
I.J. Information Engineering and Electronic Business, 2016, 4, 43-53
Published Online July 2016 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijieeb.2016.04.06

Copyright © 2016 MECS I.J. Information Engineering and Electronic Business, 2016, 4, 43-53

Software Module Clustering Using Hybrid Socio-

Evolutionary Algorithms

Kawal Jeet and Renu Dhir
Dr. B. R. Ambedkar National Institute of Technology, Jalandhar, 144011 India

E-mail: kawaljeet80@gmail.com, dhirr@nitj.ac.in

Abstract—Design of the software system plays a crucial

role in the effective and efficient maintenance of the

software system. In the absence of original design

structure it might be required to re-identify the design by

using the source code of the concerned software.

Software clustering is one of the powerful techniques

which could be used to cluster large software systems

into smaller manageable subsystems containing modules

of similar features. This paper examines the use of novel

evolutionary imperialist competitive algorithms, genetic

algorithms and their combinations for software clustering.

Apparently, recursive application of these algorithms

result in the best performance in terms of quality of

clusters, number of epochs required for convergence and

standard deviation obtained by repeated application of

these algorithms.

Index Terms—Genetic algorithm, Imperialist

competitive algorithm, Module dependency graph,

Reverse engineering Software clustering, Software

maintenance.

I. INTRODUCTION

Maintenance is the largest and most expensive phase of

the software development lifecycle [1]. During this phase,

the software system undergoes continuous change and is

enhanced for a number of reasons. It is generally

accompanied by the turnover of the software engineers

involved in its development. It ultimately leads to the

decay of the original structure of the system [2]. So, for

the effective and efficient maintenance of the software

system, it becomes important to re-identify the subsystem

boundaries. It might be a difficult task, especially in the

absence of original design documents of the software

system concerned [3]. If the source code of the software

system is the only means available [4], then in order to

re-identify the design of the software system, the required

Module Dependency Graph (MDG) is built from this

source code. Module boundaries in MDG could be

defined by grouping sets of related methods, macros

attributes and variables into source code files or classes

[5]. The relations between the modules could be obtained

by extracting the module-level relations from the source

code. In a MDG, modules are represented as nodes and

the relationships as the edges between these nodes.

Several techniques have been developed to re-identify

the design structure of legacy software systems [6].

Software clustering is one such technique that is aimed at

categorizing large software systems into smaller

manageable subsystems containing modules of similar

features. These techniques attempt to identify clusters by

analyzing relationships among the modules which could

be represented in the form of MDG [7]. The problem of

finding the best clustering for a given set of modules is a

NP hard search problem. So, we may use search-based

software engineering techniques to sort out this problem.

In this paper, we present a novel clustering-based

approach to partition legacy software systems. A recently

introduced evolutionary optimization strategy, Imperialist

Competitive Algorithm (ICA) [8], along with its

combination with genetic algorithm (GA) is used to re-

modularize the software into more manageable clusters to

identify the architecture of the system concerned. ICA is

a new strategy that is motivated by social and political

global search strategies that has recently been found

effective in dealing with different optimization tasks [9].

These evolutionary optimization strategies have shown

great performance in both convergence rate and better

global optima achievement. In this paper, we compare the

quality of the software modularization architecture

obtained by using this technique with that of the existing

GA-based technique. By using t-test, we compare

software clustering on the basis of these techniques with

that of existing GA-based clustering tools.

The rest of the paper is organized as follows. In

Section II, we present related work done in the field of

software clustering. In Section III, we present a brief

introduction to the problem of software modularization.

Section IV and VII deals with ICA-GA and Recursive

ICA-GA algorithms (R-ICA-GA) respectively. Quality

prediction function TurboMQ and similarity

measurement techniques [10-12] to compare the quality

of software clustering. In Section IX, we discuss

experimental results in a few benchmark un-weighted

software systems. Section X is the conclusion and future

work in the field is presented.

