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Abstract—In this correspondence we present the 

application of iterative shrinkage (IS) operator to the 

DOA estimation task. In particular we focus our attention 

to Stage wise Orthogonal Matching Pursuit (StOMP) 

algorithm. We compare StOMP against MUSIC, which is 

state of the art in DOA estimation. StOMP belongs to 

compressive sensing regime where as MUSIC is 

parametric technique based upon sub-space processing.  

To best of our knowledge IS operators have not been 

analyzed for DOA estimation. The comparison is 

performed using extensive numerical simulations. 

 

Index Terms—Array processing, Direction of arrival 

estimation, Compressive sensing, Optimization, 

Parameter optimization.  
 

I.  INTRODUCTION 

Array processing uses array of sensors for sensing 

and/or spatial filtering. Arrays find extensive applications 

in defense, medicine, seismology, communication, 

oceanic studies etc. Direction of arrival estimation (DOA 

estimation) is one of the key processing tasks in arrays 

[1].  

DOA estimation concerns itself with locating peaks in 

spatial domain, corresponding to radiating sources' 

location. DOA estimation techniques can broadly be 

classified into parametric and non-parametric techniques. 

Non-parametric techniques make no assumption about 

the functional form of directional power spectrum. Beam 

scan, MVDR (Minimum variance distortion less 

response/CAPON beam former), LCMV (linearly 

constrained minimum variance) are major examples of 

non-parametric DOA estimation [2]. 

 Parametric techniques, on the hand, assume some 

function form of spatial power spectra. Parametric 

techniques usually have high resolution and more robust 

then non-parametric techniques. The benefits however 

come at the cost of computational complexity. Min-norm, 

WSF (weighted subspace fitting), MUSIC, ESPIRIT and 

ML based techniques [3].  

There has been active research in application of soft 

computing techniques to approximate the ML solution. 

ML solution is the most accurate but is computationally 

intractable. Hence there has been an active research in 

approximating the solution around local maxima with 

accurate initialization techniques. Ant colony 

optimization, Genetic algorithms and other techniques 

have been used for DOA estimation [4]. 

Recently there has been an explosion of interest in 

compressive sensing paradigm. New algorithms surface 

almost daily for recovering signals using essentially 

information rate sampling followed by sparsity promoting 

based processing [5]. 

Compressive sensing techniques rely on the 

dimensionality reduction of the system in alternate basis. 

For example, an image usually has few significant 

coefficients in its wavelet transform. This is the basis of 

jpeg2000 standard [6]. CS techniques directly uses the 

over-complete basis which can sparsely represent the 

system. Once such a setup is in place we call upon the 

methods to recover the solution using sparsity promoting 

norms, which restricts solution of the otherwise over-

determined system [7].  

Generally speaking CS based techniques can be 

divided into norm approximation, greedy methods, 

iterative shrinkage operators and Bayesian techniques. 

Amongst these, first three techniques are due to the fact 

that norm preferred for measuring solution sparsity, the lo 

norm based solution is NP hard problem [8].  

In norm approximation technique lo norm is replaced 

by lp norm with p<=1. With p=1 the optimization 

problem is convex and easily amenable to variety of 

standard solvers. Basis Pursuit is one of the popular 

example of l1 norm based solution . solution based upon 

lp norms with p<1 are investigated in [9] .  

Greedy methods approximates solution rather than 

problem statement. The greedy methods update solution 

set one basis vector at time until the solution set 

approximate the solution. OMP is a popular example of 

this class of techniques [10]. 

Iterative shrinkage operators are similar to greedy 

methods. Instead of adding a single basis vector at each 

iteration IS operator uses principle of shrinkage to add 

multiple solutions to the set at each iteration. StOMP is a 

popular algorithm in his class [11]. 

Bayesian techniques in CS employ priors that promote 

sparsity. Gaussian prior is a popular choice. GSM priors 

have also been used in [12]. There is tremendous variety 

of techniques in BCS with different priors, approximation 

techniques and solution set construction techniques. 

