
I.J. Image, Graphics and Signal Processing, 2009, 1, 50-58
Published Online October 2009 in MECS (http://www.mecs-press.org/)

Mechanism and Algorithm for Indirect Schema
Mapping Composition

Bo Wang
College of Information System and Management, National University of Defense Technology, Changsha, China

wbsteven@163.com
Bo Guo

College of Information System and Management, National University of Defense Technology, Changsha, China

Abstract—There are a large number of indirect schema
mappings between peers in the network. To improve the
efficiency of data exchange and queries, indirect mappings
are needed to be composed. Direct mappings can be derived
directly by the constraints defined between schemas, but not
for indirect mappings’ composition. Defined the
combination operations of schema elements in indirect
mappings, and gave the expression of indirect mappings.
Analyzed the composition of indirect mappings, and
proposed a strategy, named schema element back, to solve
the problem of indirect mapping composition, and gave the
indirect mapping composition generation algorithm based
on such strategy. Experiments showed that indirect
mapping composition can improve the efficiency of data
exchange, and compared with other non-full mapping
composition generation algorithms, and indirect mapping
composition generated by our algorithm based on schema
element back strategy can completely eliminate the infection
of media schema with no reduction of the composition
efficiency.

Index Terms—indirect mapping composition; combination
operation; schema element back

I. INTRODUCTION

Many data management tasks, such as data translation,
information integration, and database design require
manipulation of database schemas and mappings between
them[1]. Schema mappings define the relationship
between instances of two given schemas which can be
divided into direct and indirect ones by the relationships
of elements. Indirect mappings are widely existed,
especially when schemas evolve, most mappings that
used to be direct become indirect. In indirect mappings,
elements between schemas are not directly associated, but
related by some algebra operations.

Mapping composition refers to combining two
mappings into a single one, which is useful for a variety
of data management problems. Figure 1 shows a topology
of a data sharing network, each node can be a data
sources, an integrated data center or a logical mediator.
When data are exchanged from node E to the integrated

schema G, instances of E should be translated to G by
mapping sequences: E — C, C — A and A — G, and
chaining mappings at run-time may be expensive because
we may need to follow long and possibly redundant paths
in the network. Note that different paths between a pair of
nodes may yield different sets of query answers. To
ensure the reliability of data exchange, we usually need to
get all of the possible paths, and execute each possible
data transplantation process according to the paths. Cost
of performing such work will be quite large when there
are a large amount of data sources. If certain nodes leave
the network, then we may lose the mapping paths.
Addressing these issues raises several static analysis
questions regarding the network of mappings, and
mapping composition lies at the core of them all. By pre-
composing a select set of mapping chains in the network,
we can directly execute the data exchange between the
source schema and the target schema, which leads to
significant run-time savings. Moreover, mapping
composition arises in many practical settings like data
integration, schema evolution and database designing:

In data integration, a query needs to be composed with
a view definition. If the view definition is expressed
using global-as-view (GAV), then this is an example of
composing two functional mappings: a view definition
that maps a database to a view, and a query that maps a
view to a query result.

In schema evolution, a schema evolves to a new one,
and the relationships between the two schemas may be
described by a mapping. The original mappings on the
old schema can be updated by mapping composition.

In a database design process, schema may evolve
frequently via a sequence of incremental modifications.
This produces a sequence of mappings between
successive versions of the schema until the desired
schema is reached, so a mapping from the original
schema to the final one is needed, which can be obtained
by composing the mappings between the successive
versions of the schema. With this mapping, the designer
can migrate data from the old schema to the new schema.

Manuscript received Febuary 11, 2009; revised June 21, 2009;
accepted July 21, 2009.

Copyright © 2009 MECS I.J. Image, Graphics and Signal Processing, 2009, 1, 50-58

 Mechanism and Algorithm for Indirect Schema Mapping Composition 51

Figure 1. The topology of a data sharing network.

Another motivation for mapping composition comes
from the framework of model management[2]. One of the
basic operators in model-management algebra is
composition, and mappings are treated mostly as
syntactic objects. Mapping management can be achieved
by defining the composition and inverse operations.

Query composition is widely supported by most of the
commercial data management tools, while the mapping
composition is still rest on researches and experiments. If
the mappings are functional, we can do the composition
similarly as the query composition. However, there are a
large number of non-functional mappings, most of which
are indirect mappings, and we can not directly give the
composition. Different from the query composition,
indirect mappings can not be composed directly.

In this paper, we mainly discus the composition
problems of indirect mappings, and the rest of the paper
is organized as follows. In section 2, we show the related
works on mapping composition. In section 3 we introduce
some concepts of mapping composition. In section 4 and
5, we firstly define the indirect mappings composition,
and then propose an indirect mapping composition
algorithm. Section 4 presents the experimental results.
And the last part is the conclusion.

II.RELATED WORKS

Mapping composition is a challenging problem[3]
whose difficulty is quite sensitive to the expressiveness of
the allowed mappings, and there are several researches on
such problem [4, 5, 6, 7, 8], including methods based on tuple
generation constraints and schema transformation[9, 10, 6],
etc. Those mapping composition methods based on
schema transformation define complicated schema
transformation operations, which only support the
computing of direct mappings, and not for those indirect
ones with complex algebra operations between schema
elements. Model management is a generic approach to
solving problems of data programmability where
precisely engineered mappings are required[2]. A model
management system supports the creation, compilation,
reuse, evolution, and execution of mappings between
schemas represented in a wide range of meta-models,
where the composition operation is one of the ways to
realize mapping reusing.

