
I.J. Information Engineering and Electronic Business, 2017, 2, 36-44
Published Online March 2017 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijieeb.2017.02.05

Copyright © 2017 MECS I.J. Information Engineering and Electronic Business, 2017, 2, 36-44

Map-Reduce based Multiple Sub-Graph

Enumeration Using Dominating-Set Graph

Partition

Fathimabi shaik, RBV Subramanyam, DVLN Somayajulu
Department of Computer Science and Engineering, National Institute of Technology, Warangal, India.

Email: fathimanitw@gmail.com, rbvs66@gmail.com, soma@nitw.ac.in

Abstract—The purpose of this paper is to find all the

instances of a given set of pattern graphs (sub-graphs) in

a large data graph using a single round of Map-Reduce.

For the simplest pattern graphs like a triangle and

rectangle we propose the solution. This paper enumerates

complex pattern graphs using the enumeration of simple

pattern graphs. We proposed Dominating set based graph

partition, it generates non-overlapped sub-graphs. Each

sub-graph is processed by one machine in the cluster. We

analyze both the communication cost and the total

computational cost. Communication cost is reduced by

using Map-Reduce based dominating set graph partition.

At the same time Multiple pattern (sub-graphs) graphs

can be enumerated with the same communication cost.

The proposed method is not always superior to the

conventional sub-graph enumeration, but in some cases

involving large-scale data where this method wins,

including (1) Adjacency list representation of the graph is

the input (2) Number of partitions are decided based on

the graph size. We experimentally show that our

approach decreases significantly the computation cost,

communication cost and scales the enumeration process

with a large graph database.

Index Terms—Big Graph Processing, Map-Reduce,

Graph Partition, Triangle Listing, Sub-Graph

Enumeration.

I. INTRODUCTION

Graphs are used in many applications ranging from

computer networks, social networks to Bioinformatics,

Chem-informatics and others. These fields use graphs to

describe their associated data, e.g., social networks

consist of individuals and their relationships. In

Bioinformatics, the protein structure is represented as a

graph where amino acids represent as nodes and the

interactions between them are represented as the edges.

Finding repetitive and frequent sub-structures may give

important insights on the data under consideration. These

substructures may correspond to important functional

fragments in proteins such as active sites, feature

positions and junction sites.

Graph databases are categorized into two types: a

graph transaction setting and a single graph setting. In the

graph transaction setting a graph database consists of a

large number of relatively smaller graphs, whereas in the

single-graph setting the data of interest is a single graph.

In this paper, we focus on the single graph which contains

millions of vertices and edges.

Sub-graph enumeration plays an important role in

graph query process. First, we have to enumerate simple

pattern graphs. By using these simple pattern graphs

enumeration information, we can enumerate complex

pattern graphs. Now-a-days graph size is increased to

millions of nodes and edges. To process this type of

graphs centralized approaches are taking more time and

requires more memory. Instead of using high-end systems,

we can process using normal commodity systems and

Hadoop MapReduce. Instead of scale up Hadoop uses a

scale out approach.

Map-Reduce has been widely adopted by many

industries and academicians. The features of Map-Reduce

are scalability, simplicity, flexibility and fault tolerance.

The data centric approach is adopted by the Map-Reduce

with the idea of moving computation to data. It uses

Hadoop Distributed File System(HDFS) particularly

optimized to improve the IO performance while handling

massive data. Moreover Map-Reduce framework hides

the internal details. Therefore, it is an excellent platform

for large graph processing. The paradigm is using two

methods map and reduce. We can process large amount

of data by using a number of machines in the cluster.

In this study multiple sub-graphs are enumerated

simultaneously. Enumerating single sub-graph at a time is

expensive process. So, instead of enumerating single sub-

graph at a time, this paper enumerates multiple sub-

graphs at the same time. All the resources are optimally

utilized by enumerating multiple sub-graphs. With the

same computation cost this study enumerates multiple

sub-graphs.

In this paper, we focused on a solution to enumerate

multiple sub-graphs in a big graph using Map-Reduce. To

enumerate multiple sub-graphs from a big graph by using

Map-Reduce there are different challenges, one main

challenge is Graph partition. Our main objective is to

design a graph partition. This paper generates non

overlapped sub-graphs by using vertex based graph

partitions. Here it uses Dominating set and extended

graph. The advantages of non overlapping partitions are

to reduce the communication cost during enumeration.

