
I.J. Information Engineering and Electronic Business, 2017, 1, 36-46
Published Online January 2017 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijieeb.2017.01.05

Copyright © 2017 MECS I.J. Information Engineering and Electronic Business, 2017, 1, 36-46

HitBand: A Prefetching Model to Increase Hit

Rate and Reduce Bandwidth Consumption

Islam Anik, Akter Arifa and Hamid Md. Abdul
American International University of Bangladesh, Dhaka, Bangladesh

Email: {abhi.cse.aiub, arifa.anisha123}@gmail.com, hamid@aiub.edu

Abstract—Caching is a very important issue in

distributed web system in order to reduce access latency

and server load. A request is a hit if it is available in the

cache and if not then it will fetch from the server in order

to cache and serve the request. Researches have shown

that generic algorithms of caching can increase hit rate up

to 40−50%, but adding prefetching scheme can increase

this rate to 20%. Prefetching is a technique to fetch

documents before they are requested. This paper proposes

a process model for prefetching named HitBand which

will balance hit rate bandwidth in every scenario with the

combination of “Roulette-wheel selection”. Roulette-

wheel selection is a very popular selection based

algorithm which selects objects according to their fitness.

We have compared our HitBand with the generic

algorithms of prefetching like prefetching by popularity,

apl characteristic, good Fetch and lifetime. Generic

algorithms did not take web object size into consideration

and in limited bandwidth scenario object size has a big

impact on bandwidth consumption. Though prefetching

by lifetime algorithm shows little concern about

bandwidth consumption by getting the object with

changes happening less frequently but this compromises

the hit rate. But our proposed HitBand not only considers

bandwidth but also hit rate during prefetching.

Performance evaluation of HitBand along with other

algorithms is provided in our paper. We have tested our

HitBand with the testing engine which is built using

JavaScript and maintained under AngularJS framework.

From the performance evaluation, our HitBand shows

better results both in high and low bandwidth.

Index Terms—Prefetching, caching, roulette-wheel

selection, distributed system, hit rate, bandwidth,

distributed web based system.

I. INTRODUCTION

The World Wide Web (WWW) is an information space

in which documents, images and other resources are

identified by uniform resource locators (URL),

interlinked by hypertext links and can be accessed via

internet [1]. The usage of www is cheap and accessing

information is faster than using any other means. The

www has documents that solicit to a wide range of

interest, for example news, education, scientific research,

sports, entertainment, stock market growth, travel,

shopping, weather and maps [2]. Both internet and www

have experienced remarkable growth in past decade. With

the passing of time, www is getting popular. Along with

the increase of popularity of www, traffic over internet

has also increased. According to the World Wide Web

Size (www.worldwidewebsize.com), the indexed web

contains at least 4.65 billion pages and the dutch indexed

web contains at least 249.61 million pages. As WWW

continues its march with the exponential growth, the

major issues faced by the current web users are the

network congestion and server overloading. Though

capacity of the internet increases 45−60% every year, it is

not enough to serve the demand for bandwidth as more

and more services and utilities are moved into the web [3].

Also the uses of smartphones and tablet is increasing day

by day. Within 2017, 55% of traffic will come from these

devices [4]. Currently researcher has proposed a

luxurious idea named internet of things (IoT) in which

every device will get an IP address and they will be

connected with each other via internet [5]. IoT provides

power to the connected devices to think, see, hear,

communicate, make decisions, execute jobs by talking

together etc. [6]. Likely IoT, more and more schema will

be added to internet in foreseeable future. If some kind of

steps are not taken soon to solve the problems caused

from the increase of the usage of the www, the www will

become too congested and it will lose its attraction.

Fig.1. Client server communication via proxy server.

Many researchers have been working on improvement

of the performance of Web since 90s. From their research,

many approaches have been proposed [7, 37]. Among the

proposed approaches, the web caching technology is

proved as one of the effective solutions towards reducing

 HitBand: A Prefetching Model to Increase Hit Rate and Reduce Bandwidth Consumption 37

Copyright © 2017 MECS I.J. Information Engineering and Electronic Business, 2017, 1, 36-46

access latency (the perceived amount of time between a

user sends a request and receives with a response),

alleviating web service bottlenecks, decreasing server

loads and increasing improvement of the scalability and

quality of service of the web systems [8-11].

Web caching is a technology for the temporary storage

of web objects (document, html pages, images, audio files

etc.) for future retrieval. The major advantages of Web

caching are

 It reduces bandwidth consumption as data is

available locally, so requests do not have to go to

the server.

 It reduces the server load as few requests will be

passed to the server and most of the request will be

handled locally from the cache.

 It reduces access latency as data will be always

closed to the client, so that it can serve immediately.

