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Abstract—In this note, we look into two quantum 

algorithms, Deutsch-Josza’s and Shor’s algorithms. An 

attempt made to analyze classical as well as quantum 

parts computation. With that, analyze classical as well 

quantum parts complexities.  

 

Index Terms—BQP(Bounded-error Quantum 

Polynomial time), BPP(Bounded-error Probabilistic 

Polynomial time), Quantum Algorithms, Classical 

Algorithms, Deutsch-Jozsa. 

 

I.  INTRODUCTION AND RELATED WORK 

Due to speed up feature of quantum computer [1] 

compelled to shape it into commercial viability. 

Nevertheless, still it is in an infancy stage. During 

successive time number of algorithms has been shaped 

before quantum computer come into a workable form 

such as Deutsch algorithm [2], Deutsch-Josza algorithm 

[3], Simon’s algorithm [4], Grover algorithm [5], Shor’s 

algorithm [6] and more. Most of these algorithms 

attempted to solve (theoretically or partial experimentally) 

the classical Turing machine NP problems in polynomial 

time p(x). Nowadays high-speed digital computers even 

take exponential time for BPP problems. It is hard to 

imagining that solving NP problems in polynomial time 

p(x) by classical Turing machine. The Deutsch algorithm 

was the first quantum algorithm try to solve constant and 

balanced qubits [2] in p(x).  

There are numerous unsolvable problems incorporated 

into NP. As we said earlier that, it is quite impossible to 

solve NP problems by Deterministic and probabilistic 

Turing machine in polynomial time p(x).  

 Algorithms computation performance measures by 

complexities classes in digital systems. Furthermore, 

complexities classes divided into computation and 

storage space performance. In a deterministic Turing 

machine, the probability of solving these problems into 

polynomial time is out of the compass by P=? NP[7]. It 

turns out that every NP problems are not solvable under 

the influence of quantum algorithms interpretation. Some 

extend NP problems of deterministic Turing machine 

could be solve through a quantum computer by using the 

parallelism properties (i.e. superposition), entanglement 

and qubits measurement frequency. 

 

II.  BPP VS BQP 

BPP stands for Bounded-error Probabilistic 

Polynomial time (i.e. decision problems solvable by 

probabilistic Turing machine in polynomial time with 

certain bounded error, say arbitrary Q). 

BQP is complexity class of quantum algorithms. It 

stands as ―Bounded Error, Quantum, and Polynomial 

time‖. Means, it included those quantum algorithms 

which solvable by polynomial time p(x), x is a number of 

instructions in time t. BQP classify as (1) Bounded error 

(i.e. input x error confine lower bound . Similarly upper 

bound confine ). (2) Quantum—quantum algorithm x 

with properties of entanglement and superposition. An 

entanglement has had two states and at two 

different times t1 and t2 respectively are related with each 

others. 

 

                          (1) 

 

Where , U is unitary matrix,  is 

adjoint matrix of   , I identity matrix [1].  

Evidently, entanglement of , in form of 

 

                         (2) 

 

Thus,  

 

                    (3) 

 

That is, it reflects multiple places at the same time for 

computation and collapse at the input/output 

measurement time as bases states  or . (3) 

Polynomial time p(x)—quantum algorithms solvable in 

polynomial time p(x), but as per Church-Turing thesis, 

this computation intuitive contrary.  
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Hence, all decision problems find “yes” or “no” 

answers with an error probability of   , where x 

is polynomial solvable decision problems.  

Further, BQP
BQP

=BQP, i.e. polynomial time 

algorithms calls a polynomial subroutine one after 

another with particular sequences, on consequence the 

resulting algorithms is still polynomial time after 

completing all processing [8]. Expansion of it as 

 

         (4) 

 

Eq. (4) depends on a number of qubits of a quantum 

computer. The deep subroutine of quantum algorithms 

needs exponentials qubits such as [n1, [n2, [n3, […], ni]]], 

nested subroutine need asymptotic O(n
2
) qubits for 

computation which violate quantum polynomial 

phenomena. This is an open question for arguments.  

 

 

Fig.1. Quantum Turing machine solve all classical unsolvable problems 
into BQP time 

At input end of quantum Turing machine possesses n-

number of qubits which is state in fig.1. Here quantum 

Turing machine is capable to solve all BQP problems. 

All  qubits fee into BQP quantum Turing machine 

and generate intermediate result 

as .  Quantum state Q with 

function x solve into polynomial time p on n
th

 binary 

input. After completion of intermediate result, generate 

 result at output end (fig. 1). 