 Map-Reduce based Multiple Sub-Graph Enumeration Using Dominating-Set Graph Partition 37

Copyright © 2017 MECS I.J. Information Engineering and Electronic Business, 2017, 2, 36-44

The other reason is to reduce the number of Map-Reduce

rounds. This is called adaptive approach and wherever it

is possible, we use centralized approach and the

enumeration is done by using only one map-reduce round.

In this paper, the following are our contributions

1. Dominating set based graph partition using extended

graph.

2. Non overlapped graph partitions to reduce the

redundancy of data at the nodes in the cluster.

3. Enumeration of multiple sub-graphs using one Map-

Reduce round.

4. We empirically demonstrate the performance of

extended graph partition on synthetic as well as a real

world large graph.

This paper is organized as follows: in the first section,

we provide related work. We define the problem of

enumerating multiple pattern graphs in a single large

graph in section 3. We presented our proposed approach

in section 4. We discussed the experimental study and

obtained results in Section 5. In Section 6 we conclude

the work.

II. RELATED WORK

In this section, we present an overview of HDFS and

Map-Reduce and the sub-graph enumeration algorithms.

The algorithms are divided into two groups.

A. Hadoop Map-Reduce

Map-Reduce[25] is the most popular parallel

computing paradigms for big data processing. Map-

Reduce is a programming model designed for processing

large volumes of data in parallel by dividing the work

into a set of independent tasks. It gained a lot of attention

from both of industry and academia. Map-Reduce

provides a distributed platform to process data intensive

job with no hassle of managing the jobs across nodes. It

adopts a data centric approach of distributed computing

with the idea of moving computation to data. It uses a

distributed file system and it hides the higher level details

from the developer which allows them to concentrate

more on the problem-specific computational logic. Fig. 1

shows the data flow of map and reduce functions.

Fig.1. Example of Map-Reduce

B. Centralized Algorithms

In the 1990's there were good algorithms (1) To find

the cycles of a given length and/or (2) Count the cycles

of a given length[1]. The generalization of other sample

graphs appears in [2]. These problems reduce to matrix

multiplication. However, enumeration of all instances of

a given sub-graph cannot be easily reduced. Probabilistic

counting of triangles was discussed in [3]. More recently,

there has been significant improvement in probabilistic

counting of small sample graphs on large biological and

social networks. The triangle listing in massive networks

and dominating set based graph partition is proposed in

[11]. All these algorithms are centralized algorithms that

means they use only one machine to solve the problem.

C. Parallel Algorithms Using Map-Reduce

There are a number of algorithms designed using

MapReduce. Enumeration of triangles using Map-Reduce

has received attention recently. It was the thesis by

Schank[4]. Suri and Vassilvitskii [5] which gave one and

two rounds of Map-Reduce algorithms for finding

triangles using overlapped sub-graphs. This overlapped

graph partition increases the overhead communication

cost.

In [6] Map-Reduce based triangle finding problem was

experimentally studied and implementation of a

randomized counting algorithm for triangles. In [7]

sampling based technique for triangle enumeration using

Map-Reduce was proposed. Enumeration of sub-graph

instances using Map-Reduce was discussed in a paper [8]

uses multiway join [9] to enumerate triangles, square etc.

This multiway join partition the graph into overlapped

partitions and it uses a single round of MapReduce.

Because of overlapped partitions the communication cost

is more. These graph partition algorithms generates a

large number of intermediate data which causes network

overloads and increases the processing time.

In [12] they proposed an efficient Map-Reduce

algorithm for counting triangles in a very large graph, it

classified the triangles into three types based on the

availability of edges. It reduces the overlap of the

partitions by using triangle types. [10] Scalable Sub-

graph Enumeration in Map-Reduce, a left-deep-join

framework that generalizes the edge-based joining to

allow the right join argument to be a star (a tree of depth)

rather than a single edge in each round. Joining a star is

also inefficient. They propose the TwinTwigJoin, which

uses a simple TwinTwig (an edge or two incident edges

of a node) as the right join argument in each round.

TwinTwigJoin, as a tradeoff between edge-based join and

star-based join, has several advantages. TwinTwing Join

is left-deep-join framework to join multiple edges in each

round.

All these existing works are enumerating one sub-

graph at a time, but in a distributed environment loading

big graph and enumerating one sub-graph at a time is not

at all optimum. Number of sub-graph queries are coming

from different sources in the network. So we require

efficient algorithm to process a number of pattern graphs

at a time. We have to optimally utilize the resources by

38 Map-Reduce based Multiple Sub-Graph Enumeration Using Dominating-Set Graph Partition

Copyright © 2017 MECS I.J. Information Engineering and Electronic Business, 2017, 2, 36-44

enumerating multiple sub-graphs at a time. With the same

computation and communication cost we can process

number of pattern graphs.

