
I.J. Information Engineering and Electronic Business, 2017, 4, 13-20
Published Online July 2017 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijieeb.2017.04.03

Copyright © 2017 MECS I.J. Information Engineering and Electronic Business, 2017, 4, 13-20

IReadWeb: Towards Best Performance of

WebAnyWhere

Najwa K. Bakhsh
Department of Computer Science, Faculty of Computing and Information Technology, King Abdulaziz University,

Jeddah, Saudi Arabia

Email: Najwa.bakhsh@gmail.com

Saleh Alshomrani
Department of Information Systems Faculty of Computing and Information Technology, University of Jeddah, Jeddah,

Saudi Arabia

Email: sshomrani@uj.edu.sa

Imtiaz Hussain Khan

Department of Computer Science, Faculty of Computing and Information Technology, King Abdulaziz University,

Jeddah, Saudi Arabia

Email: ihkhan@kau.edu.sa

Abstract—This article describes IReadWeb system,

which is based on existing WebAnyWhere technology.

The existing WebAnyWhere system uses depth-first

search (DFS) to traverse the Document Object Model

(DOM) during the Web surfing task. DFS uses an

exhaustive search and crawls through an entire page until

it identifies the target node thereby greatly increasing the

response time to users. We developed a user-experienced

based algorithm, which, unlike DFS, exploits pre-fetched

information stored in a local cache to speed up the

browsing task. The performance of IReadWeb is

thoroughly evaluated and compared against

WebAnyWhere by using a sizeable sample of blind

native Arabic speakers. The experimental results show

that IReadWeb outperformed WebAnyWhere in attaining

fast response speed.

Index Terms—Web application, Disability, Text-to-

speech, IReadWeb.

I. INTRODUCTION

We are interested in building a WebAnywhere-based

system that is available in the Arabic language and can

help visually impaired Arabic speakers access the Web.

WebAnywhere is a Web-based, self-voicing browser that

enables blind users to access the Internet from almost any

computer that can produce sound [1]. The performance of

a WebAnywhere system depends (amongst other things)

on the quality of a screen reader, which uses a text-to-

speech (or speech synthesiser) system in reading or

parsing a webpage. WebAnywhere uses depth-first search

(DFS), a method of parsing the Document Object Model

(DOM), in which an algorithm crawls through a page

until it identifies a target node. Starting from the root

node, the algorithm crawls down to the next element and

repeats the process until the element of interest is found

or the search space is exhausted. The speed with which an

algorithm operates depends on two factors: the number of

calculations it must make and the time required to access

the resources necessary for the algorithm to run (usually,

memory). A DFS must remember the element that it

previously visited; thus, the minimum amount of memory

it requires is equal to the number of elements in a tree. On

the other hand, DFS has an exponential time complexity

which makes it very inefficient [2]. This problem

motivated us to enhance the prefetching function in

WebAnywhere and improve the system’s performance as

highlighted in [9,10].

In the present study, we built an intelligent Arabic

WebAnywhere plug-in that is intended to assist Arabic

users in accessing educational websites and checking

their email. The plug-in also enables reading and

shopping from any location at any time. To enhance the

system, we examined user experience with

WebAnywhere. In the evaluation, we configured the

system so that it begins reading the most frequently used

element, instead of reading all the unwanted elements on

a webpage. This way, the system can identify a target

element in a short period. This feature enables the

creation of an intelligent, highly accessible system.

In a previous study [3], we conducted three

investigations to evaluate the performance of NonVisual

Desktop Access (NVDA) and IBSAR, which are two

speech synthesiser systems used by blind people [11,12].

The first investigation focused on the quality of the

systems in terms of pronunciation, the second revolved

around the intelligibility of the systems and the third

investigate the meaning of sentences means the degree of

received messages being understood. This article

describes IReadWeb system which is based on existing

WebAnyWhere technology. In building the system, we

developed a new algorithm called the User Experience

algorithm to enhance page reading. The algorithm uses

14 IReadWeb: Towards Best Performance of WebAnyWhere

Copyright © 2017 MECS I.J. Information Engineering and Electronic Business, 2017, 4, 13-20

DFS and saves all reading-related behaviours, skips and

bookmarking of favourites in local storage. This method

also reduces the time consumed in reading a page. In the

present study, the performance of IReadWeb is

thoroughly evaluated and compared against

WebAnyWhere by using blind native Arabic speakers.

