
I.J. Information Engineering and Electronic Business, 2017, 3, 18-25
Published Online May 2017 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijieeb.2017.03.03

Copyright © 2017 MECS I.J. Information Engineering and Electronic Business, 2017, 3, 18-25

SourceViz: A Tool for Supporting Software

Metrics Visualization

1
Muhammad Ilyas

1Department of Computer Science, University of Sargodha, Sargodha, Pakistan

Email: 1m.ilyas@uos.edu.pk

2
Hafiz Anas Bilal,

3
Qandeel Tariq,

4
Saba Ameer Awan

2, 3, 4Department of Computer Science, COMSATS Institute of Information Technology, Islamabad, Pakistan

Email: 2,3{anasbilal5773, bsse061}@gmail.com, 4bad_e_saba123@yahoo.com

Abstract—Maintaining and understanding large software

systems is a complex and time consuming process.

Understanding the internal structure of such systems is

not an easy task due to the invisible nature of software.

Source Code Visualization, i.e. measuring the code

metrics and then visualizing them, provides an efficient

solution to this problem. There are many tools available

which gives an insight to the internal structure of the

software. But all of them don‟t provide visualizations of

hierarchical relationships and code complexity of the

source code. In this paper, we present a tool named

“SourceViz”. This application computes different

software metrics, code complexity, class-relations and

then visualizes the calculated metrics in different

metaphors. This visual analysis assists the project

managers and software developers in understanding the

static structure of the software by presenting project-level

as well as class-level view.

Index Terms—Software Metrics, Software Visualization,

Code Complexity, Source Code Visualization.

I. INTRODUCTION

Software systems are complex hierarchal systems.

Understanding the structure of such systems is a

cumbersome exercise. The intangible nature of the

software enhances this problem [1]. It is not possible for

the software engineers to acquire a detailed insight of the

source code in order to analyze every detail. Visualizing

the source code provides a solution to this problem. It

makes the software visible by providing a physical shape

to it. Different techniques used in the process of software

visualization facilitate the users to understand the code

and grasp its structure [1].

A number of metrics have been defined for analyzing a

software structure. These metrics are the quantitative

measure of the code elements. They provide quantitative

checks on software design through clear, tangible and

qualitative analysis. Also, they are designed to help in

identifying the problem areas. They actually highlight the

hidden dependencies of the code structure. Also, they

provide measures to pay attention to the complexities of

the object oriented code. They are likely to assist

managerial decision making by providing information for

managerial issues. Hence, these metrics can facilitate in

improving the overall quality of the software system.

The most common example includes the widely used

lines of code measure. These measures characterize the

properties of the software systems. Visualizing these

metrics helps in the comprehension of the system.

SourceViz is a tool that explores and visualizes the

internal structure of the source code written in Java. In

the field of software visualization, a number of

techniques exist to address the visual representations in

2D and 3D. Out of these techniques, SourceViz utilizes

bar chart, pie chart and graphs to visually represent the

metrics. The metric values are presented by the visual

attributes, i.e. size and color. In addition to this, the

graphs display the hierarchy of the system through node-

link structure. A user can understand the code through

multiple views. Each view addresses a different

perspective for analysis. So, our visualization helps users

to see a big picture of the software system.

The remainder of this paper is structured as follows. In

Section 2, related work is discussed. Section 3 describes

the working of our tool. Section 4 concludes and

summarizes our findings and in Section 5, future work is

discussed that how this work can be carried further.

II. RELATED WORK

Different visualization techniques have been proposed

in the literature. These techniques have been mapped onto

different metaphors. Basic metaphors include: Bar Chart,

Pie Charts, Graphs, Cityscapes, Matrix Views and

Network Views [1,2]. A number of tools have been

discussed in the literature that implements these

techniques to visualize the structure of software from

different perspectives.

Graph based visualization techniques have been most

commonly used to visualize software metrics. They are

used to formally model relationships between objects.

The static graphs include node-link and matrix structures.

