Bio-chip Design Using Multi-rate System for EEG Signal on FPGA

†Nazifa Tabassum
Dept. of Electronics and Communication Engineering,
Khulna University of Engineering & Technology, Khulna-9203, Bangladesh
Email: nazifa.ece12@gmail.com

†Sheikh Md. Rabiul Islam and ‡Xu Huang
†Dept. of Electronics and Communication Engineering,
1Khulna University of Engineering & Technology, Khulna-9203, Bangladesh
‡Faculty of ESTeM, University of Canberra, Australia,
Email: robi990906@gmail.com; Xu.Huang@canberra.edu.au

Received: 08 December 2017; Accepted: 15 February 2018; Published: 08 April 2018

Abstract—Digital Signal Processing (DSP) is one of the fastest growing techniques in the electronics industry. The signal-rate system in digital signal processing has evolved the key of fastest speed in digital signal processor. Field Programmable Gate Array (FPGA) offers good solution for addressing the needs of high performance DSP systems. The focus of this paper is on the basic DSP functions, namely filtering signals to remove unwanted frequency bands. Multi-rate Digital Filters (MDFs) are the main theme to build bio-chip design in this paper. For different purposes DSP systems need to change the sampling rate of the signal to achieve some applications. This can be done using multi-rate system where designers can increase or decrease the operating sampling rate. This bio-chip has attractive features like, low requirement of the coefficient word lengths, significant saving in computation time and storage which results in a reduction in its dynamic power consumption. This paper introduces an efficient FPGA realization of multi-rate digital filter with narrow pass-band and narrow transition band to reduce noises and changing the frequency sampling rate by factor which is required according to application. This bio-chip works on bio-signals like EEG signal.

Index Terms—Bio-chip, Multi-rate, Decimate, Interpolate, EEG.

1. INTRODUCTION

Electroencephalogram (EEG) is signal with electrical activities of human cognition states [1]. The measurement of these electrical activities can be taken from different locations on the scalps [2] - [4]. The EEG signal involve noises and artifacts during the recording of EEG signal. The noise from the main source like electro-oculogram (EOG), electrocardiogram (ECG), electromyogram (EMG) and other sources should be eliminated to increase accuracy of bio-signal processing in bio-chip system. However, there is no need to consider high speed processing and has no effect on the analysis data with a minimum delay the data measurement procedure [10]. For real time EEG signal analysis, it is argued that software processing is not sufficient and hardware processing needs to be involve. Hardware processing is fast and can provide portability due its small size. However, it may produce less accurate results than the software processing because of the appearance of quantization errors. [16].

The most of bio-system has got physiological artifacts due to the variety of body activities such as body movements, skin resistance fluctuations or other bioelectrical potentials. From this aspect researcher raise the question how to develop digital filter chip to remove these artifacts. The FPGA is employed in the analysis of EEGs in this project to perform smooth EEG signal based on the proposed biochip on multi-rate system. The proposed biochip design on multi-rate system is worked with sampling rate conversion for high speed data and lower time resolution. The main concept of this biochip systems is used to change the sampling rate of a signal. The process of sampling rate decrease is called decimation, and the process of sampling rate increase is called interpolation [5], [6].

The main approach of this system is to change the sampling rate of the EEG signals and convert it back into analog and then to re-digitize it at a new rate. The quantization and aliasing errors inherent in digital-analog-digital conversion processes, would degrade the signal. This paper uses multi-rate processing for changing the sampling frequency rate of a signal digitally. Its main attraction is that it allows the strengths of a conventional DSP to be exploited. For example, much of the anti-aliasing and anti-imaging filtering in real time DSP systems can be performed in the digital domain, enabling both sharp magnitude frequency as well as linear phase responses to be achieved.
The system has a computer where the design can be programmed and simulated on Xilinx Integrated Software Environment (ISE) Suite 13.2 or Quartus II software with interface ALTRA Cyclone DE II board of FPGA device. From the implementation side, references [7],[8],[9], use Xilinx chips and Altera devices [10].

This paper is organized as follows. A brief description on materials and methods based on proposed biochip design on multi-rate system in section II. In section III, obtained experimental results are analyzed and consequent issues are discussed. Finally, conclusions are described in section IV.