The experimental results show that IReadWeb

outperformed WebAnyWhere in attaining fast response

speed.

The rest of this article is organized as follows. Section

II discusses the related work. The WebAnyWhere system

is described in Section III. In Section IV, the proposed

IReadWeb is described. The evaluation of the proposed

system is given in Section V. Section VI discusses the

results. The paper concludes in Section VII.

II. RELATED WORK

In [4], the authors overview existing solutions for

mobile web access for blind users and presents the design

of the WebAnywhere system. WebAnywhere generates

speech remotely and uses prefetching strategies designed

to reduce perceived latency. A user evaluation of the

system is presented showing that blind users can use

Web-Anywhere to complete tasks representative of what

users might want to complete on computers that are not

their own. A survey of public computer terminals shows

that WebAnywhere can run on most.

In another study [7], the authors describe the

performance and security implications of the system’s

unique design and how it has been engineered to provide

usable access anywhere. Specifically, we present

prefetching and caching strategies developed to make the

system responsive even on low-bandwidth connections

and security considerations that replicate existing browser

security policies.

In [5], the authors describe recent developments and

their experiences in releasing WebAnywhere.

WebAnywhere was originally designed as a web-based

alternative to a traditional screen reader. It can be run on

any computer without installing new software, making it

ideal for use on-the-go or in libraries and schools where

the appropriate access technology is unlikely to already

be installed and where users do not have permission to

install it. Since its initial release nearly two years ago,

WebAnywhere has expanded from its original goal of

supporting blind web users to become a platform for an

array of technologies supporting access for people with

disabilities.

In yet another study [1], the authors expanded the

WebAnywhere from its main goal to become a platform

for an array of technologies supporting access for people

with disabilities.

In [6], the authors overview the browsing strategies

that the research have observed screen-reader which users

utilize when they are faced with challenges, ranging from

unfamiliar Web sites and complex Web pages to dynamic

and automatically-refreshing content. The author

develops a new tool that makes experienced users more

effective, and assist them to overcome the initial learning

curve for users who have not yet acquired effective

browsing strategies.

Webanywhere is designed to function on most

computers that have Internet access and that can play

sound. Webanywhere does not support users' behavior or

browsing history also Webanywhere do not support

Arabic language.

In this research, we built an intelligent WebAnyWhere

to be available in Arabic languages with best text to

speech by using Text to speech evaluation. In addition,

enhance the performance of the WebAnyWhere[15] as

well as improving the perfection time by forcing the

system start reading the most frequently and favorite

elements used content in stated of reading all unwanted

content.

III. THE EXISTING WEBANYWHERE SYSTEM

The WebAnywhere [14, 15] works as follows. After a

user requests a page from the mainframe domain, he/she

can then browse the page locally. The client process of

JavaScript parses the subDOM document and re-sends it

as text to the Web to be read. The client then interactively

accepts the voices that represent the transmitted text and

dynamically plays it for the user. The user can interact

with the system through functions such as “voice and

skip,” “save as favourite” and “listen”. Information on

user interaction should be saved locally so that the same

data can be re-loaded onto a page and the system can

control how the same page will be read for a user. User

interaction should be continuous to enable our main

algorithm to determine what components to save and in

what manner in the local storage.

The three main processes in the WebAnywhere

architecture[1,5] are the domain server process, the client

browsing process and text-to-voice conversion in the

server. The following diagram (Fig. 1) shows the overall

data exchange that occurs locally in a user’s client PC or

between Internet servers.

A. Domain Server Process

In the domain server process, a web server that hosts a

domain on the Internet accepts requests from a client and

loads the corresponding webpages in the main frame of

WebAnywhere. An intermediate box loads pages within

the subframe for browsing in the client where the user

sends requests.