In this paper, we designed a non overlapped graph

partition, suitable for multiple sub-graph enumeration.

III. PROBLEM DEFINITION

Sub-graph enumeration, which aims to find all the sub-

graphs of a large data graph that are isomorphic to the

given set of pattern graphs, is a fundamental graph

problem with a wide range of applications.

Sub-graph Enumeration: We model a data graph as an

undirected and unlabeled graph G(V;E), where V=V(G)

represents the set of nodes and E= E(G) represents the

set of edges each of which connects two nodes in V(G).

Let |V(G) |=N and |E(G)|=M, and assume M > N. We use

{ u1,u2,.....,uN} to denote the set of nodes in G. For each

ui ϵ V (G), we use N(ui) to denote the set of neighbor

nodes of ui, and we use d(ui) to denote the degree of ui,

i.e., d(ui) = |N(ui)| and dmax= maxui ϵ V(G) d (ui). We define

d=2M/N to be the average degree of the data graph.

The following are the definitions required for this

paper:

Definition 1: (Sub-graph) A sub-graph s of G is a

graph such that V(s) ⊆ V(G), E(s) ⊆ E(G).

Definition 2: (Graph Isomorphism) Given two graphs

Gi and Gj are isomorphic, if and only if there exists a

bijection between the vertex sets of Gi and Gj f: V(Gi) →

V(Gj) such that any two vertices x and y of Gi are

adjacent in Gi if and only if f(x) and f(y) are adjacent in

Gj.

Definition 3: (Sub-graph Enumeration) Given a pattern

graph P and a data graph G, sub-graph enumeration is to

enumerate all sub-graphs s of G such that s is isomorphic

to P.

Definition 4: (Dominating Set of a Graph) A

dominating set of a graph G is a subset of vertices D ⊆

VG such that every vertex in G is either in D or a

neighbor of some vertex in D. Dominating Set(G).

Definition 5: (Extended Sub-graph) Let H = (VH , EH)

be a sub-graph of G. An extended sub-graph of H in G,

denoted by H+, is a extended sub-graph defined as H+ =

(VH+,EH+), where VH+ = VH ∪ {v : u ∈ VH,v ∈

VG\VH,(u ,v) belongs to EG} and EH+ = {(u, v) : (u, v)

∈ EG, u belongs to VH}.

Definition 6 : (Extended edge) If we divide the Graph

G into number of g1,g2,g3 sub-graphs, If the edge whose

vertices belongs to two different sub-graphs, let E ={(u,v),

u belongs to g1 and v belongs to g2 or g3 or any other

sub-graph other than g1 } then that edge is called

extended edge.

IV. PROPOSED APPROACH

In this section, we introduced a Dominating set based

graph partition framework for sub-graph enumeration in

Map-Reduce. For a given data graph G and a set of

pattern graphs P, sub-graph enumeration is processed in a

single Map-Reduce round. The entire work is divided into

two phases : Preprocessing step and Enumeration of

multiple sub-graphs using one Map-Reduce round.

A. Pre-Processing

In this preprocessing step we divided the vertices into

groups/partitions. First, find Dominating set of vertices

for the given large data graph, then partition the graph

into non-overlapped sub-graphs by using Dominating set.

Finding Dominating Set

Finding dominating set is an NP-Complete problem.

Using vertex and its degree, we start the dominating set

algorithm with vertex which has the highest degree.

Find each vertex and its degree: Only one Map method

is enough to get each vertex and its degree the algorithm

is shown in Algorithm1. This algorithm generates each

vertex and its degree in a file and store that file in

distributed file system.

Fig.2. Example graph database

__

Algorithm 1: Find each Vertex's Degree

__

class Mapper {

map(offset int, Value :vertex and list of neighbors)

{

parse value;

key=vertex;

Adjacency list=concatenation of all values in value;

count=sum of a number of neighbors in the neighbors

 list;

value=adjacencylist+" "+count;

emit (key,value)

}

}

Sort: To sort the vertices based on degree, we used

Terasort program available in Hadoop and sort the above

file based on the count in descending order. So the

highest degree vertex is first in the list. We find

domination set of vertices by starting from that vertex.