II. MATERIALS AND METHODS

A. Database

The data of signals are collected from BME signal processing lab from dept. of Biomedical Engineering of KUET. The data is taken on Electroencephalogram (EEG). The biopac system interface with human body and PC. The patient age was 22 and they are all students. The condition was solving puzzle for recording EEG signal.

B. Proposed Methodology of Multi-rate system

The proposed multi-rate system has considered sampling rate conversion (SRC) for biomedical medical signal processing applications. The way to SRC is to connect an ADC in series with a DAC to first convert the continuous signal x(t) to a discrete sequence x[n] and then back into the analog domain at the new sampling rate f_s,new. Due to spectral distortion is induced by an ADC conversion followed by an DAC conversion, this method is typically avoided in practice. The better alternative are all digital solutions. There are three kinds of SRC: decreasing sampling rate (called Decimation \(f_{s,new} < f_{s,old} \)), increasing it (called Interpolation, \(f_{s,new} > f_{s,old} \)), synchronizing two signals with the same sampling frequency (\(f_{s,new} = f_{s,old} \)). So, we have considered three different cases as shown in Fig. 1 where case(i) uses first increasing sampling rate by L of discrete signal x[n] and then uses digital filter and after that decreasing the sampling rate by M, where L=M; (ii) just opposite of case (i) i.e. decreasing the sampling rate of x[n] by M and filter of it and then increasing the sampling rate of filtered signal where M=L; and finally for case(iii) L ≠ M.

Case I:

A simple block diagram representation of the proposed multi-rate system is given in Fig. 1. where h(k) is an anti-aliasing digital filter. This proposed system is considered direct from FIR filter implementation, the output of the filter, y(n) and the input x(n),

\[
y(n) = \sum_{k=0}^{N-1} h(k)x(n - k)
\]

where N is the number of FIR filter coefficients. The output of the decimator

The proposed biochip on multi-rate system have assigned some parameters on input-output relationship for each block as in Fig. 1 and its signal flow graph is shown in Fig. 2. For every input sample, \(x(n) \) fed into the interpolator, the rate expenditure the box with an up arrow in search \(L-1 \) zero valued samples after the input samples. These are then filtered to yield \(y(m) \). Thus for each input samples for \(x(n) \), L samples of \(y(m) \). Effectively, the input sampling frequency is increased from \(f_s \) to \(Lf_s \) by the interpolator. One implication of inserting

\[
y_L(m) = \sum_{k=0}^{N-1} h(k)x(m - k)
\]

where \(N \) is the number of FIR filter coefficients. The output of the decimator

\[
x(m - k) = \begin{cases} x & m - k = 0, L, 2L \\ 0 & \text{otherwise} \end{cases}
\]
\[y_{M}(m) = y_{L}(mM) \] (3)

Down-sampling can be imagined as a two-stage operation. In the first step, the original signal \([x[n]]\) is multiplied by the sampling function \([s_{M}[n]]\) defined,

\[s_{M}[n] = \begin{cases} 1, & n = 0, \pm M, \pm 2M, \ldots \\ 0, & \text{otherwise} \end{cases} \] (4)

Multiplying the sequence \([x[n]]\) by the sampling function \([s_{M}[n]]\) results in the intermediate signal \([y_{L}[m]]\)

\[y_{L}[m] = y_{L}(m)s_{M}[n] = \begin{cases} y_{L}(m), & n = 0, \pm M, \pm 2M, \ldots \\ 0, & \text{otherwise} \end{cases} \] (5)

The input \(y_{L}(m)\) is fed into the delay line one sample at a time. For every M samples of \(y_{L}(m)\) applied to the delay line one output sample \(y_{M}[n]\) is generated which involves keeping the first sample of \(y_{L}(m)\), discarding the next M-1 samples, keeping the next sample, and discarding the next M-1 samples, and so on. Since for each sample that is kept, the next M-1 samples of \(y_{L}(m)\) are discarded, it is necessary to perform by the equation (2) for those samples of \(y_{L}(m)\) that are discarded.