RVM is a popular choice in BCS techniques[13]. 

In this technical correspondence we report application 

of one such compressive sensing paradigm, commonly 

known as iterative shrinkage operator. A particular 
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algorithm belonging to this general class, the StOMP is 

employed for application to DOA estimation. Results are 

compared to MUSIC, which is the state of the art in DOA 

estimation [3]. 

Application of CS techniques to DOA estimation is an 

active research area. In [14] authors have applied l1 

optimization with custom interior point solver. In [15,16] 

Bayesian compressive sensing is applied to the DOA 

estimation. In [12] GSM priors are used in Bayesian 

Compressive settings, in [15] RVM is used for DOA 

estimation, [16] has used MSBL and TMSBL for DOA 

estimation. 

All these applications are empirical studies. The CS 

regime employs sensing matrices with particular structure 

[1]. These matrices can be analytically analyzed to give 

some measure of Restricted Isometry (RIP) constant [17]. 

This, in turns gives bounds on recovery performance of 

the particular CS algorithm. 

DOA estimation employs spatially discritised array 

steering vector as sensing matrix [18]. This particular 

matrix has not been amenable to analytical measures [19]. 

This warrants the empirical study of variety of CS 

algorithms to the DOA estimation problem. Under such 

assumptions, when sensing matrix is not of standard 

structure, performance of particular algorithm cannot be 

gauged. This is the reason for such active research in this 

particular area.    

Iterative Shrinkage operators are particular instance of 

CS algorithms. The IS operators are characterized by 

their high speed and computational efficiency. In large 

problem setting, like medical imaging, such 

characteristics are particularly useful. This is the 

particular setting that has been used for application of IS 

operators [20]. 

A particular instance of IS operator is StOMP (Stage 

wise Orthogonal Matching Pursuit) have been employed 

to find solution of sparse problems. However this has 

been attempted for large settings with limited scenarios, 

dictionaries [20]. This lack of analysis has led to this 

research. DOA estimation employs deterministic 

dictionary that has coherence. This warrants analysis of 

IS operators on this scenario. 

MUSIC is a parametric technique that uses concept of 

subspaces. It assumes that a signal space is row space of 

the steering matrix whereas noise lies in the null space or 

column space of the array steering matrix. The null space 

and row space are orthogonal complement for a full rank 

matrix [21]. 

MUSIC uses orthognality of noise and signal subspace 

to locate peaks in spatial spectrum. It computes numerical 

inverse of the noise subspace. Orthognality leads to 

nulling of noise subspace at the signal location which 

gives a sharp peak at that location. Under certain 

conditions, it's an ML estimate of the actual spatial 

spectrum [22]. 

This paper is organized as follows. Section I gives 

introduction. In section II we discuss the data model. In 

section III we present details of MUSIC and StOMP 

algorithms. Section IV details the simulation setup. In 

section V we give simulation results. Section VI 

concludes the paper and proposes future direction for the 

research.  

 

II.  DATA MODEL 

In array processing multiple sensors receive time 

delayed copy of the same signal. It is the phase difference 

induced by the time delay that enables array to fix the 

direction of incoming source.  

If we have signals from multiple sources then these 

signals can be represented as a column vector. The signal 

received by each sensor is phase shifted version of each 

other. The phase shifting is mathematically represented as 

multiplication by complex exponential whose exponent is 

a nonlinear function of signal bearing, inter element 

spacing, distance of the sensor from phase center of array 

and wavelength of the signal. 

This weighting is done for each sensor and each source. 

For single source and L number of sensors we have 
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Same procedure is repeated for all the other sources 

and array output is taken to be the sum of outputs due to 

all signals. 

Mathematically this operation can be conveniently 

summed up in vector-matrix notation and is given as.   

 

 y Ax n
                                

(1) 

 

Where; 

 

y  = Output of the array. 