Web proxies has gained rapid growth in recent years

[10]. Web object can be cached at different locations

between the client and the server [12-13]. From the

location of caching, web caching can be divided into

three parts

 Browser caching is built in by default in modern

browsers. Browser utilizes clients RAM, CPU,

Local disc to manage caches. Data of caching

system cannot be share with other users as caching

is done locally.

 Proxy caching is located between client and server

[14]. Web proxy server can share data with

multiple clients. Fig. 1 provides a structure of

communication from client to server via proxy

server. From [15], when a request comes to a proxy

server, it first checks it’s availability in the cache. If

no objects is found, it will pass the request to the

web server. After getting response from web server,

it first caches the fresh copy and pass the data to the

client. Basically proxy caches is located close to the

clients. The purpose of proxy caching is to reduce

access latency.

 Server caching is also located between clients and

server but apart from proxy cache, this caching is

located close to the server. The purpose of server

cache is to alleviate server’s workload.

Although web caching improved the performance of

web but benefits from this technique is limited [16].

Previous researches have shown that maximum caching

hit rate by applying any caching algorithm can achieve is

less than 40−50% [3, 17-20]. In practical, one out of two

objects cannot be found in caching [17]. To further

increase of cache hit rate is to do prefetching the web

objects into the cache but prefetching can increase the

traffic [21]. Prefetching is a technique where documents

are fetched or downloaded from server before they are

requested. It improves user experience by loading a

webpage faster as it already available in the cache with

the help of prefetching [22]. Many researches have

described that caching mixed with prefetching can double

its performance rather than caching without prefetching

[23-24]. According to [3], combination of perfect caching

and perfect prefetching can reduce 60% client latency.

Web prefetching has two main components like

prediction engine and prefetching engine [25]. Prediction

engine chooses objects according to the objects basic

information like access frequency, lifetime etc. and

prefetching engine takes the decision to prefetch them or

not. Prefetching can be applied in three ways

 Between the browser and the web proxy.

 Between the web proxy and the web server.

 Between the client and the web servers.

Prefetching techniques can be divided into two types

[26]

 Short-time prefetching (In this technique, it

fetches objects which can be requested in near

future based on user recent activity.)

 Long-time prefetching (In this technique, it

fetches objects based on steady state object update

frequency, access rate, lifetime etc.)

A proper prefetching depends on a good prediction

based algorithm to select web objects. A precise selection

can reduce access latency, on the contrary inaccurate

fetching would lead to waste of bandwidth. Holland [27]

developed an algorithm named “Roulette Wheel

Selection (RWS)” a selection based algorithm which

selects individuals according to their fitness. Better the

fitness, the less chances to be not selected among the set

of objects. This is similar to a Roulette wheel in a casino.

Usually each portion of the wheel is assigned to each of

the possible selected objects based on their fitness. It can

be achieved by diving the freshness factor of a selected

object, by the total freshness factor of the all the objects

and normalize them to 1. After that selection is made

based on how the wheel is rotated. The higher fitness of

the object will less chance to be eliminated. From this

process some weakest objects may survive at the end of

the process but these objects could prove usefulness

following the recombination process [28]. We mapped

our proposed equation with the selection probability of

RWS to generate opportunity for selecting an object

based on their fitness.

The remaining of the paper is organized as follows.

Section II describes an overview of the characteristics of

web objects along with the review of other popular

prefetching algorithms like prefetch by Popularity [29],

Good Fetch [30], APL characteristic [31], and Lifetime

[31]. Section III provides the analysis of the steady state

hit rate and bandwidth consumption. Section IV describes

performance evaluation model based on H/B model.

Section V presents our proposed protocol along with the

description of RWS. Section VI presents performance

evolution and results. Finally, Section VII concludes with

the summery of our work.

38 HitBand: A Prefetching Model to Increase Hit Rate and Reduce Bandwidth Consumption

Copyright © 2017 MECS I.J. Information Engineering and Electronic Business, 2017, 1, 36-46

II. OVERVIEW

In this section, we discuss the characteristics of web

objects along with existing prefetching algorithms and the

description of the notations.

Table 1. Notations and their description

Notation Description

S Set of web objects

a The total access rate

k Bandwidth constant

()ff i Fitness function of
thi object

ip Access frequency of
thi object

il Lifetime of
thi object

is Size of
thi object

()f i Freshness factor of
thi object

ih Hit rate of
thi object

 ib Bandwidth of
thi object

prefHit Hit rate with prefetching

demandHit Hit rate without prefetching

prefBW Bandwidth with prefetching

demandBW Bandwidth without prefetching

A. Notations and their description

Description of all the notations are provided in the

Table 1.

B. Characteristic of web object

Prefetching process requires object’s basic information

like size, access frequency and lifetime to decide which

object to pick. Researchers have found that access pattern

of web pages follows Zip’s distribution [32]. According

to zip’s law, relative probability of
thi popular object to

get requested is inversely proportional to i. If access

frequency of
thi most popular object is ip , zip’s law can

be expressed as

z
k

i
 where

1

i

z
i




Cunha et al. [33] have researched that among N web

pages, the relative probability of
thi most popular object

get requested is

i

z
p

i
 where

0

1

1
()

N

j

z

j





(1)

The value of α varies in different research. Cunha et al.