Case II:

\[x[t] \] \[\text{ADC} \] \[\downarrow M \] \[x[m] \] \[\text{FIR Filter} \] \[\uparrow L \] \[y_{M}[m] \] \[\text{DAC} \] \[\downarrow \] \[y_{L}[n] \] \[\text{Output EEG Signal} \]

![Fig. 3. Block diagram of proposed multi-rate system for Case II.](image)

A simplified block diagram representation of the proposed multi-rate system is given in Fig. 3. In this case we have used the equation (1) and the output of the FIR filter with the decimator by M:

\[y_{M}(m) = y(mM) \]

which on combining with equation leads to the decimator equation

\[y_{M}(m) = \sum_{k=0}^{N-1} h(k)x(mM - k) \] (6)

The interpolation equations are

\[y(m) = \sum_{k=0}^{N-1} h(k)y_{M}(m - k) \] (7)

\[y_{M}(m - k) = \begin{cases} y_{M}(m - k), & m - k = 0, L, 2L, \ldots \\ 0, & \text{otherwise} \end{cases} \]

Case III: In this case we used case I Fig. 1, where \(L \neq M\).

C. Flowchart of multi-rate system architecture

Fig. 4 shows a flowchart for the proposed multi-rate system operations for case I with interface ALTERA Cyclone DE II Device. Here we have used the difference equation (2) for up sampling operation; where EEG signal is converted to binary by ADC and sampled or interpolated by L which is also in binary. In this implementation, only the non-zero valued samples are fetched and used in the computation of the output samples. We see that, at each sampling instant into FIR filter, we must first shift the data by one place, read and save the latest input sample, \(x[n]\) and compute the current output sample using the difference equation (2). We also used the difference equation (3) for the operation of down sampling by M and use DAC to get output y(t). For the case II, we just use reverse operation of L and M into the flow chart. That means for case II the downsampling process is done first, then the signal is filtered using FIR filter, and lastly the up-sampling process is done. For case III, the upsampling rate is not equal to down-sampling rate. In this case, when \(L > M\), the total number of samples increases with a ration \(L/M\). However the main signal shape and carried information doesn’t change. On the other hand, when \(M \neq L\), the number of samples decreases with a ratio of \(M/L\). The Analog to Digital conversion(ADC) and Digital to Analog conversion(DAC) are used to make continuous data to discrete form and make the discrete data back to the original continuous type data after total operation. This total procedure is tested with ALTERA Cyclone DE II Device.

ALTERA Cyclone DE II BOARD

```
Start
Insert a sample of EEG signal x[t] in delay line
ADC x[n]

End

DAC y[n]

L-1 zeros inserted?
No
Yes
Sum of products and load next sample into Register

Reduce zero into delay line by M into, x[n]

Yes
No

No

summed?

Compute product h[k] y[m]

\[ y[m] = x[n - k] \]

Sum of products
```
h. Final discrete output $y(n)$ and store into the register.
i. Apply $y[n]$ into DAC and get the values of $y(t)$.

D. Processing of Algorithm for proposed multi-rate system

For real time FIR filtering, the data $x[n]$ and coefficients $h[n]$ are stored in memory, conceptually. At first the date $x[n]$ is increasing the sample by the factor L. If we consider EEG signal elements as illustrate follows are

$$x[n] = \{1,2,3,4,5,6,7,8,9,\ldots\}$$

Up-sample by L=2 of $x[n]$, it will happen as

$$x[n] = \{1,0,2,0,3,0,4,0,5,0,6,0,7,0,8,0,9,\ldots\}$$

These sequences are applied to FIR filter. To appreciate how the FIR filter works, consider the simple case of $N=4$, with the following differential equation by :

$$y(n) = h(0)x(n) + h(1)x(n-1) + h(2)x(n-2) + h(3)x(n-3) + h(4)x(n-4)$$

where $x(n)$ represents the latest input sample, $x(n-1)$ the last sample, and $x(n-2)$ the sample before that.