According to a dominating set definition we get

dominating vertices, the algorithm is shown in Algorithm

2. This algorithm is execute on a single machine.

 Map-Reduce based Multiple Sub-Graph Enumeration Using Dominating-Set Graph Partition 39

Copyright © 2017 MECS I.J. Information Engineering and Electronic Business, 2017, 2, 36-44

Algorithm 2 : Algorithm to find Dominating set

 u=highest degree vertex;

A : array of bits of size |V(G)| and initialize each bit

 with 0;

 for each u in G, where A[u] = 0,

 do

 Add u to DS and mark u and all u’s

 Neighbors as 1 in A;

return DS;

__

The number of partitions is decided based on input

graph size. Use the DS (Dominating Set) to compute

vertex partitions. Divide DS into p subsets according to

min cut algorithm. Select the sub-graph that has at least

(deg(v)/p) neighbors of v currently, and add v to that sub-

graph. If there is more than one such sub-graph, add v to

the sub-graph with the smallest size so far. The result of p

subsets is loaded into a file "psubsets".

B. Map-Reduce based Graph Partition with Dominating

Set

Workload distribution among mappers-reducers: In DS

base approach, use the dominating vertices in each subset

as seeds to grow each of the p subgraphs by attracting

their neighbors. Again, we read G sequentially from disk.

For each vertex v (together with adjG(v)) read, let degP(v)

be the current total number of neighbors of v in all the

subgraphs in the current P, which can be easily obtained

by scanning adjG(v).

We choose the subgraph that has at least (degP(v)/p)

neighbors of v currently, and add v to that subgraph. If

there are more than one such subgraph, we add v to the

subgraph with the smallest size so far. While in earlier

algorithms this provision is not there. So definitely DS

based approach is far better with respect to workload

balancing among mappers and reducer.

Vertex subsets psubsets is used to compute graph

partitions. Based on psubsets divide the graph into p

partitions which are non overlapped sub-graphs. The

overlapped edges are called as extended edges. These

extended edges have to be placed in a file extended_file.

Fig. 1 shows the example graph and fig. 2 shows its

extended edges and three partitions of the given graph.

One Map method is used to create Graph Partitions using

Dominating Set and to create an extended edge file.

Fig.3. An example for Extended edges

__

Algorithm 3: Generation of Graph Partitions and

extended edge file

__

Class Mapper {

setup()

{

load psubsets file into distributed cache.

 }

method map(offset , value: vertex v_neighbours) {

if (v ϵ p1 or p2 or p3 ..){

prepare key

for(each neighbor n in v_neighbours)

 if (n is not in this group){

emit (v, n) to a file "extended_file"

}

else

emit(key, value) to file "key_file"

}

}

The result of the mapper is graph partition files and

one extended_file which contains extended edges.

The extended edges of the example graph given in

Fig.1 are shown in Table 1.

The MultipleOutputs class is used to write output data

to multiple outputs files. Here, we write partitions to

different files provided by the user for example partition

1 is written in file_1 and the second partition is written in

file_2. The file names are different and are used to

identify the partition.

These extended edges are placed in a separate output

file i.e Extended_File. Algorithm 3 shows the procedure

to generate non-overlapped graph partitions and extended

graph.

C. Multiple Sub-graph Enumeration using Map-Reduce

based Graph Partitions using Dominating set

Using only one Map-Reduce round we can enumerate

multiple sub-graphs. The input to the Map-Reduce round

is the partitioned files and extended edge file is loaded

into Distributed cache. Extended_File is available to all

mappers. Each mapper gets one partition file. According

to the number of partition files, we need the same number

of mappers. Non overlapped sub-graphs are loaded into

mapper, so the mapper work is to enumerate multiple

sub-graphs. If any edge is not available it can check in the

extended file. Using the edges in the extended file, we

can enumerate sub-graphs and the result of mappers is

going to the reducers.

Triangle Enumeration : Based on starting node, each

triangle can be enumerated six times. To eliminate this

extra computation we used node ordering.

Node ordering (<) assumes for an edge E(a,b) only if a

< b then each triangle is discovered exactly once. To

enumerate triangles we use this conjunctive query for

three edges: E(A,B) & E(B,C) & E(A,C) and A < B < C.

Square Enumeration: The following three Conjunctive

Queries are used to find each square exactly once:

40 Map-Reduce based Multiple Sub-Graph Enumeration Using Dominating-Set Graph Partition

Copyright © 2017 MECS I.J. Information Engineering and Electronic Business, 2017, 2, 36-44

E(A,B) & E(B,C) & E(C,D) & E(A,D) & A < B & B <

C & C <D

E(A,B) & E(C,B) & E(C,D) & E(A,D) & A<C & C<B

& B <D

E(A,B) & E(B,C) & D,C) & E(A,D) & A<B & B < D

& D < C.

The algorithm to enumerate multiple sub-graphs is

shown in Algorithm 4.

