
I.J. Information Engineering and Electronic Business, 2016, 5, 44-51
Published Online September 2016 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijieeb.2016.05.06

Copyright © 2016 MECS I.J. Information Engineering and Electronic Business, 2016, 5, 44-51

Proposal to Decrease Code Defects to Improve

Software Quality

Ohood A. Aljohani, Rizwan J. Qureshi
Department of Information Technology, Faculty of Computing and Information Technology, King Abdulaziz

University, Jeddah, Saudi Arabia

Email: ohoodcs@gmail.com, rmuhammd@kau.edu.sa

Abstract—Software quality is an important topic of

software development and it is always challenging to

deliver high-quality software. The major challenges, to

complete the software, are time and cost without losing

the software quality. Software quality has a significant

impact on software performance. The acceptability,

success, and failure of software are depending on its level

of quality and number of defects. Software defects are

one of the fundamental factors that can determine the

time of software delivery. In addition, defects or errors

need to be eliminated before software delivery. Software

companies spend a lot to reduce code defects. The aim is

to detect defects early with cheaper methods. This paper

proposes a code quality scanner to decrease the code

defects. The proposed solution is a combination of code

scanner and code review. Moreover, the paper presents

results using quantitative analysis to show the

effectiveness of the proposed solution. The results are

found encouraging.

Index Terms—Quality, Defects, Code Quality Scanner,

Code Review.

I. INTRODUCTION

Developing high-quality software is a very challenging

process. The challenges are, finishing the software with

low cost and under certain time without losing software

quality. Software success, acceptance, and failure are

depending on its level of quality [1].Software quality is a

very important topic for research within software

engineering field. Recently, software plays a critical role

in government, business, and institution also many other

domains. Therefore, improving software productivity and

quality are mandatory in software engineering. Software

quality has a great impact on software performance. The

quality for users is linked with performance and response

time while quality for programmer could be error free and

perfect program code [1]. Several stakeholders use

software for various purposes while they assure different

quality features depending on their customization. In

contrast, companies emphasize product quality that meets

customer satisfaction, improve business growth, and

increase company profit [2]. Therefore, quality of the

software is not only a question of how good is the

software in terms of technical aspect, but also how much

it meets the customers' requirements [3]. However during

the development of any software, there are high

probabilities to have errors in the various phases of

software development lifecycle (SDLC) [2]. Defects or

errors removal worthiness is a direct indicator of the

ability of software development process in eliminating

defects before software delivery [4]. Static analysis

techniques deal with the representation of source for

software, where the aim is to detect defects early.

Code review operation, when a programmer shows the

code to one or more programmers, is one of the most

common static analysis techniques. Code review is often

a cost effective defect finding technique because it

detects bugs in the early phase, also, it is a less expensive

tool. Code reviews are consuming time, because of that

the researchers investigated the factors influencing and

benefits of code reviews [18].

The paper is organized as follows. Section 2

summarizes the related work. Section 3 defines the

research problem. The proposed solution is presented in

section 4. Section 5 validates the proposed solution, and

section 6 concludes the paper.

II. RELATED WORK

Software quality has been a substantial topic from the

starting of software development [1]. It is discussed to

explain that quality is a critical factor for any successful

software. Nowadays, we are using a lot of software for

almost every task in our daily life. Therefore, we need

high-quality software that will satisfy the users'

expectations. Lee [1] proposed a framework to solve

customer value evaluation problem. The framework has a

combination of software quality criteria. The framework

is validated on only one software project it needs to be

tested on different software to generalize the results. Lee

et al. [2] explain a solution to validate and verify the

software quality during software development process.

The researchers use formal approaches to characterize the

essential aspects of software. They discussed several

metrics for each type of quality metrics which are in-

process quality, product quality, maintenance quality,

customer satisfaction quality, and product quality. Their

discussed solution need to be extended on more than one

software project to generalize the results.