UML graphs are used widely to visualize the structure of

source code. These graphs provide a 2D view of the

software. They model the standard artifacts such that it

highlights the design of the software. The tools that

 SourceViz: A Tool for Supporting Software Metrics Visualization 19

Copyright © 2017 MECS I.J. Information Engineering and Electronic Business, 2017, 3, 18-25

generate UML models include IBM Rational Rose and

Visual Paradigm. Other techniques are Dependency

Structure Matrix (1981), Treemap, Circular Treemap

(1991), City metaphor (1993), Polymetric Views (1999),

Solar system (2003), Landscape (2004), UML Metric

View (2005), Treemap Metrics (2005) [4].

Tools that relate to our work based on above

mentioned techniques include: Metric View, Polymetric

Views, SolidFX, CodeCity, Codstruction, X-Ray and

NDepend. Metric View [3] extracts software metrics

from the source code and maps them on UML diagrams.

This tool is capable of showing class relations but due to

the short comings of UML modeling diagrams, it

provides limited information. Polymetric Views [5]

provide a 2D graph that visualizes only class hierarchy

relations at multiple levels. It is not concerned with the

low level metrics as described in table1. X-Ray is a tool

based upon Polymetric Views. It is also maps source code

elements on UML diagrams; so likewise, it is also

restricted to dependency metrics views at multi-levels.

SolidFX [7] is a multipurpose visualization tool. It

supports the visualization of various source code through

dependency graphs, software metrics and system

diagrams. It can even undertake very large projects

having multi-million lines of code but, it is restricted to

C/C++ platform.

Table 1. Existing tools on source code visualization

Sr.# Tools Metaphor Descriptions Limitations

1 CyVis Bar/Pie Charts

Does not provide any information about

the hierarchy relationships at different

level

Project, package and class level

view

2 NDepend
Hierarchical

View

complicated tool with a complex user

interface

Hierarchy relationship with .Net

framework support

3
CodeCity &

Codestruction
City Metaphor

Does not provide any insight about low-

level metrics of code

3D view domain of system map

with domain of city

4 SolidFX
Dependency

Structure

Large Projects but restricted to C/C++

platform

Dependency graphs, software

metrics and system diagrams.

5 X-Ray

Polymetric

Views , UML

Representation

It restricts to dependency metrics views

at multi-levels

Maps source code elements on

UML diagrams

6 Metric View
UML

Representation

Due to short comings of UML modeling

diagrams, it provides limited

information

Shows class relations

7
Polymetric

Views
Hierarchical View Not concerned with low level metrics

Gives 2D graph that visualizes

only class hierarchy relations

at multiple levels

In [16], authors presented a software visualization

approach that provides a mental picture by viewing an

object-oriented (OO) software by means of polymetric

views, i.e. light-weight soft- ware visualizations enriched

with software metrics.

Other than these, CodeCity [6] and Codstruction [8]

are the common tools based on city metaphor to visualize

software metrics. They provide a 3D view of the software.

The domains of a system are mapped to the domains of a

city i.e. a system is a city, package is a district and

buildings are the classes of the source code. The class

metrics are defined by the attributes of a building. Visual

properties are applied to these mapped software metrics.

Box-plot mapping technique is utilized to visualize the

values of these mapped metrics. Five levels are defined to

map the metrics for the purpose of categorization. These

are highly scalable. Multiple parameters are used to give

an appropriate view of the class metrics. These

parameters include class color, dimension, position, color

saturations of the buildings created in the city based view.

But, these tools are unable to visualize the relationships

among different entities.

In [17], authors presented code elements as classes,

functions, or attributes in city metaphor by the tool

CodeMetropolis. It uses the game engine of Minecraft for

the graphics, and is able to visualize various properties of

the code based on structural metrics. In this work, we

present our approach to integrate our visualization tool

into the Eclipse IDE environment. Previously, only

standalone usage was possible, but with this new version

the users can invoke the visualization directly from the

IDE, and all the analysis is performed in the background.

