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Abstract—The purpose of this paper is to find all the 

instances of a given set of pattern graphs (sub-graphs) in 

a large data graph using a single round of Map-Reduce. 

For the simplest pattern graphs like a triangle and  

rectangle we propose the solution. This paper enumerates 

complex pattern graphs using the enumeration of simple 

pattern graphs. We proposed Dominating set based graph 

partition, it generates non-overlapped sub-graphs. Each 

sub-graph is processed by one machine in the cluster. We 

analyze both the communication cost and the total 

computational cost. Communication cost is reduced by 

using Map-Reduce based dominating set graph partition. 

At the same time  Multiple pattern (sub-graphs) graphs 

can be enumerated with the same communication cost. 

The proposed method is not always superior to the 

conventional sub-graph enumeration, but in some cases 

involving large-scale data where this method wins, 

including (1) Adjacency list representation of the graph is 

the input (2) Number of partitions are decided based on 

the graph size. We experimentally show that our 

approach decreases significantly the computation cost, 

communication cost and scales the enumeration process 

with a large graph database. 

 

Index Terms—Big Graph Processing, Map-Reduce, 

Graph Partition, Triangle Listing, Sub-Graph 

Enumeration. 

 

I.  INTRODUCTION 

Graphs are used in many applications ranging from 

computer networks, social networks to Bioinformatics, 

Chem-informatics and others. These fields use graphs to 

describe their associated data, e.g., social networks 

consist of individuals and their relationships.  In 

Bioinformatics, the protein structure is represented as a 

graph where amino acids represent as nodes and the 

interactions between them are represented as the edges. 

Finding repetitive and frequent sub-structures may give 

important insights on the data under consideration. These 

substructures may correspond to important functional 

fragments in proteins such as active sites, feature 

positions and junction sites.  

Graph databases are categorized into two types: a 

graph transaction setting and a single graph setting. In the 

graph transaction setting a graph database consists of a 

large number of relatively smaller graphs, whereas in the 

single-graph setting the data of interest is a single graph. 

In this paper, we focus on the single graph which contains 

millions of vertices and edges.  

Sub-graph enumeration plays an important role in 

graph query process. First, we have to enumerate simple 

pattern graphs. By using these simple pattern graphs 

enumeration information, we can enumerate complex 

pattern graphs. Now-a-days graph size is increased to 

millions of nodes and edges. To process this type of 

graphs centralized approaches are taking more time and 

requires more memory. Instead of using high-end systems, 

we can process using normal commodity systems and 

Hadoop MapReduce.  Instead of scale up Hadoop uses a 

scale out approach. 

Map-Reduce has been widely adopted by many 

industries and academicians. The features of Map-Reduce 

are scalability, simplicity, flexibility and fault tolerance. 

The data centric approach is adopted by the Map-Reduce 

with the idea of moving computation to data. It uses 

Hadoop Distributed File System(HDFS) particularly 

optimized to improve the IO performance while handling 

massive data. Moreover Map-Reduce framework hides 

the internal details. Therefore, it is an excellent platform 

for large graph  processing. The paradigm is using two 

methods map and reduce. We can process large amount 

of data by using a number of machines in the cluster. 

In this study multiple sub-graphs are enumerated  

simultaneously. Enumerating single sub-graph at a time is 

expensive process. So, instead of enumerating single sub-

graph at a time,  this paper enumerates multiple sub-

graphs at the same time.  All the resources are optimally 

utilized by enumerating multiple sub-graphs. With the 

same computation cost this study enumerates multiple 

sub-graphs.  

In this paper, we focused on a solution to enumerate 

multiple sub-graphs in a big graph using Map-Reduce. To 

enumerate multiple sub-graphs from a big graph by using 

Map-Reduce there are different challenges, one main 

challenge is Graph partition.  Our main objective is to 

design a graph partition. This paper generates non 

overlapped sub-graphs by using vertex based graph 

partitions. Here it uses Dominating set and extended 

graph. The advantages of non overlapping partitions are 

to reduce the communication cost during enumeration. 
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The other reason is to reduce the number of Map-Reduce 

rounds. This is called adaptive approach and wherever it 

is possible, we use centralized approach and the 

enumeration is done by using only one map-reduce round.  

In this paper, the following are our contributions 

 

1. Dominating set based graph partition using extended 

graph. 

2. Non overlapped graph partitions to reduce the 

redundancy of data at the nodes in the cluster.  

3. Enumeration of multiple sub-graphs  using one Map-

Reduce round. 