[33] suggested a value of 0.986 and Nishikawa et al. [34]

suggested 0.75 which is based on their 2000000 requests

access log. Objects lifetime is also another characteristics

that affects hit rate and bandwidth consumption. An

object lifetime is denoted as the average time interval

between the consecutive updates of the web object.

Crovella et al. [35] described that Static web object’s

sizes follow a Pareto distribution characterized by a

heavy tail. Crovella and Barford [36] have shown that the

dynamic object’s sizes follow a mixed distribution of

heavy-tailed Pareto and lognormal distribution.

C. Existing Algorithms

1) Prefetch by Good Fetch

Venkataramani et al. [30] approached a criterion

named Good fetch which balance the web object’s update

frequency and access frequency. According to this

algorithm, the web objects whose poses the highest

probability of being accessed during their average

lifetime are the worthy candidate for prefetching.

Suppose for the object i, if access frequency of that object

is ip , overall access rate a and the average lifetime il , the

probability of being prefetched during its life is

1 (1) ial

goodFetch ip p  

(2)

According to this algorithm, it prefetches a collection

of web object whose goodFetchp value exceeds a certain

threshold value which provides a natural way to keep

down the bandwidth wastage by prefetching. The motive

behind this algorithm is that the objects with

comparatively longer update interval and higher access

frequency are nominated to be prefetched and this

criterion supposes to balance the bandwidth and hit rate

and with that intention it increases the hit rate with a

tolerable increase in bandwidth.

2) Prefetch by Popularity

In this algorithm, the process of prefetching, select k

most popular objects to prefetch and maintain a copy of

them in the cache. If a new object joins to the set of the

most popular object or any of the old objects get updated,

the system pulls the new objects into the cache. Markatos

et al. [29] proposed a "Top Ten" approach for prefetching

objects. According to this criterion, each server keeps the

records of all accessed object and among of them, top ten

popular objects are pushed into the cached whenever they

are updated. Thus, this way server always keeps the top

ten most popular object fresh.

 HitBand: A Prefetching Model to Increase Hit Rate and Reduce Bandwidth Consumption 39

Copyright © 2017 MECS I.J. Information Engineering and Electronic Business, 2017, 1, 36-46

3) Prefetch by APL characteristic

Jiang et al. [31] suggested another approach for

prefetching the web object. Suppose for object i, if access

frequency of that object ip , overall access rate a and the

average lifetime il then they proposed i iap l as the

measurement of prefetching web objects. Those objects

will be prefetched whose apl value exceeds a certain

threshold value. Object’s apl value represents the

number of possibility of this object to being accessed

during its average lifetime. The higher apl value of

objects, the higher chance to being accessed during its

lifetime. Thus, increase the chance of improving overall

hit rate by prefetching these web objects.

4) Prefetch by Lifetime

In this algorithm, they proposed to select n objects

among the universe of web objects according to their

lifetime. An object lifetime is denoted as the average time

interval between the consecutive updates of the web

object. As object can be stale anytime, it’s necessary to

fetch the fresh copy from the server to the cache. Thus

prefetching objects consume extra bandwidth as it’s have

to download the object from the server. To reduce

bandwidth consumption, it’s very common tendency to

fetch those objects who change less frequently.

III. HIT RATE AND BANDWIDTH ANALYSIS

In this section, we briefly describe hit rate with

prefetching and without prefetching along with the

bandwidth consumption.

A. Steady state demand hit rate

According to [30], ()
iAP t is the probability of an

object i being accessed within t time and ()
iBP t is the

probability of no update occurred in object i within time t.

So, the probability of hit is

0

() () ()
d i ihit i A B

i

P i P P t P i dt



 

(3)

Suppose (,) ()a tP k is the probability of k access within

time t with access arrival rate a. According to assumption

of [30], request arrival follows Poisson distribution, the

probability of k arrivals in time t is

(,)

()
() .

!

k
at

a t

at
P k e

k



(4)

The probability of no update of object i within t time

and suppose X = no access to object i within time t and Y

= k requests in t and Z = none of the k requests for i

0

()

0

()

() () ()

()
(1)

!

i

k

k
at k

i

k

ap t

P x P Y P Z

at
e p

k

e














 
  

 







which will be use in the calculation to bring out the hit

rate of an object. Here probability of access to an object i

occurring time t is

()

() () i

i

ap t

A iP t ap e




(5)

From [30], the lifetime of
thi object are exponentially

distributed within average lifetime il , the probability of

no update of an object within time t is

() i

i

t

l

BP t e




(6)

If we put Eq. (5) and Eq. (6) into Eq. (3), the

probability of an access is hit

  ()

0

1

0

()

()
1

1

|

i i

d

i

i

t

ap t l

hit i i

i

ap

l

i i

i i

i

i i
i

i i i

P i p ap e e dt

e
p ap

ap

l

ap l
p

ap l

 


 
 
  

 
  

 
 

 
 
 
  
   
  

 
  

 

 





(7)

This
1

i i

i i

ap l

ap l 
 represents the hit rate of the object i

which means i being accessed when it is fresh. This also

mentioned as freshness factor of object i expressed as f(i).