CodeMetropolis [18] is a tool which uses the city

metaphor to show the structure of the source code as a

virtual city. In it, different physical properties of the city

and the buildings are related to various code metrics. In

its previous version, it was limited to represent only code

related artifacts. In its extended version, authors tried to

visualize the properties of the tests related to the program

code. The test suite and the test cases are also associated

with a set of metrics that characterize their quality (such

as coverage and specialization).

NDepend [9] is the recent tool that is closest to our

work. It visualizes a large number of software metrics

along with the hierarchy relationships but, it is quite a

complicated tool with a complex user interface.

Moreover, it is designed to support Dot Net framework.

CyVis [10] is another tool that collects and analyzes

software metrics which is specially designed to deduce

and visualize cyclomatic complexity. It provides project,

package and class level view that visualizes the

complexity using bar chart. But, it does not provide any

information about the hierarchy relationships at different

levels.

Compared to other tools and techniques, SourceViz

extracts the metrics and other class relations directly from

20 SourceViz: A Tool for Supporting Software Metrics Visualization

Copyright © 2017 MECS I.J. Information Engineering and Electronic Business, 2017, 3, 18-25

the source code. It visualizes both, low level as well as

high level software metrics. These metrics can be

visualized for different levels i.e. project, package or

class. It also indicates the complexity level of the source

code. The techniques used for visualization are simple

and easily understandable. Moreover, our tool has a user

friendly interactive interface. This tool targets a large

number of audience including project managers,

developers, software architects and designers etc.

III. PROPOSED WORK

Building a prototype artifact is a significant element of

the applied research. It serves as the basic and

preliminary step to demonstrate the feasibility of the

research artifact or it can be referred to as “proof by

construction”. Also, the building process contributes to

the body of knowledge in the field, by adding a new

dimension to the already used techniques.

Fig.1. Process Flow of SourceViz

In this section we describe the system architecture and

working of our proposed prototype application

SouurceViz. Figure 1 represents the architecture of

SourceViz. Two main algorithms developed in this

application are described in this section.

A. SourceViz- An Overview

SourceViz is a source code visualization tool that we

have developed to enhance the understanding of the

source code structure and complexity.

The functions of this tool include:

1) Extract and compute software metrics

2) Analyze hierarchal relations at multiple levels

3) Compute software complexity

4) Visualize them

B. Algorithm Design

We have developed two main algorithms for our

system. The first algorithm is designed to browse a

compressed folder containing the project file. It identifies

and computes the software metrics from the selected file.

The metrics that we will be studying in our system are

described in section 4.4.3. Each of these software metrics

is stored in a database for each project along with their

computed values.

The second algorithm deals with the visual

representations of all these computed metrics. The

visualization techniques utilized through this algorithm

include Pie and Bar Charts. These charts present all other

metrics except for cohesion and coupling. They will be

dealt through Tree Hierarchy Structure. We have also

used Datasheets to visualize the metrics in a tabular form.

C. Algorithm for Metrics Calculation

We designed the algorithm for metrics calculation,

which consists of following steps:

Step1: Browse a compressed folder (.zip) containing

the project file written in Java.

Step2: Identify and compute software metrics from the

selected project.

Identify: low level and high level metrics

Compute: calculate values of metrics by sub-

algorithms

Step3: Values of computed metrics are then stored in

 SourceViz: A Tool for Supporting Software Metrics Visualization 21

Copyright © 2017 MECS I.J. Information Engineering and Electronic Business, 2017, 3, 18-25

the database in. values of computed metrics are then

displayed on the main interface of the SourceViz and also

in the tables with their corresponding visualization is

applied.

User can adjust view to show flexibility of their

desired level through predefined quires. Query is

processed by just clicking the button.