Researches on indirect mappings mostly consider the
definitions and basic operations of non-direct element-to-

element mappings between the source and target
schemas[11] without any further discussions about
composition. Madhavan and Haleby[5] showed that the
composition of two given mappings expressed as GLAV
formulas may not be expressible in a finite set of first-
order constraints. Fagin et al[4]. proved that the
composition of certain kinds of first-order mappings may
not be expressible in any first-order mappings, even by an
infinite set of constraints, because the mapping language
is not closed under composition. Nash et al[8]. showed
that for certain classes of first-order languages, it is
undecidable to determine whether there is a finite set of
constraints in the same language that represents the
composition of two given mappings. In [4], Fagin et al.
demonstrated the second-order mapping language,
namely second order source- to-target tuple-generation
dependencies (denoted by SOtgd), is closed under
composition, and they also present a composition
algorithm for this language. The second-order languages
uses existentially quantified function symbols, which
essentially can be thought of as Skolem function. A tuple-
generating dependency specifies an inclusion of two
conjunctive queries, . It is called source-to-

target when refers only to symbols from the source

schema and refers only to symbols from the target
schema. However, for implementation, such kind of
languages is not supported by standard SQL-based
database tools.

1Q Q⊆ 2

1Q

2Q

Yu and Popa extended the algorithm of Fagin’s to
handle nesting and apply it to some schema evolution
scenarios, and they also discussed the optimizations of
the composition result. Nash et al[8]. studied the
composition of first-order constraints that are not
necessarily source-to-target. They considered
dependencies that can express key constraints and
inclusions of conjunctive queries ,

where and may reference symbols from both the
source and target schema, but the composition of
constraints in this language is not closed and whether a
composition result exists is undecidable. They also gave
an algorithm that produces a composition.

1 2Q Q⊆

1Q 2Q

Berstein et al[3]. explored the mapping composition
problem for constraints that are not restricted to being
source-to-target, which extended the work of Nash and
Fagin. They applied a “left-compose” step which allows
the algorithm to handle mappings on which the algorithm
in [8] fails. They used algebra-based instead of logic-
based language to express mappings, which can be
directly supported by database tools. We call their
method “best effort composition approach” (denoted by
BECA). BECA tries to eliminate as many relation
symbols from the middle schema as possible. Given
schemas 1σ 、 2σ and 3σ , mappings computed by BECA

have the form of 1 2 3σ σ σ′→ → , where 2 2σ σ′ ⊂ . Tha
 i m

sym

t
means, cases it may be better to eliminate some n co

bols from
e

2σ success ully, f rather tha on either n insist

Copyright © 2009 MECS I.J. Image, Graphics and Signal Processing, 2009, 1, 50-58

52 Mechanism and Algorithm for Indirect Schema Mapping Composition

Copyright © 2009 MECS I.J. Image, Graphics and Signal Processing, 2009, 1, 50-58

re eliminating all them or failing. Since the may be some
elements in the middle schema remain at the end of
BECA, the result is not a perfect composition.

A main reason that 2σ ′ is not empty after BECA, is that
there may be indirect ppings. In this paper, we use a
str

 ma
ategy namely schema elements back to solve the

problem. Although this method expands 1σ : 1 1σ σ ′→ , it

can completely eliminate 2σ , and a composed mapping
only depends on the source and target h be
generated.

III. MAPPING COMPOSITION

 sc ema will

Definition 1 Let and be two binary relations, the
composition nary relation:

Σ a ma
S and emas with no relation bols in
co

1R

)((

2R

1 2R Ro of 1R and 2R is the bi

1 2 1 2{(,) : (,) (,))}R x y z x z R z y R= ∃ ∧ ∈o .
Let (,M = be sche mapping model, where

sym

R ∈
,)S T

T are the sch
n and Σ is mmo a set of formulas of some logical

formulas over <S,T>. Then let ()Inst M be a binary
relation betwe instances over S and T. We define
composition of two schema mapp

en
ings 12M and 23M using

the composition of the binary relations 12()Inst M and

23()Inst M .
Definition 2[4] Let 12 1,M S S= 〈 and

, S
2 12,Σ 〉

a mappings such t
ion symbol in co

23 2 3 23,M S= 〈 Σ 〉
sch
pairwise. A sche

ion o

be two schem hat the
memas 1 2 3, ,S S S have no relat mon

ma mapping 1 3 13, ,M S S= 〈 Σ 〉 is a
composit f 12M and 23M if

12 23() () ()Inst M Inst M Inst M= o eans
that

1 3 2 12 2() { , | ()(()}Inst M I I I st M I= 〈 〉 ∃ 〈

 which

3) ,In I Inst∧ 〈 〉∈

m

1 2,I I 23()M〉 ∈

,where iI is the instance of iS with1 3i≤ ≤ .