This will help to measure the object’s activity in the

network.

B. Steady prefetch hit rate

They proposed to prefetch an object and keep that

object always fresh if any objects goodFetchP is above the

threshold value T. So, the steady hit rate in prefetching

with threshold value T is

(,) ,
phit i i

i

P i T p h where
1

1

{ goodFetch T

i i

i i

P

ap li Otherwise
ap l

h 





(8)

C. Steady State Bandwidth

40 HitBand: A Prefetching Model to Increase Hit Rate and Reduce Bandwidth Consumption

Copyright © 2017 MECS I.J. Information Engineering and Electronic Business, 2017, 1, 36-46

They represented the steady state bandwidth for the

both threshold algorithm based scheme and demand

based access methods. The estimated steady state

bandwidth when just demand fetches is

(1 ())
dss i i

i

BW s f i ap 

(9)

For threshold algorithm based prefetched, Steady state

bandwidth consumed by prefetch and demand

,dss i i

i

BW s h  where
 

()

1
,

1 () ,
{ goodFetch i

i

i

P T
l

i Otherwiseap f i
h






(10)

IV. PERFORMANCE EVALUATION MODEL

Jiang et al. [31] proposed a balance measurement of

prefetching algorithm which is called H/B metric and it is

defined as

pref

demand

pref

demand

Hit

HitH

BWB

BW



(11)

Here prefHit and demandHit are the overall hit rate

with and without prefetching. prefBW and demandBW

are the total bandwidth with and without prefetching. H/B

describes the ratio between hit rate and bandwidth. H/B

model will help to evaluate the performance of the

algorithm. Jiang et al. [31] proposed a more generalized

form of H/B metric as /kH B to give importance either

on hit rate or bandwidth by controlling the value of k

()
pref k

k

demand

pref

demand

Hit

HitH

BWB

BW



(12)

Here k>1 indicates that hit rate is preferred over the

bandwidth and if bandwidth is limited then k<1. Jiang et

al. [31] used both H/B and /kH B metric to measure the

performance of Popularity [29], Good Fetch [30], APL

characteristic [31], and Lifetime [31].

V. PROPOSED PROTOCOL: HITBAND

In this section, we introduce our proposed model

named HitBand for prefetching. HitBand is a model

which prefetch objects maintaining the balance of hit rate

and bandwidth with the combination of RWS where

RWS is used only in the final selection process. RWS is a

selection based algorithm which selects individuals

according to their fitness.

RWS has been applied on genetic algorithms, course

selection problem, cloud computing etc. but never used

for web prefetching. According to RWS, if ff(i) is the

fitness of the object i, the probability of this object being

selected is

1

()
()

()
N

j

ff i
P i

ff j






(13)

where N is the number of the total object in a given set S.

Fitness of a Objects depends on the factor of hit rate and

bandwidth. If ff(i) is the fitness function of the object i ,

hit rate of object i is ih , bandwidth is ib and wants to

balance hit rate with the bandwidth then the fitness

function of object i is

() i

k

i

h
ff i

b


(14)

Here k is the bandwidth constant. If we use the

definition of h
i
 and b

i
 from the Eq. (8) and Eq. (10)

  

1
()

1 ()

i i

i i

k

i i

ap l

ap l
ff i

ap f i s






(15)

Here f(i) is the freshness factor provided by

Venkataramani et al. [30] in the Eq. (7) and if we put the

value of f(i) in the Eq. (15)

  

1
()

1 ()

1

1
1

1

1

1

1

1

1

1

1

i i

i i

k

i i

i i

i i

k

i i
i i

i i

i i

i i

k

i i i i
i i

i i

i i

i i

k

i i

i i

i i

i i

k

i i

i i

ap l

ap l
ff i

ap f i s

ap l

ap l

ap l
ap s

ap l

ap l

ap l

ap l ap l
ap s

ap l

ap l

ap l

ap s
ap l

ap l

ap l

ap s

ap l








  

  
  



   
  

  



  
  

  



 
 

 

(16)

 HitBand: A Prefetching Model to Increase Hit Rate and Reduce Bandwidth Consumption 41

Copyright © 2017 MECS I.J. Information Engineering and Electronic Business, 2017, 1, 36-46

Now, if we put Eq. (16) into Eq. (13)

1

1

1
()

1

1

i i

i i

k

i i

i i

j j

N
j j

k
j

j j

j j

ap l

ap l

ap s

ap l
P i

ap l

ap l

ap s

ap l





 
 

 



 
   



(17)

Here k is the bandwidth constant and 0<= k <=1. k

depends on the bandwidth availability. Bandwidth

availability creates issues on prefetching if it is not

plenteous. If bandwidth is enormous, value of k will be 0.