B. Client Browsing Process

The client browsing process is a program that exists in

a user PC. Its operation primarily involves the use of a

JavaScript processor and an HTML converter that loads

pages for browsing over Internet browsers, such as

Internet Explorer 10 and Firefox. As described in the

preceding chapters, WebAnywhere uses DFS to search

through a tree. The time spent traversing the DOM via

DFS depends on the number of elements on a page and

the duration with which the page loads. The worst-case

scenario would be that the algorithm will have to pore

through every element and every page. Assuming that

 IReadWeb: Towards Best Performance of WebAnyWhere 15

Copyright © 2017 MECS I.J. Information Engineering and Electronic Business, 2017, 4, 13-20

each element on a page has the same number of

elements—a constant branching factor— DFS incurs in

exponentail time complexity. Of course, this scenario

affects the duration of prefetching. To solve this problem,

we developed a new algorithm called the User

Experience algorithm and incorporated it into the plug-in

(details follow).

Fig.1. Text to Speech System Architecure

C. Text-to-Voice Conversion

In text-to-voice conversion, a server accepts texts from

clients and responds by transmitting a voice that

represents the texts. In this stage, a sophisticated speech

generation system is required to present the texts, but the

differences in strengths and weaknesses amongst various

speech production systems impedes this process. To solve

this problem, we evaluated existing TTS synthesisers to

choose the best application (details follow). Another

problem that we encountered is the unavailability of such

applications in the Arabic language. Specifically, no

application offers free reading in Arabic for

communication with automated requests from clients.

D. IRead Web

Our goal in building the plug-in tool is to help blind

and visually impaired individuals browse the Web

without the need to download new software. We

formulated the following criteria for development:

 WebAnywhere requires a sophisticated speech

generation system for presented text, but the

problem is that different speech production systems

are characterised by various strengths and

weaknesses. Therefore, the first implementation

goal is to determine what components constitute a

good speech production system. To achieve this

goal, we experimentally studied text-t-speeach

(TTS) synthesisers to choose the best amongst

existing technologies.

 Prefetching in WebAnywhere should be enhanced

for better performance [4,5]. This criterion is

motivated by the manner of parsing in

WebAnywhere. As stated above, WebAnywhere

uses DFS to parse the DOM. DFS lacks in both

space and time efficiency thereby compromizing

the overall performance of WebAnywhere.

We enhanced the performance of DFS by taking user

experience into account and incorporated it into the plug-

in, henceforth IReadWeb. The user experience script is

added to the client browsing process. It uses browsing

history, which comprises data on the interesting

interactive behaviours of a user on a given webpage. The

navigation algorithm enables the client to save this data in

a PC as cookies or similar elements.

The client sends two main requests. It first sends the

requested page domain to the domain server and sends

text to the text-to-speech server through an API. The

server then plays the transmitted voice.

To save information regarding user behaviour,

favourites and unimportant elements accessed on a

webpage, the navigation algorithm first evaluates these

elements and subsequently saves them as cookies. A

problem that arises is that data on browsing history are

larger than the available cookies offered by a browser. A

solution is the adoption of several techniques in which

external files store all the data in a PC.

The first issue that confronts us is that the JavaScript

running in a browser is unauthorized to handle a

computer file API. Thus far, the only solution to this

problem is the representation of files in Chrome via a file

system API. We expect this technique to be available in

all browsers in the future because it is officially supported

by the W3 organisation. Until then, however, this solution

The internet

Main

Domain

Server

TTS

server

Client

Local

Storage

Webpage

Save and retrieve local Storage

Send text – receive voice API

Sub

domains

16 IReadWeb: Towards Best Performance of WebAnyWhere

Copyright © 2017 MECS I.J. Information Engineering and Electronic Business, 2017, 4, 13-20

remains impractical. The alternative that we recommend

is to opt for local storage that is supported by HTML5 [8].

This type of storage presents many advantages over

ordinary cookies. It enables long-term storage, unlike

HTTP cookies, which expire by default. To create an

application that allows long-term storage, developers

must use complex syntax and constantly update

expiration dates. Another advantage of HTML5-

supported storage is that it does not involve the use of a

plug-in.

Page Loaded

Has element in Local

Storage
NO Using DFS

If Element Read No Skipped
Save element in local storage

and add value -1

Yes

Check if Favorite Short Cut

press Or It Favorite Element

Yes

Save in Local storage add

value = F+ 1

No
Save in local Storage add

Value =+1

Yes
Use user experiance

Algorithm

Read Favorite Element

with High Frequently

Read High Frequently

element

Read other Element

Fig.2. IreadWeb Flow Chart

The Fig. 2 comprehensively illustrates user experience.