A = Array steering matrix of dimensions  M L  , 

made up of array steering vectors in directions of 

sources i.e. 
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 ia  = Steering vector corresponding to i
th

 source. 

L   =Number of sources. 

 M = Number of sensors. 

x牋= Source signal vector. 

n  = noise. 

 

Direction of arrival estimation is generally concerned 

with estimation of A  matrix.  

In this paper we assume a linear array with isotropic 

elements. Inter-element spacing is constant. Narrowband 

model is assumed and spacing value is fixed at λ/2 

Mostly, techniques estimate the whole spatial spectrum. 

From this spectrum the peaks give the direction of 

sources. This is usually done by steering the beam in all 

directions, noting the received energy. Thus the data 

model for most of the techniques would use the received 
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signal to form data covariance matrix and then use some 

form of relation between data covariance matrix and 

array steering vector in each direction [23]. 

Compressive sensing, on the other hand implicitly 

defines matrix to be composed of sampling of all possible 

steering vectors. Thus, for compressive sensing  

 

 
 

Where assumptions made earlier about array are 

employed. 

Spatial spectrum is a continuous function. 

Discretisation of spatial domain lead to grid errors [24]. 

Grid errors are due to the fact that actual source lies in 

between two grid points rather than on a particular point. 

In [14] grid error is mitigated using multi-resolution 

refinement whereas in [16] the algorithm itself is robust 

against grid errors. Further in reference [25] discretisation 

errors are analytically formulated. Nevertheless it is an 

active research area and grid errors are part and parcel of 

the CS regime. 

Scanning is performed only in azimuth with array bore 

sight is at 0
o
. With A?extended to include all possible 

directions, the signal vector is also extended with zeros 

where no signal exist; hence, 
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This gives us following data model for compressive 

sensing [26], 
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(2) 

 

In next section, when we present details about the 

algorithms, we would see that this difference in data 

model is one of the primary differences in compressive 

sensing and traditional techniques. 

 

III.  THE ALGORITHMS 

In this section we give brief description about 

algorithms 

A. MUSIC (Multiple Signal Classification) Algorithm 

MUSIC algorithm exploits the geometrical description 

inherent in Pisaranko’s signal decomposition. In harmonic 

decomposition, the signal can be thought of as a 

component in multi-dimensional space whose bases are 

composed of complex exponentials. These bases are Eigen 

vectors of covariance matrix of the data which is to be 

decomposed. 

Harmonic decomposition of a signal with noise, hence 

has a particular structure.  Eigen values corresponding to 

noise form an orthogonal subspace to that of signal 

subspace. In this section MUSIC algorithm is derived. 

Consider the signal model given by (1) 
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For uncorrelated signals we define data covariance 

vector as; 
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Where, 
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Structure of array steering matrix  A  and data 

covariance matrix B   dictates that there must be L  

Eigen values corresponding to sources. While remaining 

M L  Eigen values correspond to noise ( M L  is 

implied). Based on this premise MUSIC spectrum is given 

as, 
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Where; 

 

iq = i
th
 Eigen vector associated with noise subspace. 

nQ = Matrix composed of .iq   

 

Here orthogonality of signal and noise subspace has 

been exploited. Whenever there is signal present the 

corresponding steering vector is orthogonal to and 

denominator becomes zero giving a sharp peak.  

nQ is made of  M L  smallest eigenvectors of R . 

This derivation is based on [22]. 
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B. StOMP (Stage Wise Ortogonal Matching Pursuit) 

Algorithm 

StOMP is a CS algorithm that belongs to iterative 

shrinkage type of operators. Such class of algorithms 

typically adds multiple bases to the solution set per 

iteration. The decision as to which bases should be added 

is done via shrinkage operator.  

Characteristics of shrinkage operator in essence define 

the characteristics of a particular algorithm. In StOMP 

multiple access interference cancellation technique of 

wireless communication and RADAR is carried over to 

IS operator. 