1S 2S 3S

12M

23M
Figure 2. Composing direct mappings

Figure 2 shows an example of direct ma ping
com ema. Data
ex

p
position, where 2S is the middle sch

change between 1S and 3S is achieved by composing

12M and 23M . Fagin al. have proved the existence
inevitability of map ing c position, and Alan Nash[7]

 the erequisite for the existence of mapping
composition, that is two mappings have a common
schema, which is consistent with Fagin’s result. Both of
them proved the existence of mapping composition by the
relationship between query and mappings, and the
instance isomorphism.

Example 1: Consider the following
schemas 1 2,S S and 3S . S1 consists of a single binary

 et
p om

gives pr

rel
nce person w

ation symbol Maint, which associates the name of
maintena ith the equipment he maintains.
Schema 2S consists of a similar binary relation symbol
Maint1, which is a copy of Maint, and of an additional
binary r tion symbol MP, that associates each person
with an id. Schema 3S consists of one binary relation
symbol Reg, that associates person ids with the
equipments the pers take. Consider the following
schema mappings 12 1 2 12(, ,)M S S= Σ and

23 2 3 23(, ,)M S S

ela

ons

= Σ , where

12 { ((,)n c Maint n c Mai 1(,)),nt n cΣ = ∀ ∀ →
) s MP(Mai (n c nt n c, (,))}n s∀ ∀ → ∃ ,

(,))Maint n c Re23 n s c 1(,) (,))}M s g s c{ (P nΣ = ∀
h

∀ ∀
Give t e instances of

∧ →

3S as llows:
.

1 2, ,S S fo

1I ： 1IMaint ={(

2

A 1),(, Eq A, Eq2)}

I ： 2 1I IMaint = 2IMP ={(A, 00Maint , 01) ， (B,
0002)}

3I ： 3IReg),(0 q2)}
Accor

={(0
 to

001, Eq1 001, E
ding 12Σ and 23Σ , we have I I〈 〉1 2

, ()I I Inst M
12, (Inst M∈)

and 2 3 23 . By definition 2, if t〈 〉 ∈
ma

here is a
pping 13M tha tisfi 1 3 13,I I Inst(Mt sa es)〈 〉 ∈ 13, then M is

the c 12om tion ofposi M and 23M , so 13M can be expressed
as ((,)n c nt n c sR (,))g s cMai e∀ ∀ → ∃

Theory 1 Th app co osing operation
In

.
ng mp

13()M
e i m
)12() 23 Inst(st M Inst M =o is closed

13(st M

under the
ho

Proof: Given
momorphism of instances.

)1 3I I, In〈 〉 ∈ , for the instances

1I ′ and 3I ′ , satisfying 1 1I I′ ≅ and 3 3I I′ ≅ (“ ≅ ”denotes
ho

1 3I
momorphism), to show that

13, ()I nst M
we just need

I′ ′〈 〉 ∈ . S (st M 23)In M are
closed under homomorphism, and

3) (Inst M

12)In and st

13)

ince

2

(

12() (Inst M Inst M =o , ethere
instance 2

xists an
I that 1 2 12 2 3 23, () , ()I I Inst M I I Inst M〈 〉 ∈ ∧ 〈 〉 ∈ .

ce 2 2So th e iser an instan I I′ ≅ such
that 1 2 12,I I Ins ()t M′ ′〈 〉 ∈ 23 ,
then 1 3 13, ()I I Inst M

, and also 2 3I I I′ ′〈 〉 ∈, (st M)n
′ ′〈 〉 ∈ . This was to be

DIRECT MAPPING

 shown.

 given by a Source-t
 by

IV.

 be o-Target
 S2Ttgd):

 IN

A di mappi
tuple ge rating

rect
ne

ngs can
 dependency (denoted

(() (,))S Tx x y x yφ ψ∀ → ∃ , where Sφ and Tψ are
respectively the formulas on S and T, and x, y are the set

gd mappin be sed
by (() ())S T

of vari s. A able full S2Tt g can expres
x x xφ ψ∀ → , and a mapping expressed

by 1(() ())k
S i i ix x R xφ =∀ → ∧ equals to the set of some full

S2T ())itgds ((x)S ix R xφ∀ →
ic f

, where 1, ,i k= K , and
(x)iR la.

 is the atom ormu

 Mechanism and Algorithm for Indirect Schema Mapping Composition 53

A. Describe indirect mappings
In indirect mappings, the algebra operation results of

the elements in both the source and target schema are
related, as shown in figure 3.

1S 2S

12M

Figure 3. Indirect mappings

In element correspondence “[1]” (see Fig. 3), nodes in
the pane of the source schema are mapped to an element
in the target schema after some algebra operations. The
algebra operations of schema elements includes some
basic ones, like Union, Cartesian, Projection and
Selection, and some compositions, like Intersection, Join,
Nature Join and division etc.

Definition 3 Indirect elements correspondence
(denoted by ICOE) is the set of element correspondences
that elements are mapped after some algebra operations.
Let Sφ be the formulas of S, and be the scheme of S ,
the algebra operations have six forms, as shown bellow,
where 1~4 are the basic ones and 5~6 can be derived
from 1~4:

iS

Union Let
1

,
() (() ()), ()

kS i i i
k i

x S x S x S x Sφ = ∨ ∨∧ K

T

∈ ,

and it is the same forψ .
ICOE: (or

 if there is an
existence quantifier).