After a page is loaded by the client, script two scenario is

operated first; that is, the system checks whether this is

the first time an element on a page is read, after which

DFS is executed as follows:

 If an element is read, 1 is added to the element

value. The element ID is saved and the value is sent

to the local storage.

 If the element is read and the favourites shortcut is

pressed (Ctrl + M), then the element value is saved

as (f1) in the local storage.

 If the element is skipped, then 1 is subtracted from

the element value. The remaining value is saved to

the local storage.

The second problem is that if the page has been

previously loaded, then the User Experience algorithm

functions as follows:

 All favourite elements with high values are read. If an

element is read, 1 is added to the element and

previous values (value = fv + 1, where f is the

favourite and v denotes the last value added).

 If a user skips one of his/her favourite elements, then

1 is subtracted from the element value (Value = fv – 1,

where f denotes the favourite and v represents the

remaining value added to the element).

 If the element being read is not a favourite, then 1 is

added to the element value (Value = value + 1).

 If an element is not a favourite and it is read, 1 is

subtracted from the element value (Value = value – 1).

 The algorithm checks on whether an element has been

read and saves this situation in the local storage as the

first scenario. This step facilitates page updates.

The second issue that requires addressing is the manner

by which user experience data are stored. In some cases,

the DOM element that a user needs to save or discard an

element—using the main algorithm—will not have an ID;

it therefore lacks the unique characteristics that enable

automated saving by a programme. This situation, in turn,

generates bugs that may impede user experience. For

example, a user hears elements that he/she did not access,

or a programme discards data or assigns low priority to

data that are considered important by the user.

Internet developers cannot create an ID for every

element in the pages that they design. Furthermore,

certain data are already generated on a page even before

 IReadWeb: Towards Best Performance of WebAnyWhere 17

Copyright © 2017 MECS I.J. Information Engineering and Electronic Business, 2017, 4, 13-20

loading, making this page self-generating in terms of

process, function, search and database access. The text

node in any DOM contains no distinguishing features; it

is an actual text and no tag represents the text node itself.

A text node is always a leaf node.

E. Interface

In WebAnyWhere [5], we designed the interface so

that it is divided into two frames: One frame works as a

browser, and one frame is for downloading the website.

The browser frame contains the address bar, “إذهب”

(“Go”); to make this more usable, we added two more

buttons: “التالي” (“Next”) and “السابق” (“Previous”), so the

user can move forward or backward. Also, by using the

Search Text box, the user can look for specific text or

elements. The other frame is to download the requested

web page after it download the WebAnyWhere (WA)

script with the user experience will work.

Fig.3. IreadWeb Interface

IV. TEST AND EVALUATION

A. Different Operating Systems/Browsers

We tested the performance of IReadWeb (the

WebAnyWhere after adding the user experience) in

different operating systems and browsers to make sure

the pages look as intended. The following combinations

as shown in Table 1 were tested.

B. Usability Test

In order to test the usability of the website, the

following attributes were tested: appearance, clarity, and

ease of access. Other factors measured include ease of

learning, efficiency of use, and subjective satisfaction.

Tasks were chosen to test each of these factors. Test

participants were asked to complete typical tasks while

observers watched, listened, and took notes regarding

whether tasks were completed correctly and the required

completion time.

Table 1. Different Operating system and Browser Test

Browser Operating System Comment

Internet Explorer 8 Microsoft Windows 7 All functions work as intended

Internet Explorer 7 Microsoft Windows 7 All functions work as intended

Internet Explorer 8 Microsoft Windows 7 All functions work as intended

Safari iOS 4.2.1 All functions work as intended, but PHP code does not appear.

Mozilla Firefox Microsoft Windows 7 All functions work as intended

Google Chrome Microsoft Windows 7 All functions work as intended

After the Arabic language was added to the local server,

the program was tested using 12 blind participants from

King Abdulaziz University. The experimenter explained

the guidelines of use for WebAnywhere, and outlined all

the short keys. The test lasted approximately 80 minutes,

and was carried out in King Abdulaziz University's

specialized experimental laboratory for disabled people.

Each participant completed 10 trials, where a trial means

surfing a given website; a total of 10 different websites

were used: 4 static and 6 dynamic. The following tasks

were assigned to test usability factors:

 Open http://www.alarabiya.net/

 Use the arrow key to skip down to Saudi News

18 IReadWeb: Towards Best Performance of WebAnyWhere

Copyright © 2017 MECS I.J. Information Engineering and Electronic Business, 2017, 4, 13-20

 Add Al Saudi News to favorites using CTL+M

 Go to http://www.blindtec.net/vb/forum.php using

CTL+L to write to the text field.