D. Metrics Extraction

Software metric is standard of measurement. Software

metric computes property of a piece of software or its

specifications. Since quantitative methods have been

proved so powerful in other sciences, computer science

practitioners and theoreticians have worked hard to bring

similar approaches to software development. Tom

DeMarco stated, “You can‟t control what you can't

measure”. There are countless examples of software

metrics. Software metrics have been widely used in

research and are well established [12]. Metrics have been

using in computer science because they enable

identification of valuable piece of information for

software quality attributes [13]. Complexity, efficiency,

re-usability, testability, and maintainability are a few

example of software quality attributes. Recently, an

increasing interest in OO metrics [14] has been shown

thanks to the increasing popularity of OO analysis and

design methodologies. In our approach, we consider both

OO metrics [15] and “more-traditional” code-size metrics.

In the following, we shortly introduce metrics we used in

our software visualization approach.

1) LOC: Computing lines of code is an old technique.

Lines of code are computed regardless of the

internal functionalities of software. SourceViz

computes this metric not only for the whole

project but also for every java class file separately

in that project. We

The lines of code considered by this tool are non-

comment, non-blank lines.

2) No. of Methods: Considering the static analysis of

source code we know every method has ability to

perform some functionality. This tool counts

number of methods found in each class and

displays them separately.

3) No. of Packages: We are counting the number of

packages. Total packages found in that project.

Here we are not considering the default packages.

4) No. of total classes: This metric counts the total

number of classes within a class project. It also

displays their names, the total number of methods

within and the parent class to which it belongs.

5) No. class files: The classes declared are present in

some class files that are saved as .java extension.

This tool considers this metric and gives the total

count of the class files in a project. Greater the

number of class files, heavier will be the project.

6) No. of Child Classes: SourceViz calculates the

total number of classes that are extended at

package level. It also calculates the number of

child classes for each class, if extended, at class

level.

7) No. of Comments: Comments in a code helps in

understanding the working of each command or

method but, too much comments result in

increasing the size of the project. Also, they are

not a part of the actual functionality of the code so,

not considered at managerial level. This tool

computes the total number of comments for each

class file separately and provides an exact count.

8) Percentage of Comments: SourceViz not only

finds the number of comments but also, the

percentage of comments. Percentage of comments

is computed using the following formula:

Comments Percentage = (No. of Comments /

LOC)*100.

9) No. of Abstract Classes (Na): At package level,

„Na‟ is the total number of abstract classes that are

within that package. This is an important metric as;

the greater the number of abstract classes, the

higher the opportunities to extend the package.

10) No. of Concrete Classes: At package level, „Nc‟ is

the total number concrete classes that are in that

package.

11) Afferent Coupling (Ca): At the package level Ca is

defined as, Ca of a package is the number of

classes of other packages that are called in.

12) Efferent Coupling (Ce): At the package level Ce is

defined as, Ce of a package is the number of

classes of this packages that are called in other

packages.

Fig. 2 given below, depicts the concept of Ca and

Ce.

Fig.2. Afferent and Efferent Coupling

13) Instability (I): Instability „I‟ is the ratio of Afferent

Coupling „Ca‟ and Efferent Coupling „Ce‟. It is

either „0‟ or „1‟, where I= 0 means the project is

instable and I= 1 means the project is stable. It is

given as,

I=Ce/ (Ce+Ca), where Ca and Ce > 0

14) Abstractness (A): The ratio of „Na‟ and „Nc‟ is

called Abstractness. Its range is lies between 0 and

1, where A= 0 indicates the package is totally

concrete and A= 1 indicates the package is abstract.

It is given as:

A = Na/ Total no. of classes

15) Cyclomatic Complexity: CC is a measure to

estimate the complexity defined for each class, as

well as whole software project. It is the most

22 SourceViz: A Tool for Supporting Software Metrics Visualization

Copyright © 2017 MECS I.J. Information Engineering and Electronic Business, 2017, 3, 18-25

common and useful technique. CC is computed on

the basis of the decision nodes that are if | for |

while | for each | try. The complexity of these

nodes is defined as either „0‟ or „1‟. Remember

that else, catch, do are not the decision node.