Algorithm 4 Enumeration of multiple sub-graphs

Mapper

setup()

{

load Extended_File into distributed cache

}

map(offset, value:line)

{

read value and parse it

add vertex and edges to local_sub_graph

}

cleanup()

{

mine triangle, square, star. using local_sub-graph

if (E(A,B) and E(B,C) and E(A,C) and A<B and B<C)

emit (A,B,C) to triangle file

if(E(A,B) & E(B,C) & E(C,D) &E(A,D)&A<B&B <C

& C <D)

emit (A,B,C,D) to rectangle file

if (E(A,B) & E(C,B) & E(C,D) & E(A,D) & A <C &

C<B & B < D)

emit (A,B,C,D) to rectangle file

if(E(A,B) & E(B,C) & E(D,C) & E(A,D) & A <B &

B<D & D < C)

emit(A,B,C,D) to rectangle_file

 for each vertex v

 {

 value = add neighbours of v using space

 emit(v, value) to star_file

 }

}

}

In agorithm 4 mapper is generating multiple outputs

by using MultipleOutputs class.

The MultipleOutputs class is used to write output data

to multiple outputs files.specified by the user. If the job

has no reducers, practitioners and combiners, each

mapper outputs one output file.

At some point, we should run some post processing to

collect the outputs into a single large file.

This proposed approach is efficient compared to

TTP[12] and Multi-Way join[9]. Instead of enumerating

one sub-graph at a time we enumerate Multiple sub

graphs with same communication cost and computation

cost.

For complex sub-graphs: We have to do pre-processing

by dividing given complex sub-graphs into simple sub-

graphs and we also have to get the instances of these

simple graphs and then apply join technique. One more

Map-Reduce Round is required to join the simple sub-

graphs to get complex sub-graph enumeration.

We are reducing the search space by using these simple

sub-graph enumeration to enumerate complex sub-graphs.

This approach is reducing both computation cost and

communication cost of complex sub-graphs enumeration.

V. EXPERIMENTS

This section presents an experimental results that

demonstrate the performance of our approach on real

datasets. In the following experiments, we aim to

determine the efficiency of dominating set based graph

partition and enumeration of multiple sub-graphs using

Map-Reduce. In particular, we compare the enumeration

time and the number of bytes transferred. At first, it

describes the used datasets and implementation details.

Then, it presents a discussion of the obtained results.

Table 1 Extended edges

A. Experimental setup

1. Datasets

The datasets used in our experimental study are

described in Table 2 Real world graph datasets, which are

taken from an online source that contains graphs

extracted from the PubChem website. PubChem contains

one million chemical structures. Each graph has 23.98

vertices, 25.76 edges, 3.5 distinct vertex labels, 2.0

distinct edge labels on average, and the total number of

distinct vertex labels and distinct edge labels is 81 and 3,

respectively. The size of PubChem dataset is 434 MB.

B. Implementation platform

We implemented this work in Java and using Hadoop

(version 1.2.1) an open source version of Map-Reduce.

The database files are stored in the Hadoop Distributed

File System(HDFS) an open source implementation of

GFS . All the experiments of our approach were carried

out using a local cluster with 8 nodes. The real datasets

are used to execute the experiments. The processing

nodes used in our tests are equipped with a Hardware:1 +

8 Node Cluster.

Edge

b I

b G

d E

d J

g I

e J

c G

 Map-Reduce based Multiple Sub-Graph Enumeration Using Dominating-Set Graph Partition 41

Copyright © 2017 MECS I.J. Information Engineering and Electronic Business, 2017, 2, 36-44

Table 2 Real Data Sets

Dataset Name Number of
vertices

Number of Edges

Live-journal LJ 3,997,962 3,4681,189

Youtube YT 3,223,589 12,223,774

As-skitter AS 1,696,415 11,095,298

Enron EN 36,692 183,831

Front-end: HP Proliant DL380P Gen8, 2 x Intel xeon

CPU E5-2640 (2.5 GHz / 6-core/15MB/95w) processor,

64 GB RAM, 333 X 600GB HDD machine.

Data nodes : Run on 1 X Intel® xeon® E5-2640 (2.5

GHz / 6-core/15MB/95w) processor, 16GB RAM, 2 X

300GB HDD machines.

C. Experimental Results

1. Running time for Different Real Datasets

The running times of all algorithms were recorded in

the minutes. This experiment is executed on 8 node

cluster and uses the real datasets specified in table 2. We

recorded execution time for each dataset separately. This

experiment clearly shows that our approach is taking very

less time compared to Suri paper[5] and TwinTwigJoin

[10] algorithms. The running time is shown in table 3 for

different real data sets specified in table 2. In suri[5]

paper the overlapped edges are more so intermediate data

is more. TwinTwig join uses more number of Map-

Reduce rounds so it is taking more time compared to our

proposed approach DS based graph partition.