Suppose the four-coefficients digital filter is fed from an ADC. The first thing to do is to allocate two sets of contiguous memory locations (in RAM), one for storing the input data ($x(n), x(n-1), x(n-2), x(n-3), x(n-4)$) and the other for the filter coefficients ($h(0), h(1), h(2), h(4)$) as depicted below:

<table>
<thead>
<tr>
<th>Table 1. Coefficient values of biochip design</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data in RAM</td>
</tr>
<tr>
<td>-------------</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

At initialization, the RAM locations where the data samples are to be stored are set to zero since always start with no data . The following operations are then performed:

- **First sampling instant**: To read data sample from the ADC and then up-sampled by L into $x[n]$, shift data RAM one place (to make for the new data), to save the new input sample , compute output sample from Equation (7) and then to send the computed output sample and the DAC before down-sample by M.
The flowchart has been described in section II (C) for the case I. There are three parts which are up-sampling, FIR filter design and down-sampling process. All these processes are described in below sections.

i) Up-sampling:

The Fig. 6 illustrates the flowchart of the up-sampling process was used in all cases. We have used the raw EEG data that was described in section II. The simulation program has considered few parameters data_in as input of original EEG signal x[n], data_out1 as x[m]. It has been considered the data_in and the data_out1 as the 8-bit registers. The main motto in this operation is to increase the sampling rate of signal. For example, if the sequences of the samples of EEG signal are like (56,65,89,14,12,……) then the resulting sequences of samples are like (56,0,65,0,89,0,77,0,14,0,12,0,……) for L=2. The data_out1 is assigned as the up-sampled values x[m] which is stored in 8 bit register.

![Flowchart of the up-sampling process using Xilinx/ ALTRA DE2 Quartus II software.](image)

Fig.6. Flowchart of the up-sampling process using Xilinx/ ALTRA DE2 Quartus II software.

ii) FIR filter design in FPGA

Fig. 7 illustrates the basic block diagram of the designed FIR filter. In this block, we have used four D flip flops for 4-unit delay operations. At first, the input is used up-sampled values x[m] which was stored into register. These up-sampled values are process with following procedures as described below. The EEG data signals which are up sampled are the direct input considered as m1.

- The 2nd D flip flops input is \(d_{1} = \{m_{2}(\text{output of the 1st D flip flop}) + m_{1}\}\)
 \[\text{Output} = m_{3}\]
- The 3rd D flip flops input is \(d_{2} = \{d_{4}(m_{1} + m_{2}) + m_{3}(\text{output of the 2nd D flip flop})\}\)
 \[\text{Output} = m_{4}\]
The 4th D flip flops input is \(d_3 = [m_4(\text{output of the 3rd D flip flop}) + d_2] \) Output = \(m_5 \)

The final output = \(d_4 = [m_5(\text{output of the 4th D flip flop}) + d_3] \)

iii) Down-sampling:

Fig. 8 shows the flowchart of the down-sampling process was used in all cases. It has been considered two parameters such as \(\text{Filter}_out \) as output of filter operation, we applied down or up-sampling operations by the parameter \(\text{data}_out2, y[m] \) in block diagram. These data are stored in 8-bit registers. The main aim is to decrease the sampling rate of the filtered signal. For example, if the sequences of the samples of EEG signal are like (22,19,28,16,29,12……) then the resulting sequences of samples are like (22,28,29……) for \(M=2 \). The \(\text{data}_out2 \) is assigned as the down-sampled data which is stored in another 8-bit register.

![Flowchart of the down-sampling process using Xilinx ALTRA DE2 Quartus II software.](image)

B. RTL diagram of Biochip design

In the initial stage, registers have been used to perform up-sampling operations. For every clock pulse, an input data has been taken and the input is stored in an intermediate register. Data containing zero value is inserted into register within the next clock pulse. The Section-1 (circled) of Fig. 9 shows the up-sampler connection of RTL block. Furthermore, for FIR filter operation, we have used D flip-flops as memory element and it has connected four D Flip-flops in series in order to obtain the Shift Register operation where input clock and reset value controls the D flip-flops. Section-2 (rectangle) of Fig. 9 shows the RTL diagram of FIR filter. Finally, The Down-sampling operation is performed by again using registers. Section-3(circled) of Fig. 9 shows the down-sampling operation section. In the total RTL block, multiplexers (MUX 2:1) and Lookup tables(4-LUT) have been used to generate logic operations. Here, registers have been used to store each and every data. Again, multipliers, 8-bit adders, latches are used in the RTL diagram as shown in Table 5 below.Next, Table 6 shows that the core temperature was 27.1°C during the simulation process. Table 6 also shows the voltage supply(\(V_{cc} \)), total current and total power needed for the proposed biochip design.

