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Abstract—Design of the software system plays a crucial 

role in the effective and efficient maintenance of the 

software system. In the absence of original design 

structure it might be required to re-identify the design by 

using the source code of the concerned software. 

Software clustering is one of the powerful techniques 

which could be used to cluster large software systems 

into smaller manageable subsystems containing modules 

of similar features. This paper examines the use of novel 

evolutionary imperialist competitive algorithms, genetic 

algorithms and their combinations for software clustering. 

Apparently, recursive application of these algorithms 

result in the best performance in terms of quality of 

clusters, number of epochs required for convergence and 

standard deviation obtained by repeated application of 

these algorithms. 

 

Index Terms—Genetic algorithm, Imperialist 

competitive algorithm, Module dependency graph, 

Reverse engineering Software clustering, Software 

maintenance. 

 

I.  INTRODUCTION 

Maintenance is the largest and most expensive phase of 

the software development lifecycle [1]. During this phase, 

the software system undergoes continuous change and is 

enhanced for a number of reasons. It is generally 

accompanied by the turnover of the software engineers 

involved in its development. It ultimately leads to the 

decay of the original structure of the system [2]. So, for 

the effective and efficient maintenance of the software 

system, it becomes important to re-identify the subsystem 

boundaries. It might be a difficult task, especially in the 

absence of original design documents of the software 

system concerned [3]. If the source code of the software 

system is the only means available [4], then in order to 

re-identify the design of the software system, the required 

Module Dependency Graph (MDG) is built from this 

source code. Module boundaries in MDG could be 

defined by grouping sets of related methods, macros 

attributes and variables into source code files or classes 

[5]. The relations between the modules could be obtained 

by extracting the module-level relations from the source 

code. In a MDG, modules are represented as nodes and 

the relationships as the edges between these nodes. 

Several techniques have been developed to re-identify 

the design structure of legacy software systems [6]. 

Software clustering is one such technique that is aimed at 

categorizing large software systems into smaller 

manageable subsystems containing modules of similar 

features. These techniques attempt to identify clusters by 

analyzing relationships among the modules which could 

be represented in the form of MDG [7]. The problem of 

finding the best clustering for a given set of modules is a 

NP hard search problem. So, we may use search-based 

software engineering techniques to sort out this problem. 

In this paper, we present a novel clustering-based 

approach to partition legacy software systems. A recently 

introduced evolutionary optimization strategy, Imperialist 

Competitive Algorithm (ICA) [8], along with its 

combination with genetic algorithm (GA) is used to re-

modularize the software into more manageable clusters to 

identify the architecture of the system concerned. ICA is 

a new strategy that is motivated by social and political 

global search strategies that has recently been found 

effective in dealing with different optimization tasks [9]. 

These evolutionary optimization strategies have shown 

great performance in both convergence rate and better 

global optima achievement. In this paper, we compare the 

quality of the software modularization architecture 

obtained by using this technique with that of the existing 

GA-based technique. By using t-test, we compare 

software clustering on the basis of these techniques with 

that of existing GA-based clustering tools. 

The rest of the paper is organized as follows. In 

Section II, we present related work done in the field of 

software clustering. In Section III, we present a brief 

introduction to the problem of software modularization. 

Section IV and VII deals with ICA-GA and Recursive 

ICA-GA algorithms (R-ICA-GA) respectively. Quality 

prediction function TurboMQ and similarity 

measurement techniques [10-12] to compare the quality 

of software clustering. In Section IX, we discuss 

experimental results in a few benchmark un-weighted 

software systems. Section X is the conclusion and future 

work in the field is presented. 

 

II.  RELATED WORK 

The maintainability of a software system becomes 

efficient and effective if the software architecture is well 

documented. Unfortunately, this kind of documentation 

may be outdated if software engineers do not consistently 

maintain it with the changes made [13]. Further, quality 

of software architectures plays a major role in the success 
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of software thus developed. [14] 

In this context, various reverse engineering tools are 

found to be successful in retrieving the architecture of 

software system [15-16].The majority of the reverse 

engineering tools proposed in literature are based on 

clustering algorithms [17]. 