Table 3 Execution Time

Dataset Suri Paper Twin-

TwigJoin

DS-Based-GP

As-skitter 365 257 100

Livejournal 1657 1040 659

Youtube 1523 934 549

Enron 95 45 30

The running times are recorded for real datasets and is

shown in fig 3 to fig 6.

Fig.3. As-skitter Data Set Running Time

Fig.4. LiveJournal Dataset Running Time

Fig.5. Youtube Dataset Running Time

Fig.6. Enron Dataset Running Time

2. Communication cost for Real datasets

In this experiment, we recorded the number of bytes

communicated over the network. Our DS-Based-GP

approach is distributing less number of bytes because it

partition the graph into extended sub-graphs not as

overlapped sub-graphs. Table 4 shows the number of

bytes transferred on the network for different algorithms.

This proposed approach is dividing the graph into non-

overlapped partitions so the number of bytes transferred

on network is very less compared to other algorithms.

42 Map-Reduce based Multiple Sub-Graph Enumeration Using Dominating-Set Graph Partition

Copyright © 2017 MECS I.J. Information Engineering and Electronic Business, 2017, 2, 36-44

Table 4 Communication Cost

Dataset Suri Paper TwinTwigJoin DS-Based-GP

As-skitter 111,267,456 101,345,789 50,234,123

Livejournal 398,123,345 250,125,345 120,345,212

YouTube 312,235,412 212,567,870 115,234,569

Enron 11,241,256

10,134,234 5,231,120

3. Number of Nodes versus Running Time

We conducted this experiment for different number of

nodes in the cluster using dominating set based graph

partition algorithm for LiveJournal dataset. As the

number of nodes is increasing the time required to run the

program was decreasing. If there are less number of

nodes, then it requires more time. Fig. 7 shows the time

(in minutes) versus number of nodes.

Fig.7. Number of Nodes versus Running Time

4. Multiple sub-graph versus Running Time

We conducted this experiment on 8 node cluster using

Livejournal dataset. Here we enumerate triangles, then

triangles and squares and then all three sub-graphs. We

recorded the running time in minutes and is shown in Fig.

8. It shows that the time taking for triangle enumeration

and triangle and square enumeration and all three

enumerations are close to each other. If we execute

separately it will take more time. This proposed approach

enumerates multiple sub-graphs simultaneously with the

same communication and computation cost.

Fig.8. Multiple Sub-graph Enumeration vs Running Time

VI. CONCLUSIONS

This paper shows the dominating set based graph

partition that is dividing graph into non-overlapped sub-

graphs. This non-overlapped graph partition reduces the

communication cost. In this paper we developed efficient

algorithm to enumerate multiple sub-graphs

simultaneously. This proposed approach enumerates

multiple sub-graphs with same computational and

communication cost. This Dominating Set Based

Partition is efficient compared to earlier methods. We

have some limitations. Dominating set based graph

partitioning is effective when graphs exhibit high locality,

i.e., vertices are naturally clustered according to the

sequential order by which the graph is stored. For

example in, a road network proximate vertices are

assigned consecutive vertex IDs and they are stored

sequentially in nearby positions in the adjacency-list

graph representation. In social network graphs, local

communities may also be stored together. So while you

are going for adjacency-list graph re-presentation , DS

based approach would be the best. When you want that

load balancing should be the primary need for you, DS

based approach would be the best choice. In future study

we are going to develop graph mining algorithms over

large graph using this dominating set based graph

partition and spark which is an in memory cluster

computing.

REFERENCES

[1] Alon, Noga, Raphael Yuster, and Uri Zwick. "Finding and

counting given length cycles." Algorithmica 17.3 (1997):

209-223. DOI: 10.1007/BF02523189

[2] Kowaluk, Mirosław, Andrzej Lingas, and Eva-Marta

Lundell. "Counting and detecting small subgraphs via

equations and matrix multiplication." Proceedings of the

twenty-second annual ACM-SIAM symposium on Discrete

Algorithms. SIAM, 2011.

[3] Tsourakakis, Charalampos E., et al. "Doulion: counting

triangles in massive graphs with a coin." Proceedings of

the 15th ACM SIGKDD international conference on

Knowledge discovery and data mining. ACM,

2009,doi:10.1145/1557019.1557111

[4] Schank, Thomas. "Algorithmic aspects of triangle-based

network analysis." Phd in computer science, University

Karlsruhe 3 (2007).