1 2(() () () ())ne S e S e S e T e∀ ∨ ∨ ∨ →L

() () (,))ne S e wT e w∨ ∨ → ∃L1 2(()e S e S∀ ∨

Cartesian
1

() (() ()), ()
kS i i m

i
x S x S x S x Sφ = × ×∧ K ∈

ICOE: (or
).

1 2(() () () ())ne S e S e S e T e∀ × × × →L

() (,))e wT e w→∃1 2(()e S e S∀ ×

Projection
1 ,() ((())), ()

mS k k k k
k

x S x S x Sφ π= ∈∧ K .

ICOE:
1 2, 1 1 2 , 2 1 2x(((, , ,)) ((, , ,))m n n l k nS a a a S b b bπ π∀ ∧K K

(, , , ,))m n l kT a a b b→ K (or
1, 1 2x(((, , ,))m n nS a a aπ∀ ∧K

2 3, 1 2 1 2((, , ,)) y (, , , , , , , ,))l k n m n l k nS b b b T a a b b y y yπ → ∃K K K

), where x and y are the set of variables.
1. Selection This operation considers the conditional

mappings, which represents the user’s integrality. It
has the form of

() ((())) (() ()), () , ()S F i i i
i i

x S x S x F t S x S t Inst Sφ σ= = ∧ ∈ ∈∧ ∧ .

ICOE : ((() (() |)) ())e S e Inst e T eθ∀ ∧ = → .

2. Intersection refers to several schemas, which is a
kind of selection operation essentially.

3. Join is the composition of Cartesian and Selection

Let { , , , }σ θ⊗ = ∧ ∨

1 ,
(()),m

k k
S i i

k

be the basic algebra operation
symbol set (see 1~4 in definition 3), and indirect
mappings can be expressed as

() ()k kx S S x′ Sφ π= ∈⊗ K
. Take the indirect

mapping shown in figure 4 as an example, 12M can be
expressed as:

1 1

1 1 1 1 2

1 2
1 1x(((()) (())) ((())

k

S S S
m n mR x R x R xπ π π∀ ⊗ ∧ 1 1

k

2

1 2

2 1

2
1 2 2(())) (() ()))

k

S S S
n k lR x y R y R yπ π⊗ → ∃ ∧ , and 23M :

. 3)S z 3 ()))SR z∧2 2 21 2
1 1 2 1y(() ((()) (())) z((S S S

l pR y R y R y Rπ π∀ ∧ ⊗ → ∃
1

(,)T

2 1 1 3 2

If x yψ ′ has the same form with ()S xφ′ , then the non-
full indirect mapping can be expressed as:

x y (x,y))S T((x)φ ψ′ ′∀ → ∃ .

1S 2S 3S

12M

23M
Figure 4. Indirect mappings between schemas.

B.Exchange data under indirect mappings
Now we give the concept of homomorphic instances

under indirect mappings (concept of homomorphic direct
mappings is given in [4], and we do not discuss it here).
Consider the following example:

Example 2: Given schemas and . S1 consists of
a single binary relation symbol Consistof, which
associates the name of equipments with the parts they
have. consists of a similar binary relation symbol
Consistof1, which is a copy of Consistof, and of an
additional binary relation symbol MCode, that associates
each equipment name with an id. consists of a single
binary relation symbol MRegister, which associates the
code of equipments with the related parts. Consider the
following mappings: and

1 2,S S

3S

12

3S

1 2(,

2S

2M S
12,)S= ΣM S

23 3 23(, ,)S= Σ , where

12 1{ ((,) (,)),e p Consistof e p Consistof e p e pΣ = ∀ ∀ → ∀ ∀

((,) (,Consistof e p c MCode e c→∃))}

23 1))}

,

{ ((,) (,)) (,e c p MCode e c Consistof e p MRegister c pΣ = ∀ ∀ ∀ ∧ →
The second formula in 12Σ is a direct mapping that

associate equipment name in the source schema to the
equipment name in the target schema. According to
Theory 1, let be the instance of a mapping M, that
means

e

)

e
I J,

, (I J Inst M〈 〉 ∈ , and if there is an instance
pair ,I J′ ′〈 〉 ,that ,I J I J′ ′〈 〉 ≅ 〈 〉 , then , ()I J Inst M′ ′〈 〉 ∈ .
For the converse, if ,I J′ ′〈 〉 and ,I J〈 〉 are respectively the
instance of M , then we have , ,I J′ ′〈 〉 I J≅ 〈 〉 . The above
conclusion is true for that M is the direct mapping. For
the indirect mappings, the homomorphism between
instances is different. For example, let be a schema, 1S ′

Copyright © 2009 MECS I.J. Image, Graphics and Signal Processing, 2009, 1, 50-58

54 Mechanism and Algorithm for Indirect Schema Mapping Composition

Copyright © 2009 MECS I.J. Image, Graphics and Signal Processing, 2009, 1, 50-58

which is a copy of with a little differences that certain
element in splits into several parts in . For example,
the equipment name in contains two parts
(supername+name), and the corresponding formula set
is . Therefore, under the condition of homomorphism,
there may be some non-one-to-one correspondences.

