The proposed algorithm 

attempts to obtain fairly accurate solution with average 

computational complexity approaching 

a s y mp to t i ca l l y  O (N log N) for large curve. The 

desired number of vertices of a shape-approximating 

polygon is ideally assumed to be as few as possible 

without losing dominant visual characteristics of the 

shape. As per our observation, the proposed framework 

especially seems to perform fairly well in 

approximating the shape when the number of 

dominant points is close to actual number of contour-

key points. In our proposed work, the requisite of a 

larger edge-thickness leads to the generation of a shape-

approximating polygon having fewer vertices in terms 

of dominant points. In overall assessment, the proposed 

framework successfully attempts to incorporate 

robustness against noisy contours of standard shapes 

with automated tuning of thickness of the edges of 

shape approximating polygon. 
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