[5] Suri, Siddharth, and Sergei Vassilvitskii. "Counting

triangles and the curse of the last reducer." Proceedings of

the 20th international conference on World wide web.

ACM, 2011.DOI: 10.1145/1963405.1963491

[6] Kolda, Tamara G., et al. "Counting triangles in massive

graphs with Map-Reduce." SIAM Journal on Scientific

Computing 36.5 (2014): S48-S77.

DOI: 10.1137/13090729X

[7] Pagh, Rasmus, and Charalampos E. Tsourakakis. "Colorful

triangle counting and a Map-Reduce implementation."

Information Processing Letters 112.7 (2012): 277-281.

[8] Afrati, Foto N., Dimitris Fotakis, and Jeffrey D. Ullman.

"Enumerating subgraph instances using map-reduce." Data

Engineering (ICDE), 2013 IEEE 29th International

Conference on. IEEE, 2013. DOI:

10.1109/ICDE.2013.6544814

[9] Afrati, Foto N., and Jeffrey D. Ullman. "Optimizing

multiway joins in a map-reduce environment." IEEE

https://doi.org/10.1145/1557019.1557111
https://doi.org/10.1145/1963405.1963491
https://arxiv.org/ct?url=http%3A%2F%2Fdx.doi.org%2F10%252E1137%2F13090729X&v=dfa61458
https://arxiv.org/ct?url=http%3A%2F%2Fdx.doi.org%2F10%252E1137%2F13090729X&v=dfa61458
https://doi.org/10.1109/ICDE.2013.6544814

 Map-Reduce based Multiple Sub-Graph Enumeration Using Dominating-Set Graph Partition 43

Copyright © 2017 MECS I.J. Information Engineering and Electronic Business, 2017, 2, 36-44

Transactions on Knowledge and Data Engineering 23.9

(2011): 1282-1298.DOI: 10.1145/1739041.1739056

[10] Lai, Longbin, et al. "Scalable subgraph enumeration in

Map-Reduce." Proceedings of the VLDB Endowment 8.10

(2015): 974-985. DOI: 10.14778/2794367.2794368

[11] Chu, Shumo, and James Cheng. "Triangle listing in

massive networks and its applications." Proceedings of the

17th ACM SIGKDD international conference on

Knowledge discovery and data mining. ACM, 2011. DOI:

10.1145/2020408.2020513

[12] Park, Ha-Myung, and Chin-Wan Chung. "An efficient

Map-Reduce algorithm for counting triangles in a very

large graph." Proceedings of the 22nd ACM international

conference on Information & Knowledge Management.

ACM, 2013. DOI: 10.1145/2505515.2505563

[13] Hu, Xiaocheng, Yufei Tao, and Chin-Wan Chung.

"Massive graph triangulation." Proceedings of the 2013

ACM SIGMOD international conference on Management

of data. ACM, 2013.DOI:10.1145/2463676.2463704

[14] Sun, Zhao, et al. "Efficient subgraph matching on billion

node graphs." Proceedings of the VLDB Endowment 5.9

(2012): 788-799. DOI: 10.14778/2311906.2311907

[15] Viger, Fabien, and Matthieu Latapy. "Efficient and simple

generation of random simple connected graphs with

prescribed degree sequence." International Computing and

Combinatorics Conference. Springer Berlin Heidelberg,

2005. DOI: 10.1007/11533719_45

[16] Zhang, Xiaofei, Lei Chen, and Min Wang. "Efficient

multi-way theta-join processing using Map-Reduce."

Proceedings of the VLDB Endowment 5.11 (2012): 1184-

1195.DOI: 10.14778/2350229.2350238

[17] Zhao, Peixiang, and Jiawei Han. "On graph query

optimization in large networks." Proceedings of the VLDB

Endowment 3.1-2 (2010): 340-351. DOI:

10.14778/1920841.1920887

[18] Zhao, Zhao, et al. "Subgraph enumeration in large social

contact networks using parallel color coding and

streaming." 2010 39th International Conference on Parallel

Processing. IEEE, 2010.DOI: 10.1109/ICPP.2010.67

[19] Wang, Chaokun, et al. "MapDupReducer: detecting near

duplicates over massive datasets." Proceedings of the 2010

ACM SIGMOD International Conference on Management

of data. ACM, 2010.DOI: 10.1145/1807167.1807296

[20] Chiba, Norishige, and Takao Nishizeki. "Arboricity and

subgraph listing algorithms." SIAM Journal on Computing

14.1 (1985): 210-223.