Possible difference between different classes 

is , however 

difficult to solve P problems in PSPACE i.e. 

. 

Thus,  indicate that quantum circuit simulate 

classical circuit as well as simulate  

problems; quantum computer can solve those problems 

which solved by probabilistic computer. Thus quantum 

property gives us randomness [10]. The 

problems as in quantum state 

 of quantum computer 

solve all BPP problems within exponential time. 

 

Fig.2. Congruency between  and  

The  problems means NP problems does not 

contain into BQP. In fact, it is impossible to solve all NP 

problems through BQP. Contrary to it,   

indicate that BQP problems solvable as NP problems 

minimally but future wait maximally i.e. unpredictable 

till time. 

 

III.  DEUTSCH-JOZSA ALGORITHM ANALYSIS 

Before Deutsch-Josza algorithm, Deutsch’s algorithm 

concept took ground in the quantum computer world. 

Deutsch’s algorithm based on the constant and balanced 

function f 

 

                    (5) 

 

Eq. (5) interpreted as f(0)=0, f(0)=1, f(1)=0, f(1)=1, 

means either it is constant or balanced. This is single 

input vector basis state  and its output also single 

vector which is f(x)  for x {0, 1}, either constant or 

balanced but not both at the same time even if quantum 

mechanics property superposition on state vector space 

applicable. But its time complexity directly proportional 

to the n-input qubits vector in an oracle box. Furthermore, 

application of Hadamard transforms H takes speedup on 

superposition of input vector [11]  

 

       (6) 

 

Where  and two qubits state become 

 

 
 

Deutsch’s algorithm operated on 1-demensional vector 

space with single qubit input, contrary to this Deutsch-

Josza’s algorithm work on n-qubits input i.e. N=2
n
 

dimensional Hilbert space, where  n is n-qubits. For 

constant and balanced function f, all n-qubits input 

become f(x)=0 or f(x)=1. Next, for balanced function f, 

half of the n-input qubits as f(x)=0 exactly and rest is 

f(x)=0. 

Hence, n-Hadamard transform (  is applicable for 

n-qubits input [11]. 

 

          (7) 
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on state  is given by – 

 

    (8) 
 

                            (9) 

 

 

 

Eq. (8) indicates that, application of n-Hadamard 

transform on , its output depending on the phase of 

xi.yi.  

In Deutsch-Jozsa’s algorithm, H
(n)

 (n-qubits Hadamard 

transform) and H (Hadamard transform)  is applied on 

vector state   and  as tensor product respectively by 

which basis vector state  generated in 2
n
-1 times and 

basis vector state  and  generated as a single qubit 

as an output. For changing vector state position into the 

Hilbert space then unitary transformation Uf is performed 

on the basis vector states namely  and . Further, 

apply Hadamard transform H with Uf for generating 

constant or balanced function f(x)[12] 

 

    (10) 

 

and 

 

   (11) 

IV.  COMPUTATION COMPLEXITY OF DEUTSCH-JOZSA 

ALGORITHM AND CLASSICAL ALGORITHMS 

COUNTERPART 

Deutsch-Josza algorithm claims resource utilization by 

uses of quantum computer parallelism. It uses the 

superposition principle of quantum mechanics for 

computation f(x), whether it is constant or balanced. 

However, practical application was not prime objective, 

but quantum computation in polynomial time was prime 

objective which creates interest for the development of a 

number of quantum algorithms. On the basis of this 

algorithm further enhancement apparently appreciable 

into Shor’s, Grover’s, and Fourier’s transform algorithms. 

The classical computer also simulates the Deutsch-Josza 

algorithm by corresponding parallelism properties of a 

classical computer but resource utilization into a classical 

computer is not appreciable such as computation time, 

space complexity since each entity having a separate 

computation for constant or balanced function. In a 

quantum computer, an oracle box which is in 

superposition form took input as a single query while 

classical computer requires more than one queries, 

minimum two queries require for checking function. 

However, time complexity does not enhance 

exponentially even n input qubits in this quantum 

algorithm. In worst case, 2
n-1

+1 time required for 

constant or balanced f(x) evaluation. In fact, classical 

computer required double computation compared to a 

quantum computer for this. Half calculation of f(x) 

required for determining constant or balanced vector state 

 or  then need 2
n-1

 for rest of computation.  