The low-quality software is a problem that could cause

software failure and waste both time and cost [3]. Mireles

et al. [3] conduct a systematic mapping study for software

mailto:ohoodcs@gmail.com

 Proposal to Decrease Code Defects to Improve Software Quality 45

Copyright © 2016 MECS I.J. Information Engineering and Electronic Business, 2016, 5, 44-51

quality process. It is found that the main quality attributes

are usability, security, and reliability. Mireles et al. [3] do

not present the results regarding the software product

quality.

Software quality is influenced not only by the users but

also the software enterprises [4]. Measuring the quality is

the critical point to develop high-quality software. Sun [4]

explained how and when to use quality control and

measurement, also the relation among each other. Sun [4]

did not provide a specific measurement to show an

example of how to measure quality.

Software quality and risk are two concepts appear to be

coiled with each other [5]. The quality is important to

reduce the risk. There are negative effects of people

quality on software project risk probability as discussed

by Sarigiannidis et al. [5]. The researchers did not test the

validity of their results to have approved results.

To deliver high-quality software, software testing is

mandatory [6]. However, software system testing is

heavily obliged by time and budget. Lin et al. [6]

combined two software specifications and testing

methods, which are Markov chain statistical testing and

sequence software specification to get a feasible and

economical way to obtain high-quality software. The

researchers method have been tested on a chosen

application that is BlackBoard Quiz Editor.

Software quality attributes are estimated by using a

suitable metrics [7]. However, choosing the right metrics

is not always clear. Software Metric Fluctuation proposed

by Arvanitou et al. [7] would quantify the degree of the

metrics. Arvanitou et al. [7] classify the metrics as either

sensitive or stable. Arvanitou et al. [7] did not cover a

variety of metrics to examine the difference.

Recently, the maintenance cost has been raised,

researches on software quality are becoming more

substantial because having high-quality software led to

maintainable software [8]. Tekin et al. [8] proposed

visualization software quality tool based on object

oriented and they call it E-Quality, which extracts metrics

of the software quality automatically, relations of classes

from the source code then displays them on a graph

environment. The environment will efficiently refactoring

and simplifies any complexity in a software system. E-

Quality tool is applied only to java code.

Software defects are important factors that can

determine the time of software delivery [9].Focusing on

the number of defects and type of defects are a serious

aspect that affects the software quality. The majority of

software quality estimation approaches use software

defects as an attributes to evaluate software quality.

Using a clustered approach as proposed by Dhiman et al.

[9] to classify software defects, the approach analyzes

defects and its integration regarding software quality. The

result of approaches is not compared with available

approaches [9]. Singh et al. [10] discussed data mining

methodologies that have been used to construct defect

prediction model to use it for quality insurance. Singh et

al. [10] did not discuss particular data mining

methodology to understand the results. Code review is a

cost effective defect finding technique because it detects

bugs in an early phase, also it is a less expensive tool.

Bacchelli et al. [11] discussed tool-based code review and

the benefits of code reviews which are transferred team

knowledge, improve team awareness, motivate

interaction between team members, and facilitate finding

alternative solutions to problems. Bacchelli et al. [11]

made an interview and survey among diverse managers at

Microsoft. It is found that code changes are the secret of

code reviews while developers employ many tools to

meet their needs. Kononenko et al. [12] investigated code

review for a large open source project Mozilla.

Kononenko et al. [12] discussed the relation between

code reviewers’ and set of factors that may affect the

quality of review inspection. Kononenko et al. [12]

applied SZZ algorithm to find bug changes then linked it

with code review results from the tracking system. The

paper found that 54% of code changes lead to bugs. Their

paper presented that reviewers' experience, and a number

of reviewers involved, are important factors for the

quality of code review process. The code review is

significantly affecting software quality; an empirical

presentation done by McIntosh et al [13].The paper

contribution confirms that poor code review had a

negative effect on software quality. Beller et al. [14]

found that the changes types because of modern code

review for open source software are identical to those in

the industry also to academic systems, featuring identical

percentage of maintainability regarding functional issues.

Code review evaluation study is done by Bosu et al. [15]

using ReviewBoard in open source software showed that

most of the review requests got a feedback within a

day.

Improving the software quality by mapping the

relational objects of software as explained by

Muthukumar et al. [16], where the data of defects also

number defects will be gathered and categorized.