One such popular software clustering tool is ACDC 

[18]. This is a pattern-based software clustering technique 

that recovers subsystems using the incremental clustering 

technique. In this technique, a structure is created on the 

basis of patterns between subsystems and each newly 

introduced resource is placed in the subsystem which 

seems most appropriate. 

Another popular tool, Bunch [19], attempts to find a 

decomposition that optimizes a quality measure called 

TurboMQ which is based on high cohesion and low 

coupling. It is a popular tool based on search-based 

techniques like hill climbing and GA etc. In this paper, 

we compare results obtained by our approach with that of 

this tool. 

Harman et al. [16] modified GA approach 

implemented in BUNCH by proposing a novel encoding 

and crossover operator. This technique modified existing 

way of using GA by allowing only one representation per 

modularization. This new crossover operator outperforms 

the traditional one, but it gets trapped at local optima very 

often. 

In a recent work [20]; the authors used cooperative 

clustering based on MQ for software Clustering. It has 

been observed that this approach leads to degraded 

performance with increase in size of the problem. Particle 

Swarm Optimization (PSO) algorithm has also been used 

for the cause of software clustering [21] using MQ as 

objective for optimization. 

In this work use of Imperialistic Competition 

Algorithm (ICA) and its hybrids have been investigated 

for the cause of software modularization. ICA has been 

used for synchronization of chaotic systems based on an 

intelligent controller which based on brain emotional 

learning (BELBIC) [22]. 

 

III.  PROBLEM STATEMENT 

As mentioned above, optimization techniques have 

been applied to several software engineering activities 

including maintenance. In this paper, we use the recursive 

combination of evolutionary algorithms, ICA and GA (R-

ICA-GA) [23], and compare their performances to the 

well-known evolutionary algorithm GA [24]. It is 

observed that the recursive combination of ICA and GA 

leads us to find the best modularization of the software 

that is found to be much more similar to the original 

design documentation; hence, it is found to be more 

effective. 

The goal of our approach is to partition a MDG of the 

source-level entities and relations into a set of clusters, 

such as clusters that represent partitioned subsystems 

where highly-interdependent modules (nodes) are 

grouped in the same subsystems (clusters). The MDG we 

are using in this paper has been widely used by 

researchers [11, 25], therefore it becomes easy to 

compare our approach to that of other studies of meta-

heuristic search algorithms. Table 1 shows the list of 

software systems whose MDGs are used in this paper 

[26]. The original design structure (as obtained from its 

documentation) of one of these software systems, called 

Mini-Tunis, is shown in Fig. 1. 

 

 

Fig.1. Structure of Mini-Tunis as described in original design specification 
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IV.  IMPERIALIST COMPETITIVE ALGORITHM 

This algorithm is used for optimization and is inspired 

by the imperialistic competition [8]. It begins with an 

initial population. Population individuals (called country) 

are of two types: colonies and imperialists. Together they 

form empires. Imperialistic competition among these 

empires is the basis of the evolution in this algorithm. 

This algorithm uses the assimilation policy. Based on 

this policy, the imperialists try to improve the economy, 

culture and political situation of their colonies (also 

called their empire). 

Table 1. Description of software systems to be used 

Software 

System 

Modules 

in MDG 

Edges in 

MDG 
System Description 

Rcs 29 163 
Open source version 

control tool 

Mini-Tunis 20 57 
A simple operating 
system 

Ispell 24 103 
An open source spell 
checker 

Boxer 18 29 A drawing tool 

Bison 37 179 Parser generator 

Grappa 74 112 
Graph visualization 
and drawing tool 

 

The power of an empire depends on the power of its 

imperialists and its colonies. The imperialists that are 

weaker lose their colonies and join a more powerful 

empire for greater support. In the end, the weak empires 

collapse and only one powerful empire is left. This final 

empire is the result of optimization. 

The main steps of ICA are summarized in the 

flowchart shown in Fig. 2. 