4. We empirically demonstrate the performance of 

extended graph partition on synthetic as well as a real 

world large graph. 

 

This paper is organized as follows: in the first section, 

we provide related work. We define the problem of 

enumerating multiple pattern graphs  in a single large 

graph in section 3. We presented our proposed approach 

in section 4. We discussed the experimental study and 

obtained results in Section 5. In Section 6 we conclude 

the work. 

 

II.  RELATED WORK 

In this section, we present an overview of HDFS and 

Map-Reduce and the sub-graph enumeration algorithms.  

The algorithms are divided into two groups. 

A.  Hadoop Map-Reduce 

Map-Reduce[25] is the most popular parallel 

computing paradigms for big data processing. Map-

Reduce  is a programming model designed for processing 

large volumes of data in parallel by dividing the work 

into a set of independent tasks. It gained a lot of attention 

from both of industry and academia. Map-Reduce 

provides a distributed platform to process data intensive 

job with no hassle of managing the jobs across nodes. It 

adopts  a data centric approach of distributed computing 

with the idea of moving computation to data. It uses a 

distributed file system and it hides the higher level details 

from the developer which allows them to concentrate 

more on the problem-specific computational logic. Fig. 1 

shows the data flow of map and reduce functions. 

 

 

Fig.1. Example of Map-Reduce 

B.  Centralized Algorithms 

In the 1990's there were good algorithms (1) To find 

the cycles of a given length and/or  (2) Count the cycles 

of a given length[1]. The generalization of other sample 

graphs appears in [2]. These problems reduce to matrix 

multiplication. However, enumeration of all instances of 

a given sub-graph cannot be easily reduced. Probabilistic 

counting of triangles was discussed in [3]. More recently, 

there has been significant improvement in probabilistic 

counting of small sample graphs on large biological and 

social networks. The triangle listing in massive networks  

and dominating set based graph partition is proposed in 

[11]. All these algorithms are centralized algorithms that 

means they use only one machine to solve the problem.  

C.  Parallel Algorithms Using Map-Reduce 

There are a number of algorithms designed using 

MapReduce. Enumeration of triangles using Map-Reduce 

has received attention recently. It was the thesis by 

Schank[4]. Suri and Vassilvitskii [5] which gave one and 

two rounds of Map-Reduce algorithms for finding 

triangles using overlapped sub-graphs. This overlapped 

graph partition increases the overhead communication 

cost. 

In [6] Map-Reduce based triangle finding problem was 

experimentally studied and implementation of a 

randomized counting algorithm for triangles. In [7] 

sampling based technique for triangle enumeration using 

Map-Reduce was proposed. Enumeration of sub-graph 

instances using Map-Reduce was discussed in a paper [8] 

uses multiway join [9] to enumerate triangles, square etc. 

This multiway join partition the graph into overlapped 

partitions and it uses a single round of MapReduce.   

Because of overlapped partitions the communication cost 

is more. These graph partition algorithms generates a 

large number of intermediate data which causes network 

overloads and increases the processing time. 

In [12] they proposed an efficient Map-Reduce 

algorithm for counting triangles in a very large graph, it 

classified the triangles into three types based on the 

availability of edges. It reduces the overlap of the 

partitions by using triangle types. [10] Scalable Sub-

graph Enumeration in Map-Reduce, a left-deep-join 

framework that generalizes the edge-based joining to 

allow the right join argument to be a star (a tree of depth) 

rather than a single edge in each round. Joining a star is 

also inefficient. They propose the TwinTwigJoin, which 

uses a simple TwinTwig (an edge or two incident edges 

of a node) as the right join argument in each round. 

TwinTwigJoin, as a tradeoff between edge-based join and 

star-based join, has several advantages. TwinTwing Join 

is left-deep-join framework to join multiple edges in each 

round. 

All these existing works are enumerating one sub-

graph at a time, but in a distributed environment loading 

big graph and enumerating one sub-graph at a time is not 

at all optimum. Number of sub-graph queries are coming 

from different sources in the network. So we require 

efficient algorithm to process a number of pattern graphs 

at a time. We have to optimally utilize the resources by 
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enumerating multiple sub-graphs at a time. With the same 

computation and communication cost we can process 

number of pattern graphs. 

In this paper, we designed a non overlapped graph 

partition, suitable for multiple sub-graph enumeration. 

 

III.  PROBLEM DEFINITION 

Sub-graph enumeration, which aims to find all the sub-

graphs of a large data graph that are isomorphic to the  

given set of pattern graphs, is a fundamental graph 

problem with a wide range of  applications. 