1S

1S 1S ′

1S ′

12′Σ

Let S、T be the source and target schema respectively,
and is a scheme of S. If there is an indirect mapping M
from S to T, and let be the scheme constructed as
follows: substituting each element combination that
participates in the indirect mappings with a single
element. We call a generating scheme. If we define
mappings from to T with the form
of

iR

iR′

iR′
)

iR′

()T(()ix R x xψ′∀ → , and mappings from to T with
the form of

iR
(() In

i ())direct
Tx R x

T

xψ⎯⎯→∀ ⎯
()

, then mappings
from toiR′ xψ are direct, and those
from to()x (TiR)xψ are indirect, as shown in figure 5:

iR

iR′

12M

TR

Figure 5. Instance homomorphism under indirect mappings

We define the homomorphism function h under
indirect mappings as:

1

, (())
()

(, ,), (())
k i

i
l i i j

e e Inst R
h a

compound e e e Inst R
π

π
∈⎧⎪= ⎨ ∈⎪⎩ K

Then h is called a general homomorphism function,
where compound is the algebra operation of elements.

Definition 4 Let andR R′ be two schemas, h is the
general homomorphism function shown above. Let

,J J ′ be the instances of and respectively. If for each
scheme symbol in , and each tuple

R R′

iR R 1(, ,) J
na a R∈K ,

there is a tuple 1),((, ()) J
nh ah a R ′∈K , then R and R′ are

homomorphic instances under , then the data exchange
process under indirect mappings can be implemented by
the homomorphism given in Definition 4 comparing with
the process under direct mappings (see[12]).

h

V. MECHANIC OF INDIRECT MAPPING COMPOSITION

A. Schema-elements-back
As shown in figure 4, although there is a common

schema , we can not directly construct the mappings
from to according to

2S

1 SS 3 12M and 23M , even can not give
the mapping composition directly. Using direct mapping
composition, elements in can only map to part of the
certain elements of S . During the data exchange
procedure, a complete instance of may consist part of
the instance from , so data exchange from to by

direct mapping composition

1S

3

3S

2S 1S 3S

12 23M Mo

12

may lose some
information, that is because M and 23M contains some
elements that is not in common, there is no such an
instance 2I of satisfying conditions in Definition 2. 2S

Since the expressions of indirect mapping composition
can not be derived by Definition 2 directly, we deal with
this problem based on general instance homomorphism,
the main idea of which is to construct a schema that can
be directly used for mapping composition, and make sure
that the instances of the constructed schema is
homomorphic with the instances of the original schema
under the general instance homomorphism function. We
propose a strategy named schema-elements-back by
constructing some virtual elements in the source schema
to deal with the composition of indirect mappings.
Compared with BECA, schema-elements-back can
eliminate the infection of the middle schema.

Definition 5 Let , , STM S TST = 〈 Σ

STΣ
y (x,y)T

〉

)

be a model of

indirect schema mapping, where is the formula set
with the form of x((x)Sφ′ ψ ′∀ → ∃

(M

, and mappings
from S to T are sound[13]. Let)Dom S

y

be the domain
of , and be the domain of T, and then we
have . Let

S (Dom

() ⊆

)T

Dom()T In xand MDom S In be the set of
variables that participate in the indirect mappings in T
and S respectively, and we construct the virtual elements
in S by set y xIn − In . As shown in figure 6, the newly
constructed source schema is denoted by S ′ . We can
construct direct mappings fromT to onS ′ D ((M M))om Dom S .
Let S TM ′ be the mapping from to , and S ′ T 1

S TM −
′ be the

inverse of S TM ′ , and then the process of virtual elements
construction is called a schema-elements-back process.

S T

STM

y xIn In−

1
S T
−
′M

Figure 6. Inverse of indirect mappings based on virtual elements

Definition 6 Let and 12 1 2 12, ,M S S= 〈 Σ 〉

23 2 3 23, ,M S S= 〈 Σ 〉 be two indirect schema mappings such
that the schemas have no relation symbol in
common pairwise. We construct a new schema

1 2 3, ,S S S

1S ′ by
adding virtual elements according to Definition 5 with
the mapping 1

1 2M −
′ and its inverse 1 2M ′′ .

Let 1 3 13, ,M S S′ ′= 〈
()Inst M
Σ 〉

(Inst M
 be the newly constructed mapping

model. If 1 2′′ 23) ()Inst M= o

() ,Inst M I I Inst′

, that means
2 1 2 1 2 2 3 231 3() { , | (Inst M I I I)(,I I (M))}′ ′ ′ ∧ 〈 〉 ∈= 〈 〉 ∃ 〈 〉 ∈

, then M is the composition of indirect
mappings 12M and 23M .

 Mechanism and Algorithm for Indirect Schema Mapping Composition 55

Copyright © 2009 MECS I.J. Image, Graphics and Signal Processing, 2009, 1, 50-58

B. Indirect mapping composition algorithm
When data are exchanged under the strategy of

schema-elements-back, instance of some elements in the
middle schema may be firstly transformed to the source,
and there is a reverse data flow during the data
exchanging process from the source to the target. Such a
data flow can be implemented by the reverse mapping
from the element in the middle schema to the newly
added element in the source schema. Since the object of
composing two schema mappings is to directly construct
the mapping from the source to the target without
considering the middle schema, schema-elements-back
can insure that under the condition of indirect mapping,
directly data exchange from the source to the target can
be realized, which can improve the efficiency of data
transformation. Now we show the process of indirect
mapping composition.