Shrinkage operator operates by defining a threshold 

and then selecting all bases values whose similarity index 

exceeds the selected threshold. In StOMP threshold can 

be computed by either considering false alarms or missed 

detection rate. Details of the procedure follow in this 

section.  

Consider data model given in (2). 
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Such a model is amenable to sparsity promoting 

optimizations, generally given as; 

 

          (5) 

 

Optimization problem posed in (5) is combinatorial in 

nature and as such is intractable. Various techniques exist 

to solve the optimization e.g. [27]. Amongst these, greedy 

methods have found widespread use [5]. Iterative 

shrinkage (IS) operators belong to such greedy methods.  

IS techniques recursively estimate the solution by 

computing resemblance of residual with over complete 

dictionary/basis, adding the resemblance to the solution 

set, reconstructing the current solution using this set and 

estimating the residual. This procedure is iteratively 

applied until number of iterations or the error in 

reconstruction reaches threshold. Fig. 1 explains this 

iteration. 
 

 

Fig.1. General principle of Iterative Shrinkage Algorithm 

StOMP computes resemblance using inner product of 

residual vector with the dictionary/basis matrix. 

Computed coefficients are then thresholded using results 

from detection theory. Least squares reconstruction is the 

performed using updated support set. Initialization and 

other details are given in table 1. Details of StOMP are 

given in Fig. 2 [20]. 

Computation of threshold lies at the heart of any IS 

operator based CS technique. In StOMP threshold is 

computed as k kt  . k is given as 
2

/k kr m   

whereas kt  is given as 2 3kt   .  There value of kt is 

empirically adjusted to achieve desirable tradeoff 

between false discovery and missed discovery. In [20] 

authors have given detail procedure and analysis about 

threshold selection. 

Table 1. Initialization and parameter settings of StOMP 

Task: Approximate the solution of 

 
 

Parameters:  We are given sensing matrix A, the vector b and 

the error threshold ε0  

Initialization: Program counter k=0, initial solution x0 = 0, 
initial residue r0= b - A x0=b 

And initialize solution support S0 = Support{ x0}=   

 

 
(a) 

 
(b) 

Fig.2. (a) Block Diagram of StOMP, (b) Main loop of StOMP

         {  }                 ( )     

Main Loop: 

Sweep: Compute the correlation coefficients using     
  . 

Compute Threshold: Compute threshold, λ, either using 

Constant False Alarm Rate or Constant False Discovery Rate 
technique. 

Update Support: Select all the columns   ofA for which 

  (  )     and update 

Update Provisional Solution: Compute xk using Moore-

Penrose pseudo inverse of S; 

       (    )                      . 

Update Sensing Matrix for Next Iteration: Compute  
     -  

Stopping Rule: Compute       –        If         or if 

   , stop, otherwise       and continue 

Output:   after   iterations. 
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IV.  SIMULATION SETUP 

In this study 20 element array is used. Isotropic 

radiators are assumed. Narrow band assumption is 

employed. Inter-element spacing of lambda/2 is used.  

Another important aspect of simulation is certain subtle 

differences in both algorithms. These are summarized in 

table 2. 

Table 2. StOMP vs. MUSIC 

Property MUSIC StOMP 

Correlated 

Sources 

Doesn't 
work/reduced 

aperture 

No issue 

Number of 

Sources 
Must be known 

Doesn't need the 

information 

Thresholding NA 
Computation of 

threshold parameter 

Spectrum searching 
for peaks 

Yes No 

Spectrum Continuous Discrete 

 

Based upon these properties it is somewhat difficult to 

compare these two algorithms. We would, hence, employ 

various scenarios for comparison. These are reported in 

results section.   

Error computation is based upon RMSE given by [10]; 
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In CS techniques one usually obtains more basis than 

actually needed. This calls for additional thresholding. 

Energy based thresholding is applied in this setup. Details 

are outlined in Fig. 3.  