If bandwidth is limited, k will be 0< k <=1 according to

the bandwidth allocation. Objects with a RWS value

calculated from Eq. (17) exceeding a certain threshold

value will be selected for prefetching. This protocol is

designed in the consideration of both hit rate and

bandwidth. In enormous network bandwidth, it focuses

only on hit rate but in mid and low network bandwidth, it

focuses on hit rate along with bandwidth. Pseudo code is

provided in Algorithm 1. According to Algorithm 1, S is

the set of objects, n is the number of objects to select for

prefetching, O is the object with property of s, p, l where

s is the size of the object, p is access frequency and l is

the lifetime, a is the total access rate, k is the bandwidth

constant. First, it calculates hit rate of each objects. After

calculating hit rate, it calculates bandwidth of each

objects. After that, it generates fitness value of each

objects using the Eq. (14). After calculating fitness value,

it calculates total sum of fitness values of all the objects.

After that, it calculates selection probability of each

objects the Roulette Wheel Selection which is provided in

the Eq. (17).

(a) (b)

(c) (d)
Fig.2. Hit rate/bandwidth analysis: analysis of (a) 1000 objects, (b) 10000 objects, (c) 100000 objects, (d) 1000000 objects

42 HitBand: A Prefetching Model to Increase Hit Rate and Reduce Bandwidth Consumption

Copyright © 2017 MECS I.J. Information Engineering and Electronic Business, 2017, 1, 36-46

Finally, it selects n objects with RWS value that crosses

a certain threshold value. Now, we calculate both time

and space complexity of our proposed protocol. To

calculate ih , it’ll take O (1) to calculate for single object

and as object is up to S, so the overall complexity for

calculating ih up to S is O(S). Same for calculating ib ,

if , Sum and RWS take O(S) time. Selection of n objects

among the S whose RWS value exceeds a certain

threshold value can be done in many ways. If we use

randomization in selection, it’ll take O(S) to complete.

Thus the overall complexity of the protocol is O(S). So

selection process has also an impact on the time

complexity. Space complexity depends on the space

consumed by the object information (is , ip , il where s

is the size of the object, p is access frequency and l is the

lifetime), ih , ib , if , RWS which will be up to S where S

is the total set of web objects.

VI. PERFORMANCE EVALUATION AND RESULTS

We built our testing engine using JavaScript and used

AngularJS framework to maintain the engine. We ran

simulation on algorithms such as prefetch by popularity

[29], good fetch [30], apl characteristic [31], lifetime [31]

and our HitBand. For the simulation, we have used object

size is randomly between 1 and 1000000 bytes and

object's lifetime il between 1 and 100,000 seconds and

access frequency ip which follows Zip's distribution

with α=0.75 [31] and the total access rate a=0.01/second.

We ran our test through three channel like H/B model, hit

rate and bandwidth. We took 4 set of objects like 1000,

10000, 100000, 1000000 for testing on every channel

with 5 set of algorithm.

In the testing based on H/B model, we use k=0.001

with a very little control of bandwidth. We used

equivalent equation like Eq. (11) and Eq. (12) for H/B

model. Figure 2 shows the status after performing

(a) (b)

(c)

(d)
Fig.3. Hit rate analysis: Analysis of (a) 1000 objects, (b) 10000 objects, (c) 100000 objects, (d) 1000000 objects

 HitBand: A Prefetching Model to Increase Hit Rate and Reduce Bandwidth Consumption 43

Copyright © 2017 MECS I.J. Information Engineering and Electronic Business, 2017, 1, 36-46

simulation on algorithms such as prefetch by popularity

[29], good fetch [30], apl characteristic [31], lifetime [31]

and our HitBand. Fig. 2a shows the analysis of the 1000

objects, Fig. 2b shows the analysis of the 10000 objects,

Fig. 2c shows the analysis of the 100000 objects, and Fig.

2d shows the analysis of the 1000000 objects. From the

Fig. 2, good fetch [30], APL characteristic [31], lifetime

[31] and our HitBand shows almost same performance

but prefetch by popularity [29] shows very poor result in

H/B model.