A.  Creation of initial empires 

The initial population of ICA is created randomly. 

Each member of this population is a vector of random 

numbers which is called a country. The cost of objective 

function (also called its fitness value in GA) is calculated 

for each of these countries and is preferred to be a 

minimum. The colonies are required to be proportionally 

divided among imperialists. Imperialists with a lot of 

power will be associated with a large number of countries. 

With respect to software clustering, let us see how we 

define a country. Each node in the MDG has been 

assigned a unique numerical identifier. These identifiers 

define the position of the node in the encoded string. The 

encoded string defines the cluster that each node has been 

assigned to. So, if we have a graph with n number of 

nodes, then a country is defined as s1,s2,....sn where each 

si is the label of the module or cluster to which the node 

has been assigned. 

The job of ICA is to find the optimal solution to the 

problem; the solution with the least cost value. 

TurboMQ is a function (Mitchell and Mancoridis, 2002) 

that is found to be quite efficient and effective for 

measuring the cost of each country and, hence, the quality 

of software clustering. In this function, interconnectivity 

and intra-connectivity are measured independently. 

 

Fig.2. Flowchart of Imperialist Competitive Algorithm 

Intra-connectivity (cohesion) 

Intra-connectivity (A) measures the degree of 

connectivity between components that are grouped in the 

same cluster. A higher value of A indicates good 

partitioning whereas a lower value of A indicates low 

degree of intra-connectivity, and hence, poor subsystem 

partitioning. Therefore, intra-connectivity for cluster i 

could be calculated as Eq. (1). 

 

2
A =μ /N

i i i
N :Number of components

i
μ :Intra-edge depnendencies

i

                  (1) 

 

Inter-connectivity (coupling) 

Inter-connectivity (E) measures the degree of 

connectivity between two distinct clusters. The larger the 

number of interdependencies means the larger the 

difficulty in maintenance. This is because changes to a 
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module may affect many other parts of the system due to 

the subsystem relationships. Inter-connectivity Eij 

between clusters i and j is mentioned in Eq. (2). 

 

0 if i=j

(2 ) if i j

: Number of components in module i

: Number of components in module j

Eij

E N Nij ij i j

Ni
N j





 
             (2) 

 

ɛij: Inter edge dependencies 

0 ≤ Eij ≤ 1 

Eij is 0 when there are no module-level dependencies 

between module i and module j. 

Eij is 1 when each module in subsystem i depends on all 

of the modules in subsystem j and vice-versa. 

 

The Turbo MQ measurement for an MDG partitioned 

into k clusters is calculated by summing the Cluster 

Factor (CF) for each cluster. 

 

0 if μ 0

/ 2 ( ) otherwise
1,

1

CFi i k
CFi i i ij ji

j i jk
TurboMQ CFi

i

   

 

  
 

 


     (3) 

 

As we need a system with maximum cohesion and 

minimum coupling, the cost function TurboMQ should 

have maximum value. It means the higher the value of 

TurboMQ, the better the quality of the partition. On the 

other hand, ICA and GA works on the principal of cost 

minimization. This means it selects the partition with the 

minimum value of objective function. Therefore, in order 

to use TurboMQ (maximization function) as objective 

function in ICA and GA (minimization-based), we use 

negation of TurboMQ (-TurboMQ) as cost minimization 

function. This means if ICA or GA selects partition with 

minimum value of –TurboMQ, it is actually selecting a 

partition with the highest value of TurboMQ i.e. the 

clustering of best quality. 

B.  Assimilation: movement of colonies toward the 

imperialist 

In ICA, the assimilation process is modeled by moving 

all of the colonies toward the imperialist along different 

optimization axis. Fig. 3 shows this movement. 

Continuation of assimilation will cause all of the colonies 

to be fully assimilated into the imperialist. In this figure, 

x is a random variable with uniform distribution. The 

value of x lies in the range as shown in equation  

 

~ (0, )x U Xd  

 

where β (also called AssimilationCoefficient) is a number 

greater than one, and d is the distance between the colony 

and the imperialist state. β >1 causes the colonies to get 

closer to the imperialist state from both sides. The most 

appropriate value for β is found to be 1.5. 