Muthukumar et al. [16] focused only on defects clusters.

The software integration is done during the software

development lifecycle [17]. It has been confirmed that

software integration and integration testing could have

more than 40% of the project cost [17]. Therefore, it is

critical to be done efficiently in order to manage the risks.

A framework was presented by Hamdan et al. [17] which

distinguishes quality features of the development process

while applying the practices of continuous integration in

the software projects development. The main focus was

on continuous integration practices of agile software

development [17].

A majority of the researchers deal with software

quality models [18]. Each model must be analyzed

before starting point. Vara et al. [18] discussed their

experience in dealing with software model quality

providing pieces of advice and their learned lessons. The

experience of Vara et al. [18] is based on requirements

model and conceptual model specification, where there

are more models to test.

Project Management Methodologies could be used to

achieve quality software [19]. PRINCE methodology has

been discussed by Xu et al. [19] to test if PRINCE is

sufficient to be used for quality. Xu et al. [19] found that

46 Proposal to Decrease Code Defects to Improve Software Quality

Copyright © 2016 MECS I.J. Information Engineering and Electronic Business, 2016, 5, 44-51

PRINCE cannot solve all software quality problems. The

the paper did not test PRINCE in all software problems to

generalize the results.

There are many metrics and measurements to examine

software quality [20]. The quality factors of ISO/IEC

9126 model are discussed [20]. Challa et al. [20] used

fuzzy approach to estimate the quality.

Table 1. Limitations of the papers comprising the literature review.

Title Limitation

Software Quality Factors and Software Quality
Metrics to Enhance Software Quality Assurance [1].

The paper test the solution on a single project, it is difficult to generalize
the results.

Software Measurement and Software Metrics in Software Quality [2]. The paper validates the solution for only one software project; it is

difficult to generalize the results.

Approaches to promoting product quality within software process
improvement initiatives: A mapping study [3].

The paper does not provide results regarding software product quality
that are addressed by software process improvement.

Knowledge for Software Quality Control and Measurement [4]. The paper does not provide a specific measurement to show an example

of how to measure quality.

Quality vs risk: An investigation of their relationship in software

development projects [5].

The paper does not test the validity of the results to have approved

results.

Quality Assurance through Rigorous Software Specification and Testing:
A Case Study [6].

The paper test only one chosen application (BlackBoard Quiz Editor), it
is difficult to generalize the results.

Software metrics fluctuation: a property for assisting the metric selection

process [7].

The paper does not cover different metrics to examine the difference.

E-Quality: A Graph Based Object Oriented

Software Quality Visualization Tool [8].

The proposed tool extracts metrics and class relation only from java

programming language.

A Clustered Approach to Analyze the Software Quality using Software

Defects [9].

The paper does not provide the result of other used approaches to

compare with.

Assuring Software Quality using Data Mining
Methodology: A Literature Study [10].

A particular data mining methodology is not discussed to understand the
results.

Enhancing Software Quality through
Systematic Object Mapping [16].

The paper focuses only the defects clusters.

A quality framework for software continuous integration [17]. The paper focus only on the continuous integration of agile software

development.

Dealing with Software Model Quality in Practice [18]. The paper experience is based on two models: requirements model and

conceptual model specification there are more models to test.

Project Management Methodologies: Are They

Sufficient To Develop Quality software [19].

The paper did not test PRINCE in all software problems to generalize

the results.

Quantification of Software Quality Parameters using Fuzzy Multi Criteria
Approach [20].

The paper did not consider more factors to quantify software quality to
check each factor.

Expectations, Outcomes, and Challenges of Modern Code Review [11]. The paper generates the results using CodeFlow tool, result

generalization is difficult.

Investigating Code Review Quality:

Do People and Participation Matter? [12].

The paper did only a quantitative investigation of what factors may

influence code review quality, difficult to generalize the results.

The Impact of Code Review Coverage and Code Review Participation on

Software Quality [13].

The case study did on particular projects, result generalization is not

sufficient.