In the testing of hit rate, we use k=0.001 with very

little control of bandwidth. Figure 3 shows the status after

performing simulation on algorithms such as prefetch by

popularity [29], good fetch [30], APL characteristic [31],

lifetime [31] and our HitBand. Figure 3a shows the

analysis of the 1000 objects, Figure 3b shows the analysis

of the 10000 objects, Figure 3c shows the analysis of the

100000 objects and Figure 3d shows the analysis of the

1000000 objects. From the Figure 3, Our HitBand

performs better than prefetch by lifetime [31] and good

fetch [30] and shows almost same performance as APL

characteristic [31] but popularity [29] performs better in

case of hit rate.

In the testing of bandwidth, we tested our simulation

through limited bandwidth allocation. In this simulation

we use k=0.5. Fig. 4 shows the status after performing

simulation on algorithms such as prefetch by popularity

[29], good fetch [30], APL characteristic [31], lifetime

[31] and our HitBand. Fig. 4a shows the analysis of the

1000 objects, Fig. 4b shows the analysis of the 10000

objects, Fig. 4c shows the analysis of the 100000 objects

and Fig. 4d shows the analysis of the 1000000 objects. In

limited network bandwidth from the Fig. 4, our HitBand

consumes less bandwidth than other algorithms like

prefetch by popularity [29], good fetch [30], apl

characteristic [31], lifetime [31]. Prefetching by

popularity consume heavy bandwidth than other

(a) (b)

(c) (d)

Fig.4. Bandwidth analysis: analysis of (a) 1000 objects, (b) 10000 objects, (c) 100000 objects, (d) 1000000 objects

44 HitBand: A Prefetching Model to Increase Hit Rate and Reduce Bandwidth Consumption

Copyright © 2017 MECS I.J. Information Engineering and Electronic Business, 2017, 1, 36-46

algorithms. After our HitBand, prefetching by lifetime

[31] consumes less bandwidth than other algorithms.

Algorithm 1: Get n prefetch object 1

 procedure RWS

 S : Set of Web Objects

 n : Number of object to fetch

 O < si, pi, li >: web object

 a : access rate

 k : badwidth constant

 i ← 0
 while i < length(S) do

 ℎ𝑖 ←
𝑎𝑝𝑖𝑙𝑖

𝑎𝑝𝑖𝑙𝑖+1

 i ← i + 1
 end while

 i ← 0
 while i < length(S) do

 𝑏𝑖 ←
𝑎𝑝𝑖𝑠𝑖

𝑎𝑝𝑖𝑙𝑖+1

 i ← i + 1
 end while

 i ← 0
 while i < length(S) do

 𝑓𝑖 ←
ℎ𝑖

𝑏𝑖
𝑘

 i ← i + 1
 end while

 Sum ← 0
 i ← 0
 while i < length(S) do
 Sum ← Sum + 𝑓𝑖
 i ← i + 1
 end while

 i ← 0
 while i < length(S) do

 𝑅𝑊𝑆𝑖 ←
𝑓𝑖

𝑠𝑢𝑚

 i ← i + 1
 end while

 Select n object with maxium RWS

 return selected objects
end procedure

VII. CONCLUSIONS

We have designed, developed and evaluated HitBand,

a prefetching model whose goal is to increase hit rate

with the consideration of available bandwidth. The basic

difference between Hitband and generic algorithms

(prefetch by popularity [29], good fetch [30], lifetime

[31], apl characteristic [31]) is that generic algorithms

focus on either hit rate or bandwidth but HitBand

considers both. We designed our HitBand with the

combination of RWS. In this paper, we not only proposed

our HitBand but also provided data analysis comparison

with the generic algorithms like prefetch by popularity

[29], good fetch [30], apl characteristic [31], lifetime [31].

We have tested our HitBand both in limited bandwidth

and large bandwidth. We have run simulation on HitBand

along with other existing algorithms through H/B model,

hit rate and bandwidth. In the scenario of low bandwidth,

our HitBand consumes less bandwidth than other

algorithm. In the scenario of hit rate and H/B model, our

HitBand shows significant results. Along with the other

algorithms, our HitBand is very easy to implement and it

can adjust easily in any scenario.

REFERENCES

[1] W. Help, FAQ, What is the difference between the web

and the internet?, W3C. 2009. (2015).

[2] S. Sulaiman, Siti, A. Abraham, S. Sulaiman, Web caching

and prefetching: What, why, and how?, IEEE (2008) 1–8

doi:10.1109/ITSIM.2008.4631949.

[3] J. Wang, A survey of web caching schemes for the internet,

ACM Computer Communication Review 25(9) (1999) 36–

46. doi:10.1145/505696.505701.

[4] Cisco, Cisco visual networking index: Forecast and

methodology (2013) 2012–2017.

[5] L. Atzori, A. Iera, G. Morabito, The internet of things: A

survey, Computer Networks 54(15) (2010) 2787–2805.

doi:10.1016/j.comnet.2010.05.010.

[6] A. Al-Fuqaha, Internet of things: A survey on enabling

technologies, protocols, and applications, IEEE

Communications Surveys and Tutorials (Volume: 17,

Issue: 4) (2015) 2347–2376

doi:10.1109/COMST.2015.2444095.