 

Fig.3. Moving colonies toward their relevant Imperialist 

Assimilating the colonies by the imperialist states does 

not result in direct movement of the colonies toward the 

imperialist. So a random amount of deviation θ is added 

to the direction of movement to increase the ability to 

search more area around the imperialist (as shown in Fig. 

3). In this figure, θ is a parameter with uniform (or any 

proper) distribution as shown in equation below 

 

~ ( , )U    

 

where γ (also called AssimilationAngleCoefficient) is a 

parameter that adjusts the deviation from the original 

direction. 

It is found that for the software systems under 

consideration, the values of 3π/4 (Rad) for γ results in 

good convergence of countries to the global minimum. 

C.  Exchanging positions of the imperialist and a  colony 

While moving toward the imperialist, a colony might 

reach a position with cost lower than the imperialist. In 

this case, the imperialist and the colony change their 

positions. The algorithm then continues with the 

imperialist in the new position. Total power of an empire 

can be calculated as shown in equation 8. 

 

Cos ( ) Cos ( _ _ )TC t imperialist t colonies of empiren n n   

 

where TCn is total cost of the nth empire and ζ is a 

positive small number. 

Value of ζ influences the total power of the empire. If 

it is a small value then the total power is determined by 

just the imperialist, and increasing it will increase the role 

of the colonies in determining the total power of an 

empire. The value of 0.05 for ζ has shown good results in 

most of the software systems under consideration.  

D.  Imperialistic competition 

It is a main part of ICA and is expected to cause 

colonies to converge at global minimum cost. All empires 

try to take the possession of colonies of other empires. 

The weaker empires start combining with powerful 

empires. 

The process of selecting an empire is similar to the 

roulette wheel approach for selecting parents in GA. But 
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this method of selection is much faster than the roulette 

wheel because cumulative distribution function is not 

required to be calculated. This is the main reason for 

better behavior of ICA. As a result, the execution speed 

of the algorithm increases, leading to earlier convergence. 

More information and its Matlab code are available at 

http://icasite-en.blogspot.in/. The re-modularized design 

structure obtained automatically after the application of 

ICA is shown in Fig. 4. 

 

V.  GENETIC ALGORITHM 

GA is created on the basis of Darwin’s theory of 

evolution. For a specific problem, it randomly defines an 

initial population of individuals called chromosomes that 

represent a part of the solution space of the problem. Next, 

on the basis of the value of fitness value (objective 

function), the individuals are selected in a competitive 

manner. The genetic search operators such as selection, 

mutation and crossover are then applied one after another 

to obtain a new generation of chromosomes in which the 

expected quality over all the chromosomes will be better 

than that of the previous generation. This process is 

repeated until the termination criterion is met, and the 

best chromosome of the last generation is reported as the 

final solution [27]. A step by step procedure for the same 

is shown in Fig. 5. 

 

 

Fig.4. Structure of Mini-Tunis as described by ICA 

 

 

Fig.5. Flowchart for GA 

 

VI.  ICA-GA 

In this technique, ICA is used to optimize the cost 

function and identify the optimum software clusters. The 

resulting software clusters obtained are used as the initial 

population of GA. The flowchart for the same is shown in 

Fig. 6. Flowchart for GA is shown in Fig. 5. The 

parameters and their most appropriate values obtained by 

repeated execution of these algorithms are shown in 

Tables 2 and 3. The re-modularized design structure 

obtained automatically after the application of GA and 

ICA-GA are shown in Fig. 7 and 8. 