 

V.  SHOR’S ALGORITHMS ANALYSIS 

Shor’s algorithm is a well-known algorithm in a 

quantum family. Once quantum computer commercially 

viable then it might be possible that Shor’s algorithm 

practically verifiable on it. Due to Shor’s algorithm world 

focus towards the quantum computer development. 

Generally, a quantum computer looks as speedy by 

application of superposition, entanglement, and 

parallelism. Superposition used in Shor’s algorithm for 

factorizing large integer number within a fraction of time. 

The Shor’s algorithm brief summary state as  

 

 Select prime number N which non-negative 

integer. 

 Determine period r of a sequence x i.e. r=x
n
 mod 

N, N is an integer number. 

 Apply Fourier transform to determine factorize 

terms. 

 Factorize with the help of period r and Fourier 

transform. 

 

Shor’s algorithm computation divided into classical 

computation as well as quantum computation. If factorize 

integer number completely by quantum way then we 

cannot achieve polynomial performance [13] 

a. Classical Computation Parts of Shor’s Algorithm  

1. Determine n, whether it is belong to prime/integer 

power of the prime number/even number 

2. Select q which possess 2
q
 such that  

3. Randomly select integer x, coprime of n, if 

coprime(n, x)=true, then GCD(n, x)=1 

4. Perform qubits register allocation as state in fig. 3 

 

 

Fig.3. Register r1, r2 allocation of q-1 and n-1 qubits respectively 

Hence, , where s and t are lower 

and upper bound of the qubits respectively.  An allocated 

number n is equivalent to q-1 and n-1 for s and t 

respectively. 

b. Classical Computation Parts of Shor’s Algorithm  

5. Filled registers r1 and r2 states as indicated in fig. 

4. 
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Fig.4. Allocation of qubits registers r1 and r2 with  and 

vector 

Where  represent superposition of 

integer from 0 to q-1 

The total state of the quantum memory registers at this 

point is 

 

                           (12) 

 

 
 

6. The computed state of r1 cloned into r2 state as 

indicated in fig. 5. At the time computation of r1, 

its resultant simultaneously cloned into r2 (fig.5). 

The r1 find the period r, denoted here by state 

 which cloned into r2. Hence r1 = 

r2 at this stage. 

 

 

Fig.5. Computation of  and allocation of it into r2 at the 
same time 

Perform an operation on r1 and r2 at the same time due 

to the parallelism. Hence, quantum memory registers 

state as 

 

                   (13) 

 

7. Measures  of register r2 with 

some value k, due to measurement effect, register 

r1 collapsed in one value due to quantum 

mechanics principle. Therefore, r1 as in 

superposition states corresponding with r2 in 

between 0 and q-1. 

 

The state of the quantum memory registers after this 

 

                       (14) 

 

Where A is the set of a's such that x
a
 mod n = k, and 

 is the number of elements in that set. 

 

8. Now compute the discrete Fourier transform on r1. 

The discrete Fourier transform when applied to a 

state  changes it in the following manner 

 

                   (15) 

 

This step is performing by the quantum computer in 

one step by using quantum parallelism. After the discrete 

Fourier transform register is in the state 

 

        (16) 

 

9. Measure state r1 as  and 

, where r is desired period of  

Shor’s algorithms. 

c. Classical Computation Parts of Shor’s Algorithm  

10. With a value of m, on a classical computer do 

some post-processing which calculates r based on 

knowledge of m and q. In particular 

 

 m has a high probability of being  *(q/r) 

where  is an integer 

 If perform floating point division on m/q then 

calculate the best rational approximation 

for m/q whose denominator is less than or equal 

to q 

 Take this denominator to be a candidate for r. 

 If candidate r is odd then either double it, if doing 

so leads to a value less than q 

 

There are efficient ways to do this post-processing on a 

classical computer. 

 

11. Once attained r, a factor n determined by 

taking gcd(x
r/2

 + 1, n) and gcd(x
r/2

 - 1, n). If found 

a factor of n, then stop, if not go to step 4. This 

final step is done on a classical computer. 