 

 

Fig.3. Energy Thresholding 

ζ=96 is used in this simulation setup. 

 

V.  RESULTS 

In first simulation we would randomly generate 2 

sources and vary SNR from -5 to 20 dB. We have 

simulated MUSIC with two variations. In first setup we 

gave number of sources to MUSIC algorithm, whereas in 

second we supplied MUSIC with same information that 

StOMP uses; i.e. we give MUSIC 96% of total sources 

that can be detected. For 20 element array it works out to 

be 18 sources. An average of 1000 runs was reported in 

graphs. 

 

 

Fig.4. RMSE vs. SNR , 2 sources MUSIC doesn't know sources number 

It can be seen that RMSE for MUSIC is much greater 

than StOMP. Also as SNR increases the error for StOMP 

decreases whereas it remains almost the same for MUSIC.  

In next simulation, reported by Fig. 5, MUSIC is 

furnished with the knowledge of number of sources. 

Other parameters remain same. Here we can see that 

performance of MUSIC improves with SNR. StOMP still 

performs better than MUSIC. 

Sort the sparse solution in descending order 

Select η coefficients which contain ζ% of solution 

answer 

Set the remaining coefficients to zero 

Sort the sparse solution in descending order 
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Fig.5. RMSE vs. SNR , 2 sources MUSIC knows sources number 

Next algorithms' performance is gauged for greater 

number of sources. The number of sources is increased to 

ten Again two variations are simulated. In first, reported 

by Fig. 6, MUSIC is not supplied with correct knowledge 

of number of sources and in second, reported by Fig. 7, 

MUSIC knows number of sources 

 

 

Fig.6. RMSE vs. SNR , 10 sources MUSIC doesn't know sources 
number 

It can be seen that increasing number of sources 

increases performance of MUSIC degrades a little bit. 

Another interesting point is improvement of StOMP 

performance in the same case. This is because number of 

false discoveries decreases as actual number of sources 

increases. 

In Fig. 7 it is observed that MUSIC performance 

improves as SNR increases. This is similar to the earlier 

case of 2 sources.  

In both scenarios of Fig. 6 and 7 StOMP outperforms 

MUSIC. It also remains insensitive to the knowledge of 

source numbers. RMSE improves with increase in SNR 

for StOMP in all cases.  

We have not simulated the coherent source case as 

structure of MUSIC breaks down and leads to unstable 

results.  

 

 

Fig.7. RMSE vs. SNR , 10 sources MUSIC  knows sources number 

 In next simulation we analyze the effect of source 

separation on RMSE for different SNR levels and 

sources' numbers. Both scenarios, known and unknown 

sources' number for MUSIC are simulated and reported. 

In first case 2 sources with random location are 

considered. SNR is kept at 2dB. The separation is varied 

from 5 degrees to 25 degrees in step of 5 degrees. For 

each reported point is an average of 1000 simulation runs. 

The result is reported in Fig. 8. In this case MUSIC 

doesn't have knowledge of source number. 

 

 

Fig.8. RMSE vs. Source separation 2 sources, 2dB SNR, Source number 

unknown to MUSIC 

The similar scenario in which MUSIC has knowledge 

of number of sources is reported in Fig. 9. 

Again there is slight performance degradation for 

MUSIC for unknown source number case. However 

overall the reported graphs are straighter indicating the 

super resolution capability of both algorithms. 
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StOMP still outperforms MUSIC in both scenarios. The 

performance of StOMP again is not dependent on 

knowledge of source number. Slight oscillation in RMSE 

for StOMP is due to statistical nature of the algorithm and 

it hints at imperfect dictionary structure. This is due to 

symmetrical coherence of bases of steering vector 

dictionary used in defining the CS setup earlier. Detail 

proofs of such artifacts are important future research 

directions. 