Table 2. Parameters for GA 

Number of generations 200 

Population size 200 

% of cross-over 60 

% of mutation 2 

Table 3. Parameters for ICA 

Number of generations 200 

Number of countries 200 

Number of imperialists 

10% of countries 
20 

Assimilation coefficient β 2 

AssimilationAngleCoefficient 0.5 

Zeta ξ 0.1 
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Fig.6. Flowchart for ICA-GA 

 

Fig.7. Structure of Mini-Tunis as described by GA
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Fig.8. Structure of Mini-Tunis as described by ICA-GA 

 

VII.  RECURSIVE ICA-GA 

In another approach, the two basic algorithms ICA and 

GA are applied recursively one after another until some 

stopping criteria is met. The required parameters and their 

most appropriate values obtained by repeated execution 

of these algorithms are shown in Tables 2 and 3. GA 

avoids the concentration of countries near imperialists. 

On the other hand, ICA always sends the colonies toward 

the imperialists and mainly concentrates on the 

populations near the imperialists. The flowchart for this 

technique is shown in Fig. 9. The global optimum is 

usually near the local optimums in most of the problems. 

So, the populations which are concentrated near the 

imperialists of ICA (which may be near the global 

optimum), will expand and tremble by recursive 

combination of these two algorithms. This algorithm is 

based on ICA and takes the help of GA to expand the 

populations of colonies which are concentrated near the 

imperialists [23]. This combination leads to a fast 

decrease in the convergence curve and increase in the 

quality of resultant clusters obtained. The re-modularized 

design structure obtained automatically after the 

application of ICA is much more similar to original 

design structure and is shown in Fig. 10. 
 

Fig.9. Flowchart for Recursive ICA-GA 

 

 

 

 

 

 

Start 

Initialize the empire 

Transmit the population (empire) 

Imperialistic Competitive Algorithm 

Transmit the population 

Genetic Algorithm 

Stop 

Stopping Criteria 

Met? 

Yes 

No 



50 Software Module Clustering Using Hybrid Socio-Evolutionary Algorithms  

Copyright © 2016 MECS                                        I.J. Information Engineering and Electronic Business, 2016, 4, 43-53 

VIII.  SIMILARITY MEASURE 

Over the past few years, several clustering techniques 

have been presented in literature that leads to efficient 

system decomposition. The effectiveness of these 

clustering techniques must be measured. One way to 

measure it is to identify similarity between the resulting 

modularization and original design or between two 

different decompositions of the same system. 

In order to accomplish this, the authors [28] identify 

the similarity between decompositions by considering 

how much a module depends on other modules in its 

subsystem, as well how much it depends on the modules 

of other subsystems. They found measures EdgeSim and 

MeCl which present both a similarity and a distance 

measurement that ranks the individual differences 

between the decompositions, and applies an appropriate 

weighted penalty to each disagreement. 

 

IX.  EXPERIMENTAL RESULTS ON SOFTWARE GRAPHS 

The technique was tested on a large number of 

software systems. The proposed methods have been 

applied on a large number of software systems and 

compared with the well-known Bunch tool http://icasite-

en.blogspot.in/. Said known work done was based on 

heuristic search algorithms that automatically cluster the 

source code into subsystems. It has been observed that 

the recursive ICA-GA re-modularized software systems 

into partitions much more similar to original design 

architecture. The parameters required are set to values 

shown in Tables 2 and 3. In order to show the 

improvement in terms of convergence speed and efficient 

clustering, we show the result of the experiment on five 

popular software systems described in Table 1. Fig. 11 

and 12 show the minimum and average fitness of 

software system 'Mini-Tunis' on the execution of GA, 

ICA, ICA-GA and R- ICA-GA respectively. These plots 

demonstrate that R-ICA-GA converges at a very early 

stage and execution time of the algorithm is smaller than 

the others. Along with it, the value of fitness function or 

cost of the final empire comes out to be higher than the 

other earlier algorithms which mean a better clustering 

output. In order to compare the clustering output of all 

these algorithms for Mini-Tunis, we calculate EdgeSim 

and MeCl values to compare similarity of clustering of all 

of these algorithms with respect to original design 

documentation. The values thus obtained are shown in 

Table 4. This table illustrates that the algorithm R-ICA-

GA results in the output most similar to that of original 

design structure. It is depicted by the highest value of 

EdgeSim and MeCl metrics for Recursive ICA-GA. 