Schema-elements-back is the process of adding new
elements to the source schema according to the middle
schema, in order to achieve a directly mapping from the
source schema to the target schema under the condition
that new elements are introduced. As shown in figure 7,
the dashed lines represent the correspondences between
the newly added schema elements and elements in the
middle schema, from which we can see that when is
translated to , by Theory 2, mapping composition

1S
1S ′

1 3M ′ can be directly constructed from to . 1S ′ 3S

1S
2S

3S

12M

23M

1S ′

Figure 7. Process of Schema-elements-back

Now we give an indirect mapping composition
algorithm (denoted by IMCA), without loss of generality,
we consider the case shown in figure 7, and for the other
cases we just need some small modifications.
Algorithm IMCA
Input: and ,
where and are extended S2Ttgds that describe
indirect schema element correspondences.

12 1 2 12(, ,)M S S= Σ

12 23Σ
23 2 3 23(, ,)M S S= Σ

Σ

Output: A schema mapping , which is
the composition of

1 3 1 3 1 3(, ,)M S S′ ′= Σ ′

12M and 23M .

Step1. NormalizeΣ andΣ : 12 23
Rename the function and element symbols so that the

symbols that appear in are all distinct from those
in .

12Σ

23Σ

Step2. Construct virtual elements in 1S :
If M12: and

M23: satisfying that

1

1 1 1 2 2 2
(()) (())S S

i i i iR x R xθ θπ π→

3

3 3 3
(())S

i iR xθπ→

2

2

2 2 2
(())S

i iR xθπ ′ 2 2θ θ′ ⊃ .

Then For each i do projection operation ,

and get an attribute set

2

2 2 2 2
()S

i iR xθ θπ ′ −

1{ , }lE E E= K

2

2 2 2 2
()S

i iR xθ θπ ′ −

, where is the set

of attributes generated by .
iE

Add each set into and combine it with attributes
computed by , which is called a schema
elements back process. As shown in the left dashed box
of figure 7, we get the new constructed schema

iE

θ

1S

1i iR x1

1 1
(())Sπ

1S ′ by
combining elements in to (virtual elements are
from). Then we get the mapping

E 1S

2S 1 2M ′ from 1S ′ to
with the formula set

2S

1 2′Σ . Since the mapping from to2S 1S ′
is one-to-one, we get 1

1 2 21M M−
′ ′= , where 21′Σ gives the

data back rules from to during the data exchange
process from

2S 1S ′

1S ′ to . 3S

Step3. Construction of 12S and 23S

(3.1) Initialize and to each be the empty set.

Assume the formulas in
12S 23S

1 2′Σ is
1 1 1(()) (())n n nx xφ ψ φ ψ∀ → ∧ ∧ ∀ →K

(3.2)Put each of the n implications i iφ ψ→ ,
for 1 i n≤ ≤ , into . We do likewise for and .
Each implication

12S 23 23SΣ
χ in has the form 12S

(2((x)))S
j jθπ⊗ 2S(x) (

j
φ π (xj j))Rθ→ ⊗ R⊗ K

1

where every

member of x is a universally quantified variable, and
each , forjx j k≤ ≤ , is a sequences of terms on x.

(3.3)Replace each such implication χ in S12 with k
implications:

2 2
1 1 1 1(x) ((x)) ((x)), , (x)S SR Rθ θφ π π φ→ ⊗ ⊗K K →

)

2 2((x)) ((x)S S
k k k kR Rθ θπ π⊗ ⊗K .

Step4. Compose S12 and S23:
Repeat the following until every schema symbol in the

left-hand side of every formula in S23 is from S1.
For each implication χ in S23 of the formψ γ→ where

there is an atom R(y) (R is a scheme symbol in S2),
perform the following steps to replace R(y) with atoms
in 1S ′ .

(4.1) Let 1 1(), , ()pR t R tpφ φ→ →K be all the formulas

in S12 whose right-hand side has R in it. If no such
implications exist in S12, we remove χ from S23.
Otherwise, for each such formula (R t)iiφ → , rename the
variables in this formula so that they do not overlap with
the variables in χ .

(4.2) Remove χ from and add23S p formulas to S23 as

follows: replace in(R y) χ with iφ and add the resulting

formula to S23, for1 i p≤ ≤ .

Step5. Construct M13:

56 Mechanism and Algorithm for Indirect Schema Mapping Composition

Copyright © 2009 MECS I.J. Image, Graphics and Signal Processing, 2009, 1, 50-58

Let 23 1(, ,)rS χ χ= K where 1, , rχ χK

1 1z
are all the

formulas from step4, Let be1 3′Σ r r

Country⊗ Street⊗L ⊗ City ConferenceLocation →
zχ χ∀ ∧K

i

∧∀ where

is the set of variables found iniz χ , for1 . i r≤ ≤

Return 。 13 1 3 1 3(, ,)M S S ′′= Σ
A new source schema should be maintained by the

composition algorithm, and such a schema may not be
useful in other mapping compositions. However, if the
scale of data to be exchanged is large, such new extended
schema can improve the efficiency of data exchange.

The relationship between the number of indirect
element correspondences and the number virtual elements
constructed are shown in table 1.

Table 1. Relationship between the number of virtual
elements generated during the indirect mapping

composition process and the number of indirect element
correspondences.