 

Step 11 contains a provision for what to do if Shor's 

algorithm failed to produce factors of n. There are a few 

reasons to fail Shor's algorithm. For example, the discrete 

Fourier transform could be measured 0 in step 9, making 

the post-processing in step 10 impossible. The algorithm 

will sometimes find factors 1 and n, which is not useful 

either. For these reasons step 11 must be able to jump 

back to step 4 to start over.  

a. Computation Complexity of Shor’s Algorithm and 

Classical  

Briefly, N=p.q,  and 

 with some constraints. It is included 

into NP problem in classical computer and not solvable 
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by polynomial time P(t). But in a quantum computer, it is 

solvable in polynomial time P(t). As of 2015 the fastest 

algorithm publicly available for factoring large number 

runs in , where n is the number of bits 

used to represents the number. This runtime is not in 

polynomial time. In contrast, Shor’s algorithm runs 

 on a quantum computer, took 

O(log n)-time as post-processing on a classical computer 

[12]. Overall, it is polynomial.  

b. Classical Algorithms  Counterpart  

The Shor’s algorithm is versatile for factor large 

integer number due to superposition as well as quantum 

Fourier transforms features. After analysis, it seems 

suitable for factor large integer number n into p and q. 

However, most of the computation performed through 

universal Turing machine whereas rest of the operation 

performed by quantum Turing machine. For factorization 

of large integer number require tremendous computation 

speed which seems impossible to highly classical 

computers. By Moore’s law, the future high-speed 

computer also not able to crack factorization 

cryptography as well as further miniaturization seems 

impossible. The best alternative is a quantum computer to 

break RSA cryptography and others security mechanism.  

 

VI.  RESULT AND ANALYSIS 

From above discussion, it is clear that, quantum 

computer speed become tremendous and processed huge 

chunk of information within a fraction of time. Deutsch-

Jozsa’s to Shor’s algorithms tells the story of quantum 

computer processing speed. When consider classical 

computer then Moore’s law notably important in terms of 

its processing speed. According to Moore’s law, classical 

computer processing speed threshold at specific points 

due to enforcement of classical physics a constraint 

which is shown in fig. 6. On such situation quantum 

computer seems appropriate alternative due to application 

of quantum mechanics features which vividly shown in 

fig. 7. Classical processing speed follows exponential 

whereas quantum processing speed follows straight line. 

Due to this reason well-known Shor’s quantum algorithm 

computation performs simultaneously by classical as well 

as quantum computer. Most of the computation carried 

out by classical computer such as finding period r done 

in classical computer, rest of the computation performs 

by quantum computation. Hence, by this Shor’s compute 

in polynomial time (fig.9). 

 

Fig.6. ―Moore's Law has been valid since it was first formulated in 
1965‖ (Courtesy: http://www.phonearena.com/news/Moores-Law-is-

coming-to-an-end_id54127) 

Similarly, while we consider the Shor’s quantum 

algorithm with best classical algorithm then we find that 

Shor’s factorized large integer number into polynomial 

time whereas best classical algorithm takes exponential 

time. Shor’s factorization takes just a faction of time, 

contrary to it best classical algorithm takes hundreds of 

years to decode factorization terms which is shown in fig. 

8.  

 

 

Fig.7. ―The size of a quantum computer affects how quickly 
information can be distributed throughout it. The relation was thought 

to be logarithmic (blue). Progressively larger systems would need only 

a little more time. New findings suggest instead a power law 

relationship (red), meaning that the "speed limit" for quantum 

information transfer is far slower than previously believed.‖ 
(Credit: https://www.nist.gov/news-events/news/2015/04/nist-tightens-

bounds-quantum-information-speed-limit)
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Fig.8. comparative analysis of factorization of integer number by Shor’s 
quantum algorithms and existing best classical algorithm (Courtesy: 

http://quantumj13.imascientist.org.uk/profile/chrismansell/) 

 

Fig.9. Shor’s quantum algorithm computation strategies 

 

VII.  CONCLUSION 

From above discussion we turn out that existing 

quantum algorithms processing are in polynomial time. 

While counterpart classical algorithms not achieved as 

such performance. Even high processing computing 

seems impossible to archive as such performance. The 

classical algorithms performance is in the range of 

exponential, semi-exponential or quadratic ways for P or 

NP problems. Therefore, if quantum algorithms like 

Shor’s algorithm work into quantum computer or 

simulate into deterministic Turing machine as per 

Church-Turing thesis then existing vulnerabilities into 

classical cryptography completely remove.  Find a new 

direction for the transactions which gives guarantee about 

absolute security into classical computer world.  

I feel disappoint to mention here that development 

pace of quantum algorithms as well as quantum computer 

has not been in full swing. The important cause of it is 

digital intelligent quotient hurdles to quantum computer 

development. However, a few things going to good such 

as, China has launched first quantum satellite in 2016. 

Similarly, D-wave quantum has been developed which 

work as per quantum mechanics laws.  
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