Sub-graph Enumeration: We model a data graph as an 

undirected and unlabeled graph G(V;E), where V=V(G) 

represents the set of nodes and E= E(G ) represents the 

set of edges each of which connects two nodes in V(G).  

Let |V(G) |=N and |E(G)|=M, and assume M > N. We use 

{ u1,u2,.....,uN}  to denote the set of nodes in G. For each 

ui ϵ V (G), we use N(ui) to denote the set of neighbor 

nodes of ui, and we use d(ui) to denote the degree of ui, 

i.e., d(ui) = |N(ui)| and dmax= maxui ϵ V(G) d (ui). We define 

d=2M/N to be the average degree of the data graph.  

The following are the definitions required for this 

paper: 

Definition 1: (Sub-graph) A sub-graph s of G is a 

graph such that V(s) ⊆ V(G), E(s) ⊆ E(G). 

Definition 2: (Graph Isomorphism) Given two graphs 

Gi and Gj are isomorphic, if and only if there exists a 

bijection between the vertex sets of Gi and Gj  f: V(Gi) → 

V(Gj) such that any two vertices x and y of Gi are 

adjacent in Gi if and only if f(x) and f(y) are adjacent in 

Gj.  

Definition 3: (Sub-graph Enumeration) Given a pattern 

graph P and a data graph G, sub-graph enumeration is to 

enumerate all sub-graphs s of G such that s is isomorphic 

to P. 

Definition 4: (Dominating Set of a Graph) A 

dominating set of a graph G is  a subset of vertices D ⊆ 

VG such that every vertex in G is either in D or a 

neighbor of some vertex in D. Dominating  Set(G). 

Definition 5: (Extended Sub-graph) Let H = (VH , EH) 

be a sub-graph of G. An extended sub-graph of H in G, 

denoted by H+, is a extended sub-graph defined as H+ = 

(VH+,EH+), where VH+ = VH ∪ {v : u ∈ VH,v ∈ 

VG\VH,(u ,v) belongs to EG} and EH+ = {(u, v) : (u, v) 

∈ EG, u belongs to VH}. 

Definition 6 : (Extended edge) If we divide the Graph 

G into number of g1,g2,g3 sub-graphs,  If the edge whose 

vertices belongs to two different sub-graphs, let E ={(u,v), 

u belongs to g1 and v  belongs to g2 or g3 or any other 

sub-graph other than g1 } then that edge is called 

extended edge. 

 

IV.  PROPOSED APPROACH 

In this section, we introduced a Dominating set based 

graph partition framework for sub-graph enumeration in 

Map-Reduce. For a given data graph G and a set of 

pattern graphs P, sub-graph enumeration is processed in a 

single Map-Reduce round. The entire work is divided into 

two phases : Preprocessing step and Enumeration of 

multiple sub-graphs using one Map-Reduce round.   

A.  Pre-Processing  

In this preprocessing step we divided the vertices into 

groups/partitions. First, find Dominating set of vertices 

for the given large data graph, then partition the graph 

into non-overlapped sub-graphs by using Dominating set.  

Finding Dominating Set 

Finding dominating set is an NP-Complete problem. 

Using vertex and its degree, we start the dominating set 

algorithm with vertex which has the highest degree. 

Find each vertex and its degree: Only one Map method 

is enough to get each vertex and its degree the algorithm 

is shown in Algorithm1. This algorithm generates each 

vertex and its degree in a file and store that file in 

distributed file system. 

 

 

Fig.2. Example graph database 

________________________________________ 

Algorithm 1:  Find each Vertex's Degree  

________________________________________ 

class Mapper { 

map(offset int, Value :vertex and list of neighbors)  

{ 

parse value; 

key=vertex;   

Adjacency list=concatenation of all values in value; 

count=sum of a number of neighbors in the neighbors    

            list; 

value=adjacencylist+" "+count; 

emit (key,value)  

} 

} 

______________________________________  

 

Sort: To sort the vertices based on degree, we used 

Terasort program available in Hadoop and sort the above 

file based on the count in descending order. So the 

highest degree vertex is first in the list. We find 

domination set of vertices by starting from that vertex.  