<table>
<thead>
<tr>
<th>Multipliers</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>8x2-bit multiplier</td>
<td>2</td>
</tr>
<tr>
<td>8x3-bit multiplier</td>
<td>1</td>
</tr>
<tr>
<td>Registers (D Flip-Flops)</td>
<td>32</td>
</tr>
<tr>
<td>Latches (8-bit latch)</td>
<td>1</td>
</tr>
<tr>
<td>I/Os</td>
<td>33</td>
</tr>
<tr>
<td>Total no. of paths</td>
<td>32</td>
</tr>
</tbody>
</table>

C. Timing diagram of Biochip

The timing diagram of Fig. 10 illustrates different cases. The Fig. 10 (a) shows the case I where we have used \(L=2 \) and \(M=2 \). In this case I we have mentioned the result parameters in Fig. 10(a) that we have simulated in our proposed Biochip design operations. The data input...
as $x[n=0]$ indicated as well as data upsampled by $L=2$ between input data $x_{L(1)}(m = 0) = -69 \ up$-sampled data as $x_{L(2)}(m = 0) = 0$ within the single clock pulse. The filtered output data shows with respect to input data $x_{L(1)}(m = 0) = -69$, the filtered output up-sampled data $y_{L(1)}(m = 0) = 52$ and for up-sampled data $x_{L(2)}(m = 0) = 0$ shows $y_{L(2)}(m = 0) = 84$ within the same single clock pulse. The final filter out shown after down-sampling operation by $M=2$ which shows as $y_m(m = 0) = 84$ after one clock pulse shift. The Fig. 10 (b) shows for the case I same operation for upsampling by $L=3$ and down sampling by $M=3$ where designed FIR operation carried out as described at section III (A) (ii). Fig. 10 (c) & (d) shows timing diagram for case II $(M=2, L=2)$ and case III $(L=3, M=2)$ respectively.

The Table 7 shows the timing summery of proposed biochip design on multi-rate system for the case I.

![Timing diagram for case I (L=2, M=2)](image1)

![Timing diagram for case I (L=3, M=3)](image2)

![Timing diagram for case II (M=2, L=2)](image3)

![Timing diagram for case III (L=3, M=2)](image4)

Fig.10. Timing diagram of proposed Biochip.

Table 7. Timing Summary of biochip design

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Serial No.</td>
<td>Data_in</td>
</tr>
<tr>
<td>1</td>
<td>-69</td>
</tr>
<tr>
<td>2</td>
<td>-68</td>
</tr>
<tr>
<td>3</td>
<td>-65</td>
</tr>
<tr>
<td>4</td>
<td>-65</td>
</tr>
<tr>
<td>5</td>
<td>-66</td>
</tr>
<tr>
<td>6</td>
<td>-68</td>
</tr>
<tr>
<td>7</td>
<td>-69</td>
</tr>
<tr>
<td>8</td>
<td>-69</td>
</tr>
<tr>
<td>9</td>
<td>-70</td>
</tr>
<tr>
<td>10</td>
<td>-75</td>
</tr>
</tbody>
</table>

Table 8. First 10 data for $L=2$ and $M=2$ case

D. Result Analysis

Table 8 shows the first 10 EEG data and their corresponding outputs. Here up-sampled data are twice the input data. Again, the up-sampled data is filtered by FIR filter & finally we get the down-sampled data which is our desired output data. For simulation purposes, we have used 100 EEG data. The comparison of Input EEG data and Output EEG data is shown in Fig. 11. It is clear that data have been filtered by huge amplification.