Modern Code Reviews in Open-Source Projects: Which Problems Do

They Fix? [14]

The study did on two OSS projects, generalizes the result is not

sufficient.

Peer Code Review in Open Source Communities Using ReviewBoard

[15].

The paper used code review for comments without the ability to

change.

III. PROBLEM STATEMENT

The software companies want to develop software to

be delivered with minimum defects. The quality of the

code has a direct impact on the number of defects [18].

Code review tools have been proposed in order to reduce

code defects. Bosu et al. [20] used a code review tool.

However, simple changes in the code can be addressed by

the reviewers. The objective of this step is to save the

time of the developers. This paper attempts to examine a

solution to reduce defects number to improve the quality

of code by employing code quality scanner and code

review that provides the changeability for reviewers.

IV. THE PROPOSED SOLUTION

The bugs that found in early program development are

cheaper to fix. The software is written by human beings.

Therefore, software often has some mistakes. In order to

address this problem, a literature survey was performed to

 Proposal to Decrease Code Defects to Improve Software Quality 47

Copyright © 2016 MECS I.J. Information Engineering and Electronic Business, 2016, 5, 44-51

extract the requirements from the analysis of the concepts:

"software quality”, “software code quality”, and

"software code review". The existing software code

review offers great benefits, but it has not reached its full

potential. The proposed solution is to use code quality

scanner that has predefined rules. The developer will

upload his/her code to the proposed scanner tool then the

code will be checked and scanned against the predefined

rules. Moreover, each organization has its own code

quality rules. Therefore, programmer or manager has the

ability to add more rules that are specific to the

organization needs. As scanning finishes, an alert will be

notified to the programmers if any section of the code has

defects or mismatch the rules. The programmer needs to

check his code and edit it to match organization rules.

Then, a programmer could start the code review session.

The code review provides the structure and the

mechanisms for addressing code review tools problem.

The programmers in organization upload the finished part

of his code, each code section will be classified by

privileges, and then other company programmer reviews

it as soon as their workflow permits.

A. Start Code Quality Scanner

The programmer starts to post the finished code to be

scanned in code quality scanner. The code will be

scanned and checked against predefined rules.

B. Apply Predefined Rules

The programmer code will be scanned and checked

against predefined rules. New rules could be added by the

administrator of an organization.

C. Edit Scanned code

The programmer checks the code scanner mismatch

then he changed the code to match rules.

Fig.1. The Proposed Code Quality Scanner

D. Open a New Code Review Session

After code scanner finishes the programmer starts to

post the finished code to be reviewed in code review

tool. Reviewers will be notified to start the review session.

E. Define Code Privilege

The programmer gives his/her code specific privilege

which is public or protected.

 Public code grants the ability to code reviewers to

change in the code after the code author submits

the code for the review session. Each reviewer can

review the code and he can make changes directly

or just add their comments.

 Protected code where reviewers can review the

author code without ability to did any change in

code, they just add their comments, after that code

author will be notified about comments, code

author have the decision either to follows their

comments and updates the code or rejects change,

because some change could enhance performance

but violate software system in term of security.

 The code author accepts the reviewers’ comments

about changes and he made suggested changes in

the code. The code review process is repeated

again and again until it is approved by the

reviewers.

 The changed code should be highlighted with a

color that represents to the reviewer who has

changed it.

Fig.2. Public Code Review

Fig.3. Protected Code Review

F. Reviewers Prioritization

To change the code, reviewers need to follow some

rules where the priority is diverse among reviewers

depending on their level of experience and history of their

previous review. For example, code review tool gives

reviewer one point for each acceptance code changes

he/she made.

G. Code Review Database

After code review session termination all changes done

will be saved in the database for further modification and

48 Proposal to Decrease Code Defects to Improve Software Quality

Copyright © 2016 MECS I.J. Information Engineering and Electronic Business, 2016, 5, 44-51

to save code in case of any failure. Code saving is done

for code author account.

Fig.4. Integration of Code Scanner and Code review.

V. VALIDATION

In order to validate the proposed model, a closed-ended

survey was distributed among IT students and staff

containing 21 questions that covered many of the goals of

the proposed solution. Five goals were used for data

collection.