According to a dominating set definition we get 

dominating vertices, the algorithm is shown in Algorithm 

2. This algorithm is execute on a single machine. 



 Map-Reduce based Multiple Sub-Graph Enumeration Using Dominating-Set Graph Partition 39 

Copyright © 2017 MECS                                        I.J. Information Engineering and Electronic Business, 2017, 2, 36-44 

_________________________________________ 

Algorithm 2 : Algorithm to find Dominating set  

_________________________________________ 

 u=highest degree vertex; 

A : array of bits of size |V(G)| and initialize each bit    

               with 0; 

 for each u in G, where A[u] = 0,  

    do 

           Add u to DS and mark u and all u’s 

           Neighbors as 1 in A; 

return DS;                                                                

________________________________________ 

 

The number of partitions is decided based on input 

graph size. Use the DS (Dominating Set) to compute 

vertex partitions.  Divide DS into p subsets according to 

min cut algorithm. Select the sub-graph that has at least 

(deg(v)/p) neighbors of v currently, and add v to that sub-

graph. If there is more than one such sub-graph, add v to 

the sub-graph with the smallest size so far. The result of p 

subsets is loaded into a file "psubsets". 

B.  Map-Reduce based Graph Partition with Dominating 

Set  

Workload distribution among mappers-reducers: In DS 

base approach, use the dominating vertices in each subset 

as seeds to grow each of the p subgraphs by attracting 

their neighbors. Again, we read G sequentially from disk. 

For each vertex v (together with adjG(v)) read, let degP(v) 

be the current total number of neighbors of v in all the 

subgraphs in the current P, which can be easily obtained 

by scanning adjG(v).  

We choose the subgraph that has at least (degP(v)/p) 

neighbors of v currently, and add v to that subgraph. If 

there are more than one such subgraph, we add v to the 

subgraph with the smallest size so far. While in earlier 

algorithms this provision is not there. So definitely DS 

based approach is far better with respect to workload 

balancing among mappers and reducer. 

Vertex subsets psubsets is used to compute graph 

partitions. Based on psubsets divide the graph into p 

partitions which are non overlapped sub-graphs. The 

overlapped edges are called as extended edges. These 

extended edges have to be placed in a file extended_file. 

Fig. 1 shows the example graph and fig. 2 shows its 

extended edges and three partitions of the given graph. 

One Map method is used to create Graph Partitions using 

Dominating Set and to create an extended edge file. 

 

Fig.3. An example for Extended edges 

______________________________________________ 

Algorithm 3: Generation of Graph Partitions and 

extended edge file  

______________________________________________ 

Class Mapper { 

setup() 

{ 

load psubsets  file into distributed cache.  

 } 

method map( offset , value: vertex  v_neighbours) { 

if (v ϵ p1 or p2 or p3 ..){ 

prepare key  

for( each neighbor n in v_neighbours) 

 if ( n is not in this group ){ 

emit ( v, n) to a file "extended_file"  

} 

else 

emit(key, value) to  file "key_file" 

}  

} 

_______________________________________ 

 

The result of the mapper is graph partition files  and 

one extended_file which contains extended edges. 

The extended edges of the example graph given in 

Fig.1 are shown in Table 1. 

The MultipleOutputs class is used to write output data 

to multiple outputs files. Here, we write partitions to 

different files provided by the user for example partition 

1 is written in file_1 and the second partition is written in 

file_2. The file names are different and are used to 

identify the partition.  

These extended edges are placed in a separate output 

file i.e Extended_File. Algorithm 3 shows the procedure 

to generate non-overlapped graph partitions and extended 

graph. 

C.  Multiple Sub-graph Enumeration using Map-Reduce 

based Graph Partitions using Dominating set 

Using only one Map-Reduce round we can enumerate 

multiple sub-graphs. The input to the Map-Reduce round 

is the partitioned files and extended edge file is loaded 

into Distributed cache. Extended_File is available to all 

mappers. Each mapper gets one partition file. According 

to the number of partition files, we need the same number 

of mappers. Non overlapped sub-graphs are loaded into 

mapper, so the mapper work is to enumerate multiple 

sub-graphs. If any edge is not available it can check in the 

extended file. Using the edges in the extended file, we 

can enumerate sub-graphs  and the result of mappers is 

going to the reducers. 

Triangle Enumeration : Based on starting node, each 

triangle can be enumerated six times. To eliminate this 

extra computation we used node ordering. 

Node ordering (<) assumes for an edge E(a,b) only if a 

< b then each triangle is discovered exactly once.  To 

enumerate triangles we use this conjunctive query for 

three edges: E(A,B) & E(B,C) & E(A,C) and A < B < C. 