 Use the tab key to skip to "Al-Maktaba Al-Saotia

 ."المكتبة الصوتية

C. Performance Test

We evaluated thoroughly the performance of

IReadWeb in English, as there is no Arabic version of

WebAnywhere. The performance of IReadWeb was

compared against the performance of WebAnyWhere

using 10 websites, including both static and dynamic

websites. Table 2 shows the websites used in the test. The

total time elapsed was recorded for each website visited.

WebAnywhere was tested using

http://webanywhere.cs.washington.edu/beta/index.php?lo

cale=en and the user experience was uploaded to

www.ireadweb.net/wa.

Table 2. The Websites Examined

No. Websites Type

1 http://www.co-operativebank.co.uk/ Dynamic

2 http://www.ssa.gov/ Dynamic

3 http://www.cdc.gov/ Dynamic

4 http://www.usa.gov/ Dynamic

5 http://www.canada.ca/en/index.html Dynamic

6 https://www.couchsurfing.org/ Dynamic

7 http://www.9boninnes.co.za/ Static

8 http://www.blouberg-holiday.co.za/ Static

9 http://www.quayside906.co.za/ Static

10 http://www.fibercom.co.za/ Static

The network speed during testing was 10 mb/s. We

assigned target elements, such as X in the website. We

chose X as an element at the end of the webpage. Unlike

the intelligibility test as reported in [16], we examined the

usability of the WbAnyWhere and the IReadWeb. In the

WebAnyWhere, to read the website to reach the target

element X, the following three different

scenarios/conditions were used to examine the websites:

1. Read the page without using any skips to reach the

target element (henceforth WS-1, i.e.,

WebAnyWhere Scenario 1).

2. Read the page using the down arrow skip key

(which skips by word) to reach the target element

(henceforth WS-2).

3. Read the page using the tab skip key, which skips

by element (henceforth WS-3).

Similarly, in the IReadWeb, we added the target

element X to the favorites list (Local Storage) in the

following three scenarios and measured the performance

accordingly:

1. Add the element X to the first elements on the

favourites list and give it the highest frequency

(henceforth IR-1, i.e., IReadWeb Scenario 1).

2. Add the element X to the last elements on the

favourites list and give it the lowest frequency,

where the favourites list consists of a maximum

number of elements on the webpage (henceforth

IR-2).

3. Add the element X to the last elements on the

favourites list and give it the lowest frequency,

where the favourites list consists of half the number

of elements on the webpage (henceforth IR-3).

V. RESULTS

We present the evaluation results measured in terms of

reading time taken by a participant against different

conditions (as described above). The reading time (speed)

was recorded in seconds. The results are shown in Table

3.

Table 3.The Web surfing time of WebAnyWhere and IReadWeb

Website

Web surfing time (seconds)

WebAnyWhere Conditions IReadWeb Conditions

WS-1 WS-2 WS-3 IR-1 IR-2 IR-3

1 262.4 182.7 159.3 238 119.3 80.5

2 502.6 251.3 189.7 260.5 139.7 109.3

3 403.7 263.2 241.2 184.2 155.2 130.2

4 342.3 339.8 291.8 115.4 234.8 141.2

5 703.4 341.2 452.3 193.8 232.4 179.5

6 738.6 325.8 320.3 238.2 267.6 190.3

7 315.2 60.8 56.6 34.21 20.34 46.3

8 282.8 151.2 73.2 56.32 43.65 64.2

9 174.6 94 59.8 46.43 34.56 56.8

10 213.4 59.51 48.32 38.76 32.13 40.65

http://www.blindtec.net/vb/forum.php
http://webanywhere.cs.washington.edu/beta/index.php?locale=en
http://webanywhere.cs.washington.edu/beta/index.php?locale=en
http://www.ireadweb.net/wa
http://www.cdc.gov/
http://www.usa.gov/
http://www.canada.ca/en/index.html

 IReadWeb: Towards Best Performance of WebAnyWhere 19

Copyright © 2017 MECS I.J. Information Engineering and Electronic Business, 2017, 4, 13-20