In this tool, we first compute CC for every method

in a class, then the total sum for all computed

values of CC is displayed class wise. Along with

this, SourceViz also computes CC for the whole

project by finding average CC of all the classes.

16) Distance from main sequence: This metric is an

indicator of the project's balance between

abstractness and stability. It is given as,

A+I = 1 (main sequence)

For Ideal projects the value is either A= 0 and I= 1

means completely abstract and stable or A=1 and

I= 0 means completely abstract and stable.

Minimum value indicates that the project is good.

If it is > 0.7 then it indicates that the project is

problematic.

For value of main sequence is 0, Package is

coincident with the main sequence, and for value 1,

main sequence is so far with the main sequence.

E. Algorithm for Visualizing Metrics

It deals with visual representation of calculated metrics.

It visualizes structure of software graphically as well as

presents in tabular form.

Bar-Chart and Pie-Chart visualize all the metrics of

source code except cohesion and coupling. Cohesion and

coupling are dealt through Tree hierarchy Structure.

Table 2. Metric Classification in SourceViz

Sr. No Metric

1 Line of code

Low Level Metrics

2 No. of methods

3 No. of total classes

4 No. of abstract classes

5 No. of concrete classes

6 No. of packages

7 No. of conditional statements

8 No. of comments

9 Percentage of comments

10 Afferent Coupling

High Level Metrics

11 Efferent Coupling

12 Instability

13 Abstractness

14 Distance from Main Sequence

CC Value level Level

THRESHOLD

VALUE FOR CC

CC<20 Low

CC=20 Moderate

CC>20 High

As described above, SourceViz visualize structure of

software graphically as well as in tabular form. Packages,

classes and methods are the main code elements in a

software structure. Graph Scene view is provided for

understanding the structure based on these code elements.

SourceViz provides three different graphical views. First

view, as shown in fig.1, provides a complete hierarchical

structure that consists of classes and methods providing a

complete understanding of the software. It visualizes a

tree structure in an order of: the selected file, the classes

declared in them and; the methods declared in each class.

The view displays the parent child relationship within a

file. Fig. 3 displays the second view that is based on all

objects‟ relationship.

The main focus of SourceViz is on visualizing

cohesion. Classes are represented by green widgets. Blue

connections show the relation between a particular class

and the object(s) called by that class.

Fig.3. Hierarchal tree structure of SourceViz

 SourceViz: A Tool for Supporting Software Metrics Visualization 23

Copyright © 2017 MECS I.J. Information Engineering and Electronic Business, 2017, 3, 18-25

The view determines high cohesion and high coupling

based on the phenomenon that: the class where outgoing

is more is highly coupled and the class where incoming is

more indicates high cohesiveness. Such a view is also

shown for a specific class as in Fig. 4, and 5.

Other techniques used include, pie chart and bar chart

for visualizing low level metrics. These metrics are

visualized as percentages. JFreeChart library is used to

display the metrics in the mentioned views. The static

analysis of the code elements as a pie chart and bar chart

helps in better understanding of the code structure.

Different colors are allocated to differentiate the elements

in the case of pie chart whereas the size of the bar

indicates the values in a bar chart. We selected the most

common metrics that a user wants to see i.e. LOC,

comments, number of classes, number of methods and

conditional statements. Fig. 6 and 7 show the views of

bar chart and pie chart respectively.

Fig.4. Class-level Cohesion View of SourceViz

Fig.5. Single Class Cohesion

We also used tables as a view to represent the code

elements in a comprehensible manner. The table gives

information about the number of different code elements

at multiple levels. Our tool provides three tabular views,

one for each level that is project, package and class.

Fig. 8 gives the textual view of all the metrics at a

package level i.e. all the packages in a project, total files

in that package, Afferent Coupling (Ca), Efferent

Coupling (Ce), Instability (I), Abstractness (A), and

Distance from Main Sequence. Formulas used are given

below in section C.

Fig.6. Bar Chart representation of Metrics

Fig.7. Pie Chart representation of Metrics

Fig. 9 gives a tabular representation of data of all the

classes e.g. Cyclomatic Complexity (CC), Line of Code

(LOC) of that class, number of methods etc.