 

 

Fig.9. RMSE vs. Source separation 2 sources, 2dB SNR, Source 

number known to MUSIC 

Next simulations are performed with similar 

parameters as that of Fig. 8 and 9 but SNR is now 

increased to 20dB. 

 

 

Fig.10. RMSE vs. Source separation 2 sources, 20dB SNR, Source 

number unknown to MUSIC 

In both Fig. 10 and 11 MUSIC performance improves 

a little bit when source number is known. StOMP 

performance is better at both levels of SNR. Also note 

that SNR improvement does not affect MUSIC whereas it 

does affect performance of StOMP which improves a 

higher SNR. 

 

 

Fig.11. RMSE vs. Source separation 2 sources, 20dB SNR, Source 
number known to MUSIC 

Similar scenarios are reported in Fig. 12 and 15 with 

number of sources increased to 8. 

 

 

Fig.12. RMSE vs. Source separation 8 sources, 2dB SNR, Source 
number unknown to MUSIC 

 

Fig.13. RMSE vs. Source separation 8 sources, 2dB SNR, Source 
number known to MUSIC
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Fig.14. RMSE vs. Source separation 8 sources, 20dB SNR, Source 
number unknown to MUSIC 

 

Fig.15. RMSE vs. Source separation 8 sources, 20dB SNR, Source 
number known to MUSIC 

The results reported in Fig. 12 and 15 are quiet similar 

to the 2 sources case. However the symmetry is more 

profound now for StOMP. The separation is limited to 20 

degrees as it covers the whole spatial extent available. 

The last case of 25 degree separation could not be 

simulated but one can extrapolate keeping in mind the 

symmetry hinted at by 2 sources case. 

Finally, effect of number of sensors on DOA 

estimation performance is reported in Fig. 16 and 19. In 

these figures we have tested two cases each of low 

number of sources at low SNR and high number of 

sources at high SNR. Respective scenarios are reported in 

figures' caption. 

In the cases of Fig. 16 and 17 it can be seen that 

performance of StOMP algorithm degrades when number 

of sensors are increased which effectively increases the 

aperture of the array. This behavior is due to the greedy 

nature of StOMP algorithm. When array aperture 

increases so does the total number of bases in the spatial 

sensing dictionary. This increase in number tends to 

"confuse" StOMP due to correlated nature of basis. As 

number of sources is low so chances of selecting a basis 

near the correct one increases due to larger number of 

free bases available. 

 

 

Fig.16. RMSE vs. Number of sensors in array.2 dB, 2 sources. Number 
of sources unknown to MUSIC 

 

Fig.17. RMSE vs. Number of sensors in array.2 dB, 2 sources. Number 
of sources unknown to MUSIC 

 

Fig.18. RMSE vs. Number of sensors in array.20 dB, 8 sources. Number 
of sources unknown to MUSIC
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Fig.19. RMSE vs. Number of sensors in array.20 dB, 8 sources. Number 
of sources known to MUSIC 

In Fig. 18 and 19 it is observed that when sensor 

number is equal to number of sources performance of 

StOMP degrades. This is because the sparsity assumption 

no longer holds. When sensor number are relatively 

larger in proportion to that of sources number the 

situation improves. 

 

VI.  CONCLUSION 

The paper presented application of iterative shrinkage 

operator to the problem of DOA estimation. This 

application is benchmarked against state of the art 

MUSIC algorithm. 

It is found that StOMP algorithm performs superior in 

statistical analysis. It has better RMSE for DOA 

estimation, better resolution of sources and performs 

comparatively for lesser number of sources.  

It is found that MUSIC needs to know the source 

number and correlated sources can't be handled by 

MUSIC without reduction in aperture.  StOMP not 

perform superiorly but it is has also none of the 

restriction MUSIC has. 

There is still need to rigorously analyze StOMP for 

system performance. We need to establish sparsity 

bounds, recovery probability and particularly need to 

establish some bound for spatial sensing dictionary. 

These being the future directions to extend the research 

presented in this paper. 
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