Goal 1 Suitability of the proposed solution for

decreasing the number of code defects.

Goal 2 The flexibility to add new rules in code

quality scanner.

Goal 3 The frequency of using code review in

companies.

Goal 4 The effect of the used solution on cost saving.

Goal 5 The effect of saving programmer time after

reviewers change feature.

The questions were answered using a 5-point Likert

scale. The respondents were 63 IT staff and students.

Google tools and Microsoft Excel were used for

statistical analysis. The results are concluded mainly

through frequency tables and bar charts.

A. Cumulative Statistical Analysis of Goal 1

The results are shown in Table 2.

Table 2. Cumulative Statistical Analysis of goal 1.

Q. No
Very

Low
Low Nominal High

Very

High

1 1 3 12 26 21

2 1 2 10 27 23

3 1 1 11 25 25

4 0 6 10 19 28

5 0 0 12 24 27

Total 3 12 55 121 124

Avg. % 1% 4% 17% 38% 39%

It is shown in Table 2 that 39% of the respondents

believed the suitability of Goal 1, and 38% of the

respondents are in favor of high. 17% of the professional

remain neutral. 4% of the software engineers are

supporting low and 1% of the participants are agreed to

very low. Fig. 5 presents the aggregate analyses of goal 1.

Fig.5. Aggregate analyses of goal 1.

B. Cumulative Statistical Analysis of Goal 2

Cumulative static analysis of goal 2 is shown in Table

3.

Table 3. Cumulative Statistical Analysis of goal 2.

Q. No
Very
Low

Low Nominal High
Very
High

1 0 4 7 25 27

2 2 4 16 21 20

3 1 5 16 25 16

4 2 3 8 23 27

Total 5 16 47 94 90

Avg. % 2% 6% 19% 37% 36%

Table 3 shows that 37% of the participants are agreed

on this goal and 36% of the professionals are strongly

agreed. Moreover, 6% of the respondents have disagreed

and 2% strongly disagree while 19% of the professionals

remain neutral. Fig. 6 displays the results of Table 3.

 Proposal to Decrease Code Defects to Improve Software Quality 49

Copyright © 2016 MECS I.J. Information Engineering and Electronic Business, 2016, 5, 44-51

Fig.6. Aggregate analyses of goal 2.

C. Cumulative Statistical Analysis of Goal 3

Cumulative analysis of goal 3 is shown in Table 4.

Table 4. Cumulative Statistical Analysis of goal 3.

Q. No
Very

Low
Low Nominal High

Very

High

1 4 5 14 22 18

2 0 2 7 33 21

3 2 1 9 19 32

4 0 4 11 26 22

Total 6 12 41 100 93

Avg. % 2% 5% 16% 40% 37%

Table 4 shows that 40% of the participants are agreed

on this goal and 37% the professionals are strongly

agreed. Moreover, 5% of the participants disagree and

2% of the software engineers strongly disagree while

16% of the participants remain neutral. Fig. 7 presents the

results of Table 4 graphically.

Fig.7. Aggregate analyses of goal 3.

Table 5. Cumulative Statistical Analysis of goal 4.

Q. No
Very

Low
Low Nominal High

Very

High

1 1 1 10 25 26

2 0 1 12 21 29

3 0 1 15 23 24

4 3 2 11 18 29

Total 4 5 48 87 108

Avg. % 2% 2% 19% 35% 43%

D. Cumulative Statistical Analysis of Goal 4

The cumulative analysis of goal 4 is shown in Table 5.

Table 5 shows that 35% of the participants are agreed

to goal 4 and 43% of the participants are strongly agreed.

2% of the participants have disagreed and 2% of the

professionals strongly disagree. 19% of the participants

remain neutral. Fig. 8 shows this graphically as follows.

Figure 8 presents the aggregate analyses of goal 4.

Fig.8. Aggregate analyses of goal 4.

E. Cumulative Statistical Analysis of Goal 5

The results of goal 5 are shown in Table 6.