Fig. 10 gives the interface of SourceViz.

IV. EQUATIONS AND FORMULAE

Following formulas have been incorporated in the

algorithm in order to derive some metrics from the

calculated metrics.

Comments % = (No. of Comments/LOC)*100 (1)

Instability (I) = Ce / (Ce+Ca) (2)

Where Ca (Afferent Coupling) and Ce (Efferent

Coupling) are greater than zero.

Abstractness (A) = Na/ Total no. of classes (3)

Where Na is number of abstract classes.

Distance from Main Sequence (D) = A+I = I (4)

24 SourceViz: A Tool for Supporting Software Metrics Visualization

Copyright © 2017 MECS I.J. Information Engineering and Electronic Business, 2017, 3, 18-25

V. CONCLUSIONS AND FUTURE WORKS

Software is inherently intangible. Metrics can help

analyze the software to some extent, but a metric alone, is

a single numerical value and it does not provide much

useful information. When a single metric is combined

with other metrics and class relations, it provides more

meaningful information. Visualizing all these relations

and metrics, enhances the understanding of the software

even more. The tool presented in this paper, provides a

big picture of the software. It helps the users to have a

detailed insight into the software system by visualizing

software metrics and the relationships between different

metrics, in a time saving and efficient manner. In future

we will extend this prototype which can facilitate as

following:

 Evaluating and visualizing opportunities for

reusability, refactoring and reengineering

 Evaluating the quality of software through the

provided visualizations

 Evaluating the maintenance opportunities

Fig.8. Tabular View of Classes Data

Fig.9. Tabular View of Class-Level Metrics

REFERENCES

[1] T. J. Ball and S. G. Eick, “Software Visualization in the

Large”, Computer, vol.29, no.4, pp.33,43, Apr 1996

doi: 10.1109/2.488299

[2] S. G. Eick, T. L. Graves, Karr A F, Mockus A, Schuster

P, “Visualizing Software Changes”, Software Engineering,

IEEE Transactions on, vol.28, no.4, pp.396,412, Apr

2002

doi: 10.1109/TSE.2002.995435

[3] C. M. Termeer, C. F. J. Lange, A. Telea, and M. R. V.

Chaudron, "Visual Exploration of Combined Architectural

and Metric Information", Visualizing Software for

Understanding and Analysis, 2005. VISSOFT 2005.

[4] P. Caserta and O. Zendra, “Visualization of the Static

Aspects of Software: A Survey”, IEEE Trans. On

Visualization and Computer Graphics, vol.17, no.7 (2011)

913-933 doi: 10.1109/TVCG.2010.110

[5] M. Lanza and S. Ducasse, "Polymetric Views- A

Lightweight Visual Approach to Reverse Engineering",

Trans. on Software Eng., vol.29, no.9, pp.782-795, doi:

10.1109/TSE.2003.1232284, Sept. 2003.

[6] R. Wettel. [Online] Available:

http://www.inf.usi.ch/phd/wettel/codecity.html [Accessed

9 January 2016]

[7] A. Telea and L. Voinea, "An Interactive Reverse

Engineering Environment for Large Scale C++ Code", in

4th ACM Symp. in Soft. Vis., 2008.

[8] R. Wettel and M. Lanza, "Visualizing Software Systems

as Cities", Proc. VISSOFT 2007 (4th IEEE International

Workshop on Visualizing Software For Understanding

and Analysis), pp. 92 - 99, IEEE Computer Society Press,

2007.

[9] P. Smacchia, NDepend [Online]. Available:

http://www.ndepend.com/ Directory: Product. [Accessed

10 March 2016]

[10] P. Selvaraj and V. Iyer (2005-2006) CyVis: Software

Complexity Visualiser [Online]. [Accessed 21 July 2016]

[11] Available Telnet: http://cyvis.sourceforge.net

[12] T. De Marco, “Controlling Software Projects:

Management, Measurement and Estimation”, Yourdon,

NewYork,NY,1982

[13] R. Subramanyam and M. S. Krishnan, “Empirical analysis

of ck metrics for object- oriented design complexity:

implications for software defects”, IEEE Trans. Software

Eng.29(2003)297–310.