[21] Lin, Jimmy, and Chris Dyer. "Data-intensive text

processing with Map-Reduce." Synthesis Lectures on

Human Language Technologies3.1(2010):1-170

[22] Hadoop Distributed File System hdfs :

http://hadoop.apache.org/hdfs

[23] Hadoop. http://hadoop.apache.org

[24] Ghemawat, Sanjay, Howard Gobioff, and Shun-Tak Leung.

"The Google file system." ACM SIGOPS operating

systems review. Vol. 37. No. 5. ACM, 2003.DOI:

10.1145/1165389.945450

[25] J. Dean and S. Ghemawat. Mapreduce: simplified data

processing on large clusters. In OSDI, pages 137–150,

2004. doi: 10.1016/j.procs.2015.07.392

[26] J. Cohen. Graph twiddling in a mapreduce

world.Computing in Science and Engineering, 11(4):29–41,

2009.

[27] Vernica, Rares, Michael J. Carey, and Chen Li. "Efficient

parallel set-similarity joins using MapReduce."

Proceedings of the 2010 ACM SIGMOD International

Conference on Management of data. ACM, 2010,

10.1145/1807167.1807222

[28] Dilbag Singh,Jaswinder Singh,Amit Chhabra "Failures in

Cloud Computing Data Centers in 3-tier Cloud

Architecture", IJIEEB, vol.4, no.3, pp.1-8, 2012. DOI:

10.5815/ijieeb.2012.03.01

[29] Jitendra Singh,"Study of Response Time in Cloud

Computing", IJIEEB, vol.6, no.5, pp.36-43, 2014. DOI:

10.5815/ijieeb.2014.05.06

[30] Karim Zarour, Nacereddine Zarour,"Data Center Strategy

to Increase Medical Information Sharing in Hospital

Information Systems", IJIEEB, vol.5, no.1, pp.33-39, 2013.

DOI: 10.5815/ijieeb.2013.01.04

Author's profiles

Fathimabi shaik is pursuing PhD in the

department of Computer Science and

Engineering, National Institute of

Technology, Warangal, India. She

received her Master of Technology from

University College of Engineering,

Kakinada, JNTUK, Andhra Pradesh,

India. Her areas of interest include Data

Mining, Graph Data Mining, Big Data Analytics, Business

Intelligence and Distributed Data Mining.

Dr. RBV Subramanyam is an Associate

Professor in the department of Computer

Science and Engineering, National

Institute of Technology, Warangal. He

received his Master of Technology and

Doctor of Philosophy from Indian

Institute of Technology, Kharagpur. His

areas of Interest include data mining,

Distributed Data Mining, Graph Databases, Fuzzy data

mining, Big data analytics, pattern recognition, high

performance computing, Soft Computing, Game Theory,

Outlier Analysis.

Prof. DVLN Somayajulu received his

PhD from Department of Computer

Science and Engineering, Indian Institute

of Technology, Delhi in 2002. Joined at

NIT (REC) Warangal in September 1988

after completing Mtech from Indian

Institute of Technology, Kharagpur in

1987. He is currently working as

Professor in Department of Computer Science and

Engineering, National Institute of Technology, Warangal. His

areas of interest include Business Intelligence, Big Data

Analytics, Database Security, Distributed Databases, Data

Warehousing and Data Mining and Advanced Databases.

https://doi.org/10.1145/1739041.1739056
https://doi.org/10.14778/2794367.2794368
https://doi.org/10.1145/2505515.2505563
https://doi.org/10.14778/2311906.2311907
https://doi.org/10.1007/11533719_45
https://doi.org/10.14778/2350229.2350238
https://doi.org/10.14778/1920841.1920887
https://doi.org/10.1109/ICPP.2010.67
https://doi.org/10.1145/1807167.1807296
https://doi.org/10.1145/1165389.945450
http://dx.doi.org/10.1016/j.procs.2015.07.392

44 Map-Reduce based Multiple Sub-Graph Enumeration Using Dominating-Set Graph Partition

Copyright © 2017 MECS I.J. Information Engineering and Electronic Business, 2017, 2, 36-44

How to cite this paper: Fathimabi shaik, RBV Subramanyam, DVLN Somayajulu,"Map-Reduce based Multiple Sub-

Graph Enumeration Using Dominating-Set Graph Partition", International Journal of Information Engineering and

Electronic Business(IJIEEB), Vol.9, No.2, pp.36-44, 2017. DOI: 10.5815/ijieeb.2017.02.05