Table 6. Cumulative Statistical Analysis of goal 5.

Q. No
Very
Low

Low Nominal High
Very
High

1 2 3 10 31 17

2 3 5 15 21 19

3 1 3 8 25 26

4 4 4 9 27 19

Total 10 15 42 104 81

Avg. % 4% 6% 17% 41% 32%

Table 6 shows that 41% of the participants are agreed

to goal 4 and 32% of the participants are strongly agreed.

6% of the participants disagree and 4% of the

professionals strongly disagree. 17% of the participants

remain neutral. Fig. 9 shows this graphically as follows.

Fig.9. Aggregate analyses of goal 5.

F. The Final Cumulative Evaluation of all goals

Table 7 shows that only 2% of the software engineers

report the very low effect of the proposed solution. 5% of

50 Proposal to Decrease Code Defects to Improve Software Quality

Copyright © 2016 MECS I.J. Information Engineering and Electronic Business, 2016, 5, 44-51

the professionals respond the low effect. 18% of the

respondents report the nominal effect of the proposed

solution. 38% of the professionals are highly favoring the

proposed solution. Among the software professionals,

37% of the participants are very highly favoring the

proposed solution. As such 75% support is available. Fig.

10 displays the results of Table 6.

Table 7. Cumulative Statistical Analysis of 5 goals.

All Goals
Very

Low
Low Neutral High

Very

High

Goal 1 1% 4% 17% 38% 39%

Goal 2 2% 6% 19% 37% 36%

Goal 3 2% 5% 16% 40% 37%

Goal 4 2% 2% 19% 35% 43%

Goal 5 4% 6% 17% 41% 32%

Total 11% 23% 88% 191% 187%

Avg. % 2% 5% 18% 38% 37%

Fig.10. Aggregate analyses of all goals.

VI. CONCLUSION

The software industry faces significant challenges to

achieving high quality. Even though, the software

companies invest huge resources to reduce code defects.

There are several automated tools available to reduce the

testing efforts and improve the quality of software.

However, it is important to review the code before

performing automated testing to save time and cost. This

paper presents the impact of code quality scanner with

code review to reduce the number of defects. Moreover,

the validation results show that 75% of respondents

support the proposed code quality scanner with code

review to improve and minimize the problems of code

defects. It is anticipated that the proposed tool will help

the software companies to identify the defects early

before any further consequences.

ACKNOWLEDGMENT

I am thankful to Allah for allowing me to complete this

paper. I am also grateful to my parents for supporting me.

Special regards and thanks to my supervisor, Dr. R. J.

Qureshi. He helped me to learn how to complete this

paper.

REFERENCES

[1] M. C. Lee, "Software Quality Factors and Software

Quality Metrics to Enhance Software Quality Assurance,"

British Journal of Applied Science & Technology, 2014.

[2] M. C. Lee, and T. Chang, "Software Measurement and

Software Metrics in Softwre Quality," International

Journal of Software Engineering and Its Applications, vol.

7, July, 2013.

[3] A. Mireles, Á. M. Moraga, F. García, and M.

Piattini,"Approaches to promote product quality within

software process improvemen tinitiatives: Amapping

study," The Journal of Systems and Software, vol. 103, pp.

166, May 2015.

[4] Sun, "Knowledge for Software Quality Control and

Measurement," 2011 International Conference on

Business Computing and Global Informatization,

Shanghai, pp. 468-470, 2011.

[5] L. Sarigiannidis, and P. D. Chatzoglou, "Quality vs risk:

An investigation of their relationship," International

Journal of Project Management, vol. 1073, p. 32, 2014.

[6] L. Lina, J. Hea, Y. Zhanga, and F. Songb, "Quality

Assurance through Rigorous Software Specification and,"

International Conference on Soft Computing and Software

Engineering, vol. 1877, 2015.

[7] E. M. Arvanitou, A. Ampatzoglou, and P. Avgerioua,

"Software metrics fluctuation: a property for assisting the

metric selection process," Information and Software

Technology , vol. 72, pp. 110-124, April 2016.