Square Enumeration: The following three Conjunctive 

Queries are used to find each square exactly once:
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E(A,B) & E(B,C) & E(C,D) & E(A,D) & A < B & B < 

C & C <D 

E(A,B) & E(C,B) & E(C,D) & E(A,D) & A<C & C<B 

& B <D 

E(A,B) & E(B,C) & D,C) & E(A,D) & A<B & B < D 

& D < C.  

 

The algorithm to enumerate multiple sub-graphs is 

shown in Algorithm 4. 

_______________________________________ 

Algorithm 4 Enumeration of multiple sub-graphs 

_______________________________________ 

Mapper 

setup() 

{ 

load  Extended_File into distributed cache 

} 

map(offset, value:line) 

{ 

read value and parse it  

add vertex and edges to  local_sub_graph  

} 

cleanup() 

{ 

mine triangle, square, star. using local_sub-graph 

if (E(A,B) and E(B,C) and E(A,C) and A<B and B<C ) 

emit (A,B,C ) to triangle file 

if( E(A,B) & E(B,C) & E(C,D) &E(A,D)&A<B&B <C 

& C <D)  

emit (A,B,C,D ) to rectangle file 

if ( E(A,B) & E(C,B) & E(C,D) & E(A,D) & A <C & 

C<B & B < D) 

emit (A,B,C,D) to rectangle file 

if( E(A,B) & E(B,C) & E(D,C) & E(A,D) & A <B & 

B<D & D < C)  

emit(A,B,C,D) to rectangle_file 

 for each vertex v 

 { 

   value =  add neighbours of v using space 

   emit(v, value) to star_file 

 }  

} 

} 

 

_________________________________________ 

 

In agorithm 4 mapper  is generating multiple outputs 

by using MultipleOutputs class.  

The MultipleOutputs class is used to write output data 

to multiple outputs files.specified by the user. If the job 

has no reducers, practitioners and combiners, each 

mapper outputs one output file.  

At some point, we should run some post processing to 

collect the outputs into a single  large file. 

This proposed approach is efficient compared to 

TTP[12] and Multi-Way join[9]. Instead of enumerating 

one sub-graph at a time we enumerate Multiple sub 

graphs with same communication cost and computation 

cost. 

For complex sub-graphs: We have to do pre-processing 

by dividing given complex sub-graphs into simple sub-

graphs and we also have to get the instances of these 

simple graphs and then apply join technique. One more 

Map-Reduce Round is required to join the simple sub-

graphs to get complex sub-graph enumeration. 

We are reducing the search space by using these simple 

sub-graph enumeration to enumerate complex sub-graphs. 

This approach is reducing both computation cost and 

communication cost of complex sub-graphs enumeration. 

 

V.  EXPERIMENTS 

This section presents an experimental results that 

demonstrate the performance of our approach on  real 

datasets. In the following experiments, we aim to 

determine the efficiency of dominating set based graph 

partition and enumeration of multiple sub-graphs using 

Map-Reduce. In particular, we compare the enumeration 

time and the number of bytes transferred.  At first, it 

describes the used datasets and implementation details. 

Then, it presents a discussion of the obtained results. 

Table 1 Extended edges 

 

A.  Experimental setup 

1.  Datasets 

The datasets used in our experimental study are 

described in Table 2 Real world graph datasets, which are 

taken from an online source that contains graphs 

extracted from the PubChem website. PubChem contains 

one million chemical structures. Each graph has 23.98 

vertices, 25.76 edges, 3.5 distinct vertex labels, 2.0 

distinct edge labels on average, and the total number of 

distinct vertex labels and distinct edge labels is 81 and 3, 

respectively. The size of PubChem dataset is 434 MB.  

B.  Implementation platform 

We implemented this work in Java and using Hadoop 

(version 1.2.1) an open source version of Map-Reduce. 

The database files are stored in the Hadoop Distributed 

File System(HDFS) an open source implementation of 

GFS . All the experiments of our approach were carried 

out using a local cluster with 8 nodes. The real datasets 

are used to execute the experiments. The processing 

nodes used in our tests are equipped with a Hardware:1 + 

8 Node Cluster. 

Edge 

b    I 

b    G 

d   E 

d     J 

g     I 

e     J 

c    G 
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Table 2 Real Data Sets 

Dataset Name Number of 
vertices 

Number of Edges 

Live-journal LJ 3,997,962 3,4681,189 

Youtube YT 3,223,589 12,223,774 

As-skitter AS 1,696,415 11,095,298 

Enron EN 36,692 183,831 

 

Front-end: HP Proliant DL380P Gen8, 2 x Intel xeon 

CPU E5-2640 (2.5 GHz / 6-core/15MB/95w) processor, 

64 GB RAM, 333 X 600GB HDD machine. 

Data nodes : Run on 1 X Intel® xeon® E5-2640 (2.5 

GHz / 6-core/15MB/95w) processor, 16GB RAM, 2 X 

300GB HDD machines. 