Table 4. The mean Web surfing time of standard WebAnyWhere and IReadWeb

Website

Web surfing time (seconds)

WebAnyWhere Conditions IReadWeb Conditions

WS-1 () WS-2 () WS-3 () US-1 () US-2 () US-3 ()

Static 246.5(64.13) 91.38 (43.52) 59.50 (10.26)
43.93

(9.68)
32.67 (9.60) 55.77 (8.99)

Dynamic 492.17 (194.25) 284.00 (63.03) 275.17 (104.38) 205 (52.5) 191.67 (62.42) 138.33 (41.67)

The mean web surfing time for the static and dynamic

websites, averaged over static and dynamic websites

separately, is reported in Table 4.

It is clear from the results (Table 3 and Table 4) that

overall the IReadWeb offered best performance to the

blind people. An ANOVA test was used to test the

performance gain against the different conditions (three

WebAnyWhere conditions and three user IReadWeb,

total six conditions). The ANOVA results revealed that

the performance gain differed significantly among these

conditions: F(5,54) = 11.78, p < 0.01.

VI. DISCUSSION

Building on existing WebAnyWhere technology base,

we developed IReadWeb which offers rapid web surfing

to blind people. To achieve this rapid web surfing goal,

the IReadWeb takes user experience into account by

exploiting pre-fetched information stored in a local cache.

We experimentally showed that IReadWeb outperformed

WebAnyWhere in attaining fast response speed. The

present study reveals some interesting results which are

worth discussing.

 On static websites, both WebAnyWhere and

IReadWeb offered competitive performance. The

response time of IReadWeb was slightly better

than the response time of WebAnyWhere in all

conditions though.

 On dynamic websites, IReadWeb outperformed

WebAnyWhere in all conditions. This is important

because if the user needs a link or an element at

the end of the page, (s)he must wait until that

link/element is reached. However, in the

IReadWeb, a user can add such elements to the

favourites list thereby retrieving the required

page(s) much quickly.

 Of course the performance of IReadWeb would be

affected with an increase in the number of

elements on the favourites list. But comparing the

number of such elements to the total number of

elements skipped/read by WebAnyWhere, it seems

plausible that IReadWeb would still process lesser

number of elements thereby reducing the response

time.

 Many different factors affected the test, including

the number of elements on the webpage. These

factors add adverse effects especially to

WebAnyWhere because it uses depth-first search

whose worst-case time complexity is O(V+E) (V

as vertical, E as edge). It is important to mention

here that this complexity becomes even worse in

webpage processing, because the number of pages

(P) read to reach the target node also contribute

towards this complexity resulting in total worst-

case time complexity O(P+V+E).

VII. CONCLUSION

This study aimed at developing an intelligent plug-in

tool for blind users, specifically Arabic native speakers.

WebAnywhere was used as the base technology in the

development of the intelligent plug-in tool. We enhanced

the performance of WebAnyWhere by developing a user-

experienced based algorithm which exploits pre-fetched

information stored in a local cache to speed up the

browsing task. The algorithm was implemented resulting

in an improved version of WebAnyWhere: IReadWeb.

The performance of IReadWeb was thoroughly

evaluated and compared against WebAnyWhere by using

blind native Arabic speakers. The evaluation study was

carried out on both static and dynamic websites. The

experimental results showed that IReadWeb

outperformed WebAnyWhere in attaining fast response

speed.

In future, we intend to extend the present work to

mobile devices too. Most mobile devices today use

browsers with limited functionality that cannot play

sound from within the browser, although this is beginning

to change. WebAnywhere may become a popular method

to enable accessible browsing on mobile devices.

REFERENCES

[1] J. P. Bigham, C. M. Prince, and R. E. Ladner,

“WebAnywhere : A Screen Reader On-the-Go”, 2008.

[2] J. Erickson, “Algorithms”, University of Illinois, 2013.

[3] Najwa K. Bakhsh, Saleh Alshomrani, Imtiaz Khan, “A

Comparative Study of Arabic Text-to-Speech Synthesis

Systems”, IJIEEB, Vol. 6, No. 4, pp.27-31, 2014.

[4] J. P. Bigham, C. M. Prince, and R. E. Ladner,

“Addressing Performance and Security in a Screen

Reading Web Application that Enables Accessibility

Anywhere”, 2007.