Along with this, the same is obtained by R-ICA-GA in 

least number of epochs. Similarly, the output of other 

software systems after repeatedly executing these 

algorithms is summarized in Table 5 and 6. By close 

evaluation of  Tables 5 and 6, it depicts that although ICA 

takes much more time to converge as compared to GA, 

the quality of resulting cluster is better  (overall cost is 

higher) than the earlier available tool bunch. When 

compared to ICA-GA, the quality improves further. In the 

case of R-ICA-GA, the result shows much higher quality 

as well as much less convergence time; hence, it is found 

to be the best of all the above combinations. 

Table 4. Clustering output of algorithms for Mini-Tunis using EdgeSim 

and MeCl 

Algorithm EdgeSim MeCl 
Overall cost/ 

fitness values 

Generations 

used to 

converge 

GA 71.9298 40 -1.9980 52 

ICA 61.4035 5 -2.1573 2400 

ICA-GA 77.1930 65 -2.2268 51 

R-ICA-GA 68.4211 60 -2.2866 70 

 

Table 5. Clustering output (mean and mode) of algorithms for various software systems 

Software 

System 

Mean Mode 

GA ICA ICA-GA R-ICA-GA GA ICA ICA-GA R-ICA-GA 

Ispell -2.2600 -1.9456 -2.2254 -2.3305 -2.3784 -2.3364 -2.3708 -2.3697 

Boxer -3.0447 -2.9360 -2.9966 -3.1011 -3.1011 -3.0639 -3.1011 -3.1011 

Bison -2.4594 -1.7309 -2.2963 -2.6828 -2.5123 -2.2700 -2.5464 -2.7234 

Grappa -13.9035 -9.3913 -13.7490 -17.0071 -15.6346 -12.2182 -15.7460 -18.3984 

Mini-
Tunis 

-2.1533 -1.6614 -2.1940 -2.2897 -2.2254 -2.1642 -2.2406 -2.3145 

Table 6. Clustering output (maximum value and standard deviation) of algorithms for various software systems 

Software 

system 

Maximum Standard deviation 

GA ICA ICA-GA R-ICA-GA GA ICA ICA-GA R-ICA-GA 

Ispell -2.2739 -2.2348 -2.2824 -2.2952 0.0707 0.1719 0.1171 0.0330 

Boxer -2.3784 -2.3364 -2.3708 -2.3885 0.1014 0.1380 0.1211 0.0665 

Bison -3.1011 -3.2545 -3.1011 -3.1011 0.0831 0.1980 0.1549 0 

Grappa -2.6709 -2.4455 -2.5464 -2.7474 0.1298 0.2312 0.1816 0.0640 

M-Tunis -15.6346 -13.6062 -16.0569 -18.4226 0.8185 1.5591 1.1269 1.2316 
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Fig.10. Structure of Mini-Tunis as described by Recursive ICA-GA 

    

Fig.11. Minimum and average fitness of software system Mini-Tunis on the execution of ICA and GA 

     

Fig.12. Minimum and average fitness of software system ‘Mini-Tunis’ on the execution of ICA-GA and Recursive ICA-GA 
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X.  CONCLUSION AND FUTURE WORK 

This paper contributes to the field of reverse 

engineering by using the combination of meta-heuristic 

search-based techniques ICA and GA to solve the 

software clustering problem. This work to cluster the 

structure of large, real world software systems is efficient 

and useful especially in the absence of original design 

documentation. The automatic clustering technique 

generates better and faster results. This approach is useful 

to software maintainers as it quickly partitions the 

software system using the resource dependencies 

specified in the static structure of the source code. 

In this paper, the four evolutionary optimization 

algorithms ICA, GA, ICA-GA and R-ICA-GA were used 

to reverse engineer the software system. All of the named 

algorithms are compared to each other in a number of 

generations needed to converge and quality of the clusters 

is obtained. Results show that the Recursive ICA-GA is 

the best algorithm among these four algorithms for 

reverse engineering. 

A encoding of the country has an impact on the quality 

of the clustering. So we can use some other better 

encoding scheme to further improve the results. 
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