（ ）
1 2S S→ 5 10 15 20 25 30 35 40 45

（ S S ）
2 3→ 5 11 15 22 23 30 36 45 45

virtual elements 2 5 4 7 5 10 11 9 15

VI. EXPERIMENTS

A. Complexity of ICMA
Since virtual elements are introduced during the

process of indirect mapping composition, figure 8 show a
comparison for numbers related by the queries for non-
mapping-composition and mapping-composition
respectively.

Let the elements that schema S1, S2 and S3 respectively
contains be N1, N2 and N3. In step1 of ICMA, the rename
operation need to match each elements among S1, S2 and
S3, whose complexity is . 1 2 3()O N N N× ×

Let the correspondences in M12 be N12 and
correspondences in M23 be N23, where N12 and N23 are the
numbers of atom elements. The number of virtual
elements constructed in schema-element-back process
is , so the complexity for constructing virtual
elements is .

23 12N N−

23 12()O N N−

5 10 15 20 25 30 35 40 45
0

10

20

30

40

50

60

70

80

90

Schema scales (Number of schema elements)

N
um

be
rs

 o
f m

ap
pi

ng
s

re
la

te
d

non-composition
composition

The complexity for composing is decided by the atom
implications that and contains. Let be the
number of implications in with the form
of

1 2′Σ 23Σ 12
CN

1 2′Σ

i iφ ψ→ and be the atom formula in12
in iψ , and then the

number of formulas in is . If the number of
implications with the form of

1 2′Σ 12N 12
C in×

i iψ γ→ in is ,
where i

23Σ 23
CN

ψ is the set of atom formulas. The number of pairs
of atom formulas that should be matched during the
replacing process is C

12 12
C i

23N n× ×
23
CN

23N

N
)

)

, so the composing
complexity is . The whole complexity for
indirect mapping composition is +

23 12 + C i CO N . The complexity of direct
mapping composition process is +

, both are polynomial complexities.

12 12(C in

12

)

O N

23
C

× ×

12(n× ×
1 2(N× ×

1 2(N× ×

3N

3N

)

)

O N

O N
()O N N−

12 12(C iO N n× ×N

Figure 8. Comparison for mappings related under different condition.

As we can see that, although some virtual elements
participate the querying and data exchanging, compared
with the non-composition way, indirect mapping
composition can reduce the number of mappings related
by the query and improve the query efficiency.

Consider the indirect mappings shown in figure 4, we
simulate the data exchange process from S1 to S3, and
compare the executing times between indirect mapping
composition and non-composition under different scale of
instances. We use Oracle 9i as the database, and the time
for reading records in the oracle database is the increase
function of record scale and attributes numbers.

 In the case of non-composition, instances {I1} of S1
are firstly transformed to instances of S2 according to M12,
denoted as {I2}, then {I2} are transformed to {I3} of S3.
the read and write of data happens among three schemas.

In the case of composition, since there are indirect
mappings from S1 to S3, using the schema element back
given in IMCA, instance for part attributes S2 of are
firstly transformed to S2, and we get the new instances
{ 1I ′ }, then instances {I3} of S3 are generated according to
M13.

Now we give the executing time (milliseconds) for the
data exchange process from S1 to S3 under different
instance scale of S1. Figure 9 show the data exchange
executing time comparison results:

B. Results and analysis

(1) Query efficiency under indirect mapping composition
Given the numbers of elements in schema , and ,

and the numbers of implications in 1 2 and 23 . Given
different scales of indirect mappings, now we compute
the numbers of virtual elements constructed during the
process of schema-element-back. We use the example in
DBLP, chose 20 literature base by the sequence of letters,
and pick up the meta-information of each literature. We
construct the mappings manually as follows (take three of
them for example):

1S
Σ

2S 3S

′Σ

Author⊗ Author⊗ Author AuthorSet L ⊗ →

Country University City AuthorAddress ⊗ ⊗L ⊗ →

 Mechanism and Algorithm for Indirect Schema Mapping Composition 57

0 2000
0

500

1000

1500

2000

2500

instance scale

m
ill

is
eo

nd
（1）

time for data back from S2 to S1
direct data exchange time from
S1 to S2 under mapping composition

0 2000
0

500

1000

1500

2000

2500

Instance scale

m
ill

is
ec

on
d

time for data exchange from S1 to S2
time for data exchange from S2 to S3

（ 2）

0 2000
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Instance scale

m
ill

is
ec

on
d

total data exchange time from S1
 to S3 without mapping composition
data exchange time from S1 to
S3 under mapping composition

（ 3）

0 2 4 6 8 10 12
0

500

1000

1500

2000

2500

3000

3500

4000

4500

instance scale

m
ill

is
ec

on
d

exchange time from S1 to S2
exchange time from S2 to S3
exchange time from S1 to S2
under non-composition
exchange time from S2 to S1
exchange time from S1 to S3
total exchange time from S1
to S3 under mapping composition

Figure 9. data exchange process executing time comparisons.

(2) Comparison of BECA and IMCA
In BECA, symbols in the middle schema are

eliminated by some algebra operations step by step using
view unfolding, left composing and right composing. The
main idea of BECA is to replace the symbols in the
middle schema by the symbols in the source and target
schemas as much as possible. Let the elements that
participate in the process of elimination obey the equality
distribution, and the numbers of virtual elements are
decided by step 2 of IMCA, figure 10 shows the
comparison between number of element symbols
eliminated by BECA and number of virtual elements
constructed in IMCA.