[5] J. P. Bigham, W. Chisholm, and R. E. Ladner,

“WebAnywhere - Experiences with a New Delivery

Model for Access Technology”, pp. 1–4, 2010.

[6] Y. Borodin, J. P. Bigham, G. Dausch, I. V Ramakrishnan,

and S. Brook, “More than Meets the Eye : A Survey of

Screen-Reader Browsing Strategies”, 2010.

[7] J. P. Bigham, A. C. Cavender, J. T. Brudvik, J. O.

Wobbrock, and R. E. Ladner, “WebinSitu : A

20 IReadWeb: Towards Best Performance of WebAnyWhere

Copyright © 2017 MECS I.J. Information Engineering and Electronic Business, 2017, 4, 13-20

Comparative Analysis of Blind and Sighted Browsing

Behavior.”

[8] Adobe shockwave and flash players: Adoption statistics.

Adobe (June 2013).

[9] J. P. Bigham and R. E. Ladner, “Accessmonkey: A

collaborative scripting framework for web users and

developers”, In Proceedings of the International Cross-

Disciplinary Conference on Web Accessibility (W4A ’07),

pp. 25-34, 2007.

[10] J. P. Bigham, C. M. Prince and R. E. Ladner,

“Engineering a self-voicing,web-browsing web

application supporting accessibility anywhere”, 2008,

Available at: http://webinsight.cs.washington.edu/

publications/webanywhere-engineering.pdf.

[11] “NVDA screen reader”, NV Access Inc., 2007, Available

at: http://www.nvda-project.org/.

[12] “Sakhr Software Co. Sakhr Building”, Cairo, 2008,

Available at: http://www.sakhr.com/.

[13] “Sound Manager 2”, Available at

http://www.schillmania.com/projects/soundmanager2/,

last access May 2014.

[14] “WebAnywhere”, Available at:

http://webanywhere.cs.washington.edu/beta/, last accessed

May 2014.

[15] “WebAnywhere Open Source Site at Google Code”,

Available at: .http://webanywhere.googlecode.com, last

accessed January 2012.

[16] Y. Y. Chang, “Evaluation of TTS systems in intelligibility

and comprehension tasks”, In Proceedings of the 23rd

Conference on Computational Linguistics and Speech

Processing, Association for Computational Linguistics, pp.

64-78, 2011.

Authors’ Profiles

Najwa K. Bakhsh was born in Jeddah, Kingdom of Saudi

Arabia (KSA). She is currently a computer science postgraduate

student at King Abdulaziz University, Jeddah, KSA. She

obtained her bachelor’s degree in computer science from King

Abdulaziz University, Jeddah, KSA, in 2003. She is currently

working as a programmer at King Abdulaziz University. Her

research interests include Web mining, Web accessibility, cloud

technology and parallel algorithm.

Dr. Saleh Alshomrani is an Associate

Professor of Information Systems

Department at University of Jeddah.

He is also serving now as the Dean of

Faculty of Computing and Information

Technology, University of Jeddah. He

earned his Bachelor degree in

Computer Science (BSc- with Honor)

from King Abdulaziz University,

Saudi Arabia 1997. He received his Master degree in Computer

Science from Ohio University, USA 2001. He Also earned his

Ph.D. in Computer Science from Kent State University 2008,

Ohio, USA, in the field of Internet and Web-based Distributed

Systems and Technologies. His research areas include: Data

Mining, Algorithms, Computing Education, E-Learning, and E-

Government, and Web Programming and Technologies.

Dr. Imtiaz H. Khan is an Associate

Professor in the Department of

Computer Science at King Abdulaziz

University, Jeddah, KSA. He received

his master’s degree in computer

science from the University of Essex,

UK, in 2005. He earned his Ph.D. in

artificial intelligence from the

University of Aberdeen, UK, in 2010.

His research interests are natural language processing,

particularly natural language generation and evolutionary

computation.

How to cite this paper: Najwa K. Bakhsh, Saleh Alshomrani, Imtiaz Hussain Khan,"IReadWeb: Towards Best

Performance of WebAnyWhere", International Journal of Information Engineering and Electronic Business(IJIEEB),

Vol.9, No.4, pp.13-20, 2017. DOI: 10.5815/ijieeb.2017.04.03