[7] Z. M, S. H, N. M., Understanding and reducing web delays,

IEEE Computer Magazine 34(12) (2001) 30–37.

[8] A. C, W. J. L, Y. P. S., Caching on the world wide web,

IEEE Trans. Knowledge and Data Engineering 11(1)

(1999) 94–107.

[9] B. D. Davison, A web caching primer, IEEE Internet

Computing 5 (2001) 38–45. doi:10.1109/4236.939449.

[10] F. A, C. R, D. F, G. G, R. M., Performance of web proxy

caching in heterogeneous bandwidth environments, In

Proc. the IEEE Infocom’99 Conference (1999) 107–116

doi:10.1109/INFCOM.1999.749258.

[11] W. Ali, S. M. Shamsuddin, A. S. Ismail, A survey of web

caching and prefetching, Int. J. Advance. Soft Comput.

Appl. 3(1) (2011) 18–44.

[12] H. Chen, Pre-fetching and re-fetching in web caching

systems: Algorithms and simulation, Master Thesis,

TRENT UNIVESITY, Peterborough, Ontario, Canada

(2008).

[13] T. Chen, Obtaining the optimal cache document

replacement policy for the caching system of an ec website,

European Journal of Operational Research. 181(2) (2007)

828. doi:10.1016/j.ejor.2006.05.034.

[14] Y. Ma, X. Liu, S. Zhang, R. Xiang, Y. Liu, T. Xie,

Measurement and analysis of mobile web cache

performance, WWW ’15 Proceedings of the 24
th

International Conference on World Wide Web (2015)

691–701 doi:10.1145/2736277.2741114.

[15] G. G. Vijayan, J. J. S., A survey on web pre-fetching and

web caching techniques in a mobile environment, The

First International Conference on Information Technology

Convergence and Services (2012) 119–136

doi:10.5121/csit.2012.2111.

[16] T. M. Kroeger, D. D. E. Long, J. C. Mogul, Exploring the

bounds of web latency reduction from caching and

prefetching, Proceedings of the USENIX Symposium on

Internet Technologies and Systems on USENIX

Symposium (1997) 2–2.

 HitBand: A Prefetching Model to Increase Hit Rate and Reduce Bandwidth Consumption 45

Copyright © 2017 MECS I.J. Information Engineering and Electronic Business, 2017, 1, 36-46

[17] M. Abrams, C. R. Standridge, G. Abdulla, S. Williams,

E. A. Fox, Caching proxies: limitations and potentials,

Proceedings of the 4th International WWW Conference,

Boston (1995).

[18] H. Lee, B. An, , E. Kim, Adaptive prefetching scheme

using web log mining in cluster-based web systems, 2009

IEEE International Conference on Web Services (ICWS)

(2009) 903–910.

[19] A. Abhari, S. P. Dandamudi, S. Majumdar, Web object-

based storage management in proxy caches, Future

Generation Computer Systems Journal 22(1-2) (2006) 16–

31. doi:10.1016/j.future.2005.08.003.

[20] L. Jianhui, X. Tianshu, Y. Chao, Research on web cache

prediction recommend mechanism based on usage pattern,

First International Workshop on Knowledge Discovery

and Data Mining(WKDD) (2008) 473–476

doi:10.1109/WKDD.2008.9.

[21] D. Kumar, R. Patel, An efficient approach for optimal

prefetching to reduce web access latency, International

Journal of Scientific and Technology Research (2014) 3(7).

[22] V. Sathiyamoorthi, V. M. Bhaskaran, Optimizing the web

cache performance by clustering based pre-fetching

technique using modified art, International Journal of

Computer Applications 44(1) (2012) 7–9.

doi:10.5120/6225-8190.

[23] G. Pallis, A. Vakali, J.Pokorny, A clustering-based

prefetching scheme on a web cache environment,

Computers and Electrical Engineering 34(4) (2008) 309–

323. doi:10.1016/j.compeleceng.2007.04.002.

[24] W. Feng, S. Man, G. Hu, Markov tree prediction on web

cache prefetching, Software Engineering, Artificial

Intelligence(SCI), SpringerVerlag Berlin Heidelberg, 209

(2009) 105–120 doi:10.1007/978-3-642-01203-7\s\do5(9).

[25] S. Gawade, H. Gupta, Review of algorithms for web pre-

fetching and caching, International Journal of Advanced

Research in Computer and Communication Engineering

Vol. 1, Issue 2, April 2012.

[26] R. Kaur, V. Kiran, Various techniques of web pre-fetching,

International Journal of Advanced Research in Computer

Science and Software Engineering Volume 4, Issue 11,

November 2014.

[27] H. J., Adaptation in natural and artificial systems,

University of Michigan Press, Ann Arbor (1975)

doi:10.1137/1018105.