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

Numbers of mappings

N
um

be
rs

 o
f s

ch
em

a
el

em
en

ts

schema elements related by
mappings in the middle schema
numbers of elements eliminated by BECA
numbers of elements back in ICMA

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

group
N

um
be

rs
 o

f s
ch

em
a

el
em

en
ts

elements eliminated by BECA
elements back in ICMA
numbers of elements in the
middle schema related by the mappings

Figure 10. Comparison for affection of middle schema between BECA

and ICMA

Seen from the results, the affections of the middle
schema on both BECA and IMCA are almost the same.
Besides, number of virtual elements in IMCA and
number of elements in the middle schema that is not
eliminated are equal. But using IMCA, we can
completely eliminate the affection of middle schema,
which can be seen as a real composition process.

VII. CONCLUSION

Mapping composition is an active aspect in the
research of schema mapping management, the object of
which is to reuse mappings as a model, and simplify the
process of data exchange. Especially when the scale of
peers in the network is large, composing mappings can
improve the data exchange efficiency. In this paper, we
give the definition of indirect mappings, and discuss the
composability of indirect mappings. Then we propose an
indirect mapping composition algorithm using the
schema-element-back strategy. Experiment results show
that although IMCA dose not improve the query
performance, but the affection of middle schema can be
eliminated.

REFERENCES

[1] A. Fuxman, M. A. Hernández, C. T. H. Ho, R. J. Miller, P.
Papotti, L. Popa. Nested Mappings: Schema Mapping
Reloaded. [C], VLDB 2006, Seoul Korea, 67-68,2006

[2] P. A. Berstein, S. Melnik. Model Management 2.0:
Manipulating Richer Mappings [C], SIGMOD, Beijing,
China, 1-12,2007

[3] P. A. Berstein, T. J. Green, S. Melnik. Implementing
mapping composition [J]. VLDB Journal, 2008,17): 333-
353

Copyright © 2009 MECS I.J. Image, Graphics and Signal Processing, 2009, 1, 50-58

58 Mechanism and Algorithm for Indirect Schema Mapping Composition

Copyright © 2009 MECS I.J. Image, Graphics and Signal Processing, 2009, 1, 50-58

pping.

[4] R. Fagin, P. G. Kolaitis, L. Popa. Composing Schema
Mappings: Second-Order Dependencies to the Rescue [J].
ACM TODS, 2005, 30 (4): 994-1055

[11] LiXu, D. W. Embley. A Composite Approach to
Automating Direct and Indirect Schema Mappings [J].
information System, 2006, 31 (8): 697-132

[5] J. Madhavan, A. Y. Halevy. Composing Mappings Among
Data Sources [C], VLDB 03, Berlin, Germany, 572-
583,2003

[12] L. Popa, Y. Velegrakis, R. J.Miller, M. A. Hernandez, R.
Fagin. Translating Web Data [C], Proceedings of the 28th
VLDB Conferences(VLDB'02) Hong Kong, China, 598-
609,2002 [6] P. McBrien, A. Poulovassilis. Data Integration by Bi-

Directional Schema Transformation Rules [C], ICDE03,
Boston, 227-238,2003

[13] M. Lenzerini. Data Integration: A Theoretical Perspective
[C], PODS'02, 233-246,2002

[7] A. Nash. Foundations of Information Integration, SAN
DIEGO, UNIVERSITY OF CALIFORNIA, 2006

[14] Y. Velegrakis, R. J.Miller, L. Popa. Mapping Adaptation
under Evolving Schemas [C], 29th VLDB Conference,
Berlin, Germany, 2003 [8] A. Nash, P. A. Berstein, S. Melnik. Composition of

Mappings Given by Embedded Dependencies [C], PODS
2005, Baltimore, Maryland, USA, 2005

[15] R. Fagin, P. G. Kolaitis, R. J.Miller, L. Popa. Data
Exchange: Semantics and Query Answer. [J]. Theoretical
Computer Science 2005, 336 (89-124 [9] M. Boyd, S. Kittivoravitkul, C. Lazanitis, P. McBrien, N.

Rizopoulos. AutoMed: A BAV Data Integration System
for Heterogeneous Data Sources [C], CAiSE04, Riga
Latvia, 3084,82-97,2004

[10] M. Boyd, P. McBrien. Comparing and Transforming
Between Data Models via an Intermediate Hypergraph
Data Model [J]. COMPUTER SCIENCE, 2005, 3730 (69-
109

Wang Bo, born in Shenyang, China, in
September 18th, 1980, got his Ph.D in
National University of Defense
Technology, Changsha, China in 2009. His
current research interests include
heterogeneous information integration and

schema ma

Guo Bo, born in 1963. Professor and
PH.D. supervisor. His main research
interests include system management and
integration and information management
system.

	I. Introduction
	II.Related works
	III. Mapping composition
	IV. Indirect mapping
	A. Describe indirect mappings
	B.Exchange data under indirect mappings
	V. Mechanic of indirect mapping composition

	A. Schema-elements-back
	B. Indirect mapping composition algorithm
	VI. Experiments

	A. Complexity of ICMA
	B. Results and analysis
	VII. Conclusion
	References