[8] U. Erdemir, U. Tekin, and F. Buzluca, "E-Quality: A

Graph Based Object Oriented Software Quality

Visualization Tool”, Visualizing Software for

Understanding and Analysis (VISSOFT), 2011 6th IEEE

International Workshop on, Williamsburg, pp. 1-8, 2011.

[9] P. Dhiman, M., and R. Chawla, "A Clustered Approach to

Analyze the Software Quality," 2012 Second International

Conference on Advanced Computing & Communication

Technologies, pp. 36-40, 2012.

[10] Singh, and R. Singh, "Assuring Software Quality using

Data Mining Methodology: A Literature Study,"

Information Systems and Computer Networks (ISCON),

2013 International Conference on, Mathura, pp. 108-113,

2013.

[11] Bacchelli, and C. Bird, "Expectations, Outcomes, and

Challenges Of Modern Code Review," International

Conference on Software Engineering, pp. 712-721, 2013.

[12] Kononenko, O. Baysal, L. Guerrouj, Y. Caoy, and M. W.

Godfrey, "Investigating Code Review Quality: Do People

and Participation Matter?," Software Maintenance and

Evolution (ICSME), 2015 IEEE International Conference

on, Bremen, pp. 111-120, 2015.

[13] S. McIntosh, Y. Kamei, B. Adams, and A. E. Hassan,

"The Impact of Code Review Coverage and Code Review

Participation on Software Quality," ACM, pp. 192-201,

2014.

[14] M. Beller, A. Bacchelli, A. Zaidman, and E. Juergens,

"Modern Code Reviews in Open-Source Projects: Which

Problems Do They Fix?," Proceedings of the 11th

Working Conference on Mining Software Repositories, pp.

202-211,2014.

[15] Bosu, and J. C. Carver, "Peer Code Review For Open

Source Comunities Using ReviewBoard," Proceedings of

the ACM 4th Annual Workshop on Evaluation and

Usability of Programming Languages and Tools, pp. 17-

24, 2012.

[16] R. Muthukumal, and D. Damodaran, "Enhancing Software

Quality through Systematic Object Mapping," IEEE, 2015.

 Proposal to Decrease Code Defects to Improve Software Quality 51

Copyright © 2016 MECS I.J. Information Engineering and Electronic Business, 2016, 5, 44-51

[17] S. Hamdan, and S. Alramouni, "A quality framework for

software continuous integration," International

Conference on Applied Human Factors and Ergonomics,

vol. 3, pp. 2019-2025, 2015.

[18] Vara, and H. Espinoza, "Dealing with Software Model

Quality in Practice," International Conference on Quality

Software, pp. 396-405, 2013.

[19] S. Xu, and D. Xu, "Project Management

Methodologies:Are They Sufficient To Develop Quality

Software," pp. 175-178, IEEE, 2011.

[20] S. Challa, A. Paul, Y. Dada, V. Nerella, and P.R.

Srivastava, "Quantification of Software Quality

Parameters using Fuzzy Multi Criteria Approach," IEEE,

pp. 1-6 , 2011.

Authors’ Profiles

Ohood A. Aljohani is a post-graduate student of Information

Technology in King Abdul-Aziz University. She received her

Bachelor in Information Technology form King Abdulaziz

University, Jeddah, Saudi Arabia.

Dr. Rizwan J. Qureshi received his Ph.D.

degree from National College of Business

Administration & Economics, Pakistan 2009.

He is currently working as an Associate

Professor in the Department of IT, King

Abdulaziz University, Jeddah, Saudi Arabia.

This author is the best researcher awardees

from the Department of Information

Technology, King Abdulaziz University in 2013 and 2016. He

is also honoured as the best researcher from the Department of

Computer Science, COMSATS Institute of Information

Technology, Pakistan in 2008.

How to cite this paper: Ohood A. Aljohani, Rizwan J. Qureshi,"Proposal to Decrease Code Defects to Improve

Software Quality", International Journal of Information Engineering and Electronic Business(IJIEEB), Vol.8, No.5,

pp.44-51, 2016. DOI: 10.5815/ijieeb.2016.05.06