The Fig. 11 illustrates a plot of the EEG datas and its final outputs of biochip design in multi-rate system. In this Fig. the raw EEG signal shows as red color, green and blue color shows for the case I where $L=3, M=3$ and $L=2, M=2$ respectively, magenta color for case II $(M=2, L=2)$, black color shows for case III $(L=3, M=2)$. It is clearly observed that sampling rate conversion has worked properly in this proposed system. The results of case I has shown better results than other cases. The case I have shown two different up-sampling and down-sampling value such $L=3, M=3$ and $L=2, M=2$. It is clear that higher up-sampling and down-sampling rate works better. Case I and II have shown different way of multi-rate operations in proposed system design. The results of case I show better results than case II where case I uses up-sampling first and then down-sampling, case II uses down-sampling first and then up-sampling. Case III have shown sample values of EEG data increas than input EEG signal because of using the ratio L/M.

![Fig.11. Result Comparison of Input and output EEG signals.](image5)
Fig. 12 shows a basic architecture for biochip design on multi-rate system using blocks of individual components for case I. The main components are coefficients and data memories, analog input/output units (ADC and DAC), multipliers-accumulator (MAC), and a controller (not shown). The components of biochip can be implemented with fast, off-the-shelf products. Similar way we can develop for the case II & III internms of change L and M.

![Architecture diagram](image-url)

Fig. 12. Architecture of a hardware biochip design on multi-rate system for case I.

IV. CONCLUSION

We have presented an easy and simple approach biochip design based on multirate system for EEG signal on FPGA Device. In this system, considered three cases for justification of best multi-rate based approach of the proposed system. We have also checked the system characteristics such as performance parameters: speed, clock frequency, power consumption on HDL synthesis report, power analysis and timing diagram. In the future, this model can be enhanced and cope with larger dataset and fabricate of biochip, to apply into patient monitoring system. So it will be interesting to see how medical technology is simple and fast way to diagnosis into patient monitoring system.

REFERENCES

Authors’ Profiles

Nazifa Tabassum received the B.Sc. Engineering (ECE) degree from Khulna University of Engineering and Technology (KUET), Bangladesh. Currently she is working as a Lecturer in Department of Electronics and Communication Engineering (ECE) in Khulna University of Engineering & Technology(KUET), Khulna. Her main research area includes Signal processing, biomedical signal & image processing, VLSI design and nanotechnology. She has published two international conference paper and also two reputed international journal paper.

Sheikh Md. Rabiul Islam received the B.Sc.in Engg. (ECE) from Khulna University, Khulna, Bangladesh in December 2003, and M.Sc. in Telecommunication Engineering from the University of Trento, Italy, in October 2009 and Ph.D. from University of Canberra, Australia, in 2015. He joined as a Lecturer in the department of Electronics and Communication Engineering of Khulna University of Engineering & Technology, Khulna, in 2004, where he is joined an Assistant Professor in the same department in the effect of 2008. Also he joined Associate Professor in the same department. Now he is serving as a professor in the same department since 2018. He has published 3 book chapters, 31 Journal and 18 International conferences. His research interests include biomedical signal & image processing, VLSI for signal processing and Wireless Communications. He is an IEEE member.

Professor (Dr) Xu Huang has received the B.E. and M.E. degrees and Ph.D. in Electrical Engineering and Optical Engineering prior to 1989 and the second Ph.D. in Experimental Physics in the University of New South Wales, Australia in 1992. He has earned the Graduate Certificate in Higher Education in 2004 at the University of Canberra, Australia. He has been working on the areas of the telecommunications, cognitive radio, networking engineering, wireless communications, optical communications, and digital signal processing more than 30 years. Currently he is the Professor at the Faculty of Education Science Technology & Mathematics. He has been a senior member of IEEE in Electronics and in Computer Society since 1989 and a Fellow of Institution of Engineering Australian (FIEAust), Chartered Professional Engineering (CPEng), a Member of Australian Institute of Physics. He is a member of the Executive Committee of the Australian and New Zealand Association for Engineering Education, a member of Committee of the Institution of Engineering Australia at Canberra Branch. Professor Huang is Committee Panel Member for various IEEE International Conferences such as IEEE IC3PP, IEEE NSS, etc. and he has published about two hundred papers in high level of the IEEE and other Journals and international conference; he has been awarded 9 patents in Australia.