C.  Experimental Results 

1.  Running time for Different Real Datasets 

The running times of all algorithms were recorded in 

the minutes. This experiment is executed on 8 node 

cluster and uses the real datasets specified in table 2. We 

recorded execution time for each dataset separately. This 

experiment clearly shows that our approach is taking very 

less time compared to Suri paper[5] and TwinTwigJoin 

[10] algorithms.  The running time is shown in table 3 for 

different real data sets specified in table 2. In suri[5] 

paper the overlapped edges are more so intermediate data 

is more. TwinTwig join uses more number of Map-

Reduce rounds so it is taking more time compared to our 

proposed approach DS based graph partition. 

Table 3 Execution Time 

Dataset Suri Paper Twin-

TwigJoin 

DS-Based-GP 

As-skitter 365 257 100 

Livejournal  1657 1040 659 

Youtube 1523 934 549 

Enron  95 45 30 

 

The running times are recorded for real datasets and is 

shown in fig 3 to fig 6.  

 

 

Fig.3. As-skitter Data Set Running Time 

 

Fig.4. LiveJournal Dataset Running Time 

 

Fig.5. Youtube Dataset Running Time 

 

Fig.6. Enron Dataset Running Time 

2.  Communication cost for Real datasets 

In this experiment, we recorded the number of bytes 

communicated over the network. Our DS-Based-GP 

approach is distributing less number of bytes because it 

partition the graph into extended sub-graphs not as 

overlapped sub-graphs. Table 4 shows the number of 

bytes transferred on the network for different algorithms. 

This proposed approach is dividing the graph into non-

overlapped partitions so the number of bytes transferred 

on network is very less compared to other algorithms.  
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Table 4 Communication Cost 

Dataset Suri Paper TwinTwigJoin DS-Based-GP 

As-skitter 111,267,456 101,345,789 50,234,123 

Livejournal  398,123,345 250,125,345 120,345,212 

YouTube 312,235,412 212,567,870 115,234,569 

Enron  11,241,256  
 

10,134,234 5,231,120 

 

3.  Number of Nodes versus Running Time 

We conducted this experiment for different number of 

nodes in the cluster using dominating set based graph 

partition algorithm for LiveJournal dataset. As the 

number of nodes is increasing the time required to run the 

program was decreasing. If there are less number of 

nodes, then it requires more time. Fig. 7 shows the time 

(in minutes)  versus number of nodes.  

 

 

Fig.7. Number of Nodes versus Running Time 

4.  Multiple sub-graph versus Running Time 

We conducted this experiment on 8 node cluster using 

Livejournal dataset. Here we enumerate triangles, then 

triangles and squares and then all three sub-graphs. We 

recorded the running time in minutes and is shown in Fig. 

8. It shows that the time taking for triangle enumeration 

and triangle and square enumeration and all three 

enumerations are close to each other. If we execute 

separately it will take more time. This proposed approach 

enumerates multiple sub-graphs simultaneously with the 

same communication and computation cost.  

 

 

Fig.8. Multiple Sub-graph Enumeration vs Running Time 

VI.  CONCLUSIONS 

This paper shows the dominating set based graph 

partition that is dividing graph into non-overlapped sub-

graphs. This non-overlapped graph partition reduces the 

communication cost. In this paper we developed efficient 

algorithm to enumerate multiple sub-graphs 

simultaneously. This proposed approach enumerates 

multiple sub-graphs with same computational and 

communication cost. This Dominating Set Based 

Partition is efficient compared to earlier methods. We 

have some limitations. Dominating set based graph 

partitioning is effective when graphs exhibit high locality, 

i.e., vertices are naturally clustered according to the 

sequential order by which the graph is stored. For 

example in, a road network proximate vertices are 

assigned consecutive vertex IDs and they are stored 

sequentially in nearby positions in the adjacency-list 

graph representation. In social network graphs, local 

communities may also be stored together. So while you 

are going for adjacency-list graph re-presentation , DS 

based approach would be the best. When you want that 

load balancing should be the primary need for you, DS 

based approach would be the best choice. In future study 

we are going to develop graph mining algorithms over 

large graph using this dominating set based graph 

partition and spark which is an in memory cluster 

computing. 
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