[28] Wikipedia, Fitness proportionate selection,

https://en.wikipedia.org/wiki/ itnes proportionat selection

[29] E. Markatos, C. Chironaki, A top 10 approach for

prefetching the web, Proc. INET98: Internet Global

Summit (1998).

[30] A. Venkataramani, P. Yalagandula, R. Kokku, S. Sharif,

M. Dahlin, The potential costs and benefits of longterm

prefetching, Computer Communications 25(4) (2002) 367–

375. doi:10.1016/S0140-3664(01)00408-X.

[31] Y. Jiang, M. Wu, W. Shu, Web prefetching: Cost, benefits

and performance, 11
th

 World Wide Web Conference

(WWW) (2002).

[32] L. Breslau, P. Cao, L. Fan, G. Philips, S. Shenker, Web

caching and zipf-like distributions: Evidence and

implications, Proc. IEEE Infocom 1 (1999) 126–134.

doi:10.1109/INFCOM.1999.749260.

[33] C. Cunha, A. Bestavros, M. Crovella, Characteristics of

www client-based traces, Technical Report TR-95-010,

Boston University, CS Dept., Boston (1995).

[34] N. Nishikawa, T. Hosokawa, Y. Mori, K. Yoshidab,

H. Tsujia, Memory based architecture with distributed

www caching proxy, Computer Networks 30 (1–7) (1998)

205–214. doi:10.1016/S0169-7552(98)00117-2.

[35] M. Crovella, A. Bestavros, Self-similarity in World Wide

Web traffic: Evidence and possible causes, IEEE/ACM

Trans. on Networking 5(6) (1997) 835–746.

doi:10.1109/90.650143.

[36] M. Crovella, P. Barford, The network effects of

prefetching, Proc. IEEE Infocom (1998) 1232–1239

doi:10.1109/INFCOM.1998.662937.

[37] Nashaat el-Khameesy, Hossam Abdel Rahman Mohamed,

A Proposed Model for Web Proxy Caching Techniques to

Improve Computer Networks Performance, I.J.

Information Technology and Computer Science 5(11)

(2013) 42-53. doi: 10.5815/ijitcs.2013.11.05.

Authors’ Profiles

Islam Anik received his Bachelor degree in

Software Engineering in 2014 from

American International University of

Bangladesh (AIUB). In 2012, he joined

Bengal Solutions Ltd. as a software

engineer. In January 2014, he joined

dynamic software ltd. In August 2014, he

joined Next IT Ltd. as a software engineer. Currently, he is

doing Masters in Computer science at American International

University of Bangladesh (AIUB). His research interest

includes distributed system, internet of things (IoT), web of

things (WoT), big data, data science, intelligent system and

semantic web.

Akter Arifa received her Bachelor degree

in Computer Science and Software

Engineering in 2014 from American

International University of Bangladesh

(AIUB). In 2014, she joined Rupshi

Sweaters Ltd. as IT Manager. Currently, she

is doing Masters in Computer science at

American International University of Bangladesh (AIUB). Her

research interest includes distributed system, data mining, big

data, intelligent system and semantic web.

Hamid Md. Abdul received his Bachelor

of Engineering degree in Computer &

Information Engineering in 2001 from

International Islamic University Malaysia

(IIUM). In 2002, he joined as a lecturer in

the Computer Science & Engineering

department, Asian University of

Bangladesh, Dhaka. He received the Ph.D. degree from Kyung

Hee University, South

Korea in August 2009 from the Computer Engineering

department. In September 2009, he joined as a faculty member

in the department of Information & Communications

Engineering at Hankuk University of Foreign Studies (HUFS),

South Korea. In Septemer 2012, he joined Green University of

Bangladesh (GUB) as an Assistant professor and chairmen and

held that position to May 2013. He had been a faculty member

in the Department of Computer Engineering, College of

Computer Science & Engineering, Taibah University, Madinah,

KSA. Currently he holds a faculty position in the Department of

Computer Science at American International University-

Bangladesh. He is the TPC member of TNS-2011 and ICCIT-

46 HitBand: A Prefetching Model to Increase Hit Rate and Reduce Bandwidth Consumption

Copyright © 2017 MECS I.J. Information Engineering and Electronic Business, 2017, 1, 36-46

2011, and member of KSII (Korean Society for Internet

Information). His research interest includes distributed systems,

wireless sensor, mesh, ad hoc, and opportunistic networks with

particular emphasis on network security, reliability, fairness,

and quality of service (QoS) issues

How to cite this paper: Islam Anik, Akter Arifa, Hamid Md. Abdul,"HitBand: A Prefetching Model to Increase Hit

Rate and Reduce Bandwidth Consumption", International Journal of Information Engineering and Electronic

Business(IJIEEB), Vol.9, No.1, pp.36-46, 2017. DOI: 10.5815/ijieeb.2017.01.05