[14] M. Lanza and R. Marinescu, “Object-Oriented Metrics in

Practice. Using Software Metrics to Characterize,

Evaluate, and Improve the Design of Object-oriented

Systems”, Springer Verlag, 2010.

[15] S. R. Chidamber and C. F. Kemerer, “A metrics suite for

object oriented design”, IEEE

Trans.Softw.Eng.20(1994)476–493

[16] R. Francese, M. Risi, G. Scanniello, and G. Tortora,

“Proposing and assessing a software visualization

approach based on polymetric views”. Journal of Visual

Languages & Computing, 34, 11-24.

[17] G. Balogh, A. Szabolics and Á Beszédes,

"CodeMetropolis: Eclipse over the city of source code,"

Source Code Analysis and Manipulation (SCAM), 2015

IEEE 15th International Working Conference on, Bremen,

2015, pp. 271-276. doi: 10.1109/SCAM.2015.7335425

[18] G. Balogh, T. Gergely, Á Beszédes and T. Gyimóthy,

“Using the City Metaphor for Visualizing Test-Related

Metrics”," 2016 IEEE 23rd International Conference on

 SourceViz: A Tool for Supporting Software Metrics Visualization 25

Copyright © 2017 MECS I.J. Information Engineering and Electronic Business, 2017, 3, 18-25

Software Analysis, Evolution, and Reengineering

(SANER), Suita, 2016, pp. 17-20. doi:

10.1109/SANER.2016.48

Authors’ Profiles

Muhammad Ilyas is a citizen of Sargodha,

Pakistan. He received a Master degree in

software project management in 2004 from

National University of Computer and

Emerging Sciences, Lahore, Pakistan and a

Doctor of Informatics from Johannes

Kepler University, Linz Austria in 2010.

His research interests include software

engineering, design pattern and knowledge base systems. He is

currently an assistant professor in the Department of Computer

Science and Information Technology at the University of

Sargodha, Pakistan.

Hafiz A. Bilal is a citizen of Sargodha,

Pakistan. He is a graduate research scholar

at COMSATS Institute of Information

Technology, Islamabad, Pakistan. His areas

of research include software quality

engineering, software project management,

product design engineering and process

simulations.

Currently, he has been working on product design

engineering and developing some solution for usability, security

and accuracy problems of text-entry in smart devices.

Mr. Bilal is a member of IEEE (Institute of Electrical &

Electronics Engineers), PMI (Project Management Institute)

Islamabad Pakistan Chapter and ACM (Association of

Computing Machinery) COMSATS Islamabad Chapter.

Qandeel Tariq is a citizen of Sargodha,

Pakistan. She is a student of masters in

project management at the Department of

Management Sciences, COMSATS

Institute of Information and Technology,

Virtual Campus.

In research, she has been focusing on

management of software projects in IT

industry. She has worked on software

Visualization to help to manage the quality and other features of

the software through visualization of source code. Her current

work is based on the project management of agile software

projects in small and medium-sized IT enterprises.

Saba Ameer Awan is a citizen of

Sargodha, Pakistan. She is a student of

masters in computer science at the

Department of Computer Science,

COMSATS Institute of Information and

Technology, Islamabad, Pakistan.

Her area of research include machine

learning, digital image processing,

artificial intelligence and algorithms.

How to cite this paper: Muhammad Ilyas, Hafiz Anas Bilal,

Qandeel Tariq, Saba Ameer Awan,"SourceViz: A Tool for

Supporting Software Metrics Visualization", International

Journal of Information Engineering and Electronic

Business(IJIEEB), Vol.9, No.3, pp.18-25, 2017. DOI:

10.5815/ijieeb.2017.03.03