II. RELATED WORK

The maintainability of a software system becomes

efficient and effective if the software architecture is well

documented. Unfortunately, this kind of documentation

may be outdated if software engineers do not consistently

maintain it with the changes made [13]. Further, quality

of software architectures plays a major role in the success

44 Software Module Clustering Using Hybrid Socio-Evolutionary Algorithms

Copyright © 2016 MECS I.J. Information Engineering and Electronic Business, 2016, 4, 43-53

of software thus developed. [14]

In this context, various reverse engineering tools are

found to be successful in retrieving the architecture of

software system [15-16].The majority of the reverse

engineering tools proposed in literature are based on

clustering algorithms [17].

One such popular software clustering tool is ACDC

[18]. This is a pattern-based software clustering technique

that recovers subsystems using the incremental clustering

technique. In this technique, a structure is created on the

basis of patterns between subsystems and each newly

introduced resource is placed in the subsystem which

seems most appropriate.

Another popular tool, Bunch [19], attempts to find a

decomposition that optimizes a quality measure called

TurboMQ which is based on high cohesion and low

coupling. It is a popular tool based on search-based

techniques like hill climbing and GA etc. In this paper,

we compare results obtained by our approach with that of

this tool.

Harman et al. [16] modified GA approach

implemented in BUNCH by proposing a novel encoding

and crossover operator. This technique modified existing

way of using GA by allowing only one representation per

modularization. This new crossover operator outperforms

the traditional one, but it gets trapped at local optima very

often.

In a recent work [20]; the authors used cooperative

clustering based on MQ for software Clustering. It has

been observed that this approach leads to degraded

performance with increase in size of the problem. Particle

Swarm Optimization (PSO) algorithm has also been used

for the cause of software clustering [21] using MQ as

objective for optimization.

In this work use of Imperialistic Competition

Algorithm (ICA) and its hybrids have been investigated

for the cause of software modularization. ICA has been

used for synchronization of chaotic systems based on an

intelligent controller which based on brain emotional

learning (BELBIC) [22].

III. PROBLEM STATEMENT

As mentioned above, optimization techniques have

been applied to several software engineering activities

including maintenance. In this paper, we use the recursive

combination of evolutionary algorithms, ICA and GA (R-

ICA-GA) [23], and compare their performances to the

well-known evolutionary algorithm GA [24]. It is

observed that the recursive combination of ICA and GA

leads us to find the best modularization of the software

that is found to be much more similar to the original

design documentation; hence, it is found to be more

effective.

The goal of our approach is to partition a MDG of the

source-level entities and relations into a set of clusters,

such as clusters that represent partitioned subsystems

where highly-interdependent modules (nodes) are

grouped in the same subsystems (clusters). The MDG we

are using in this paper has been widely used by

researchers [11, 25], therefore it becomes easy to

compare our approach to that of other studies of meta-

heuristic search algorithms. Table 1 shows the list of

software systems whose MDGs are used in this paper

[26]. The original design structure (as obtained from its

documentation) of one of these software systems, called

Mini-Tunis, is shown in Fig. 1.

Fig.1. Structure of Mini-Tunis as described in original design specification

 Software Module Clustering Using Hybrid Socio-Evolutionary Algorithms 45

Copyright © 2016 MECS I.J. Information Engineering and Electronic Business, 2016, 4, 43-53

IV. IMPERIALIST COMPETITIVE ALGORITHM

This algorithm is used for optimization and is inspired

by the imperialistic competition [8]. It begins with an

initial population. Population individuals (called country)

are of two types: colonies and imperialists. Together they

form empires. Imperialistic competition among these

empires is the basis of the evolution in this algorithm.

This algorithm uses the assimilation policy. Based on

this policy, the imperialists try to improve the economy,

culture and political situation of their colonies (also

called their empire).

Table 1. Description of software systems to be used

Software

System

Modules

in MDG

Edges in

MDG
System Description

Rcs 29 163
Open source version

control tool

Mini-Tunis 20 57
A simple operating
system

Ispell 24 103
An open source spell
checker

Boxer 18 29 A drawing tool

Bison 37 179 Parser generator

Grappa 74 112
Graph visualization
and drawing tool

The power of an empire depends on the power of its

imperialists and its colonies. The imperialists that are

weaker lose their colonies and join a more powerful

empire for greater support. In the end, the weak empires

collapse and only one powerful empire is left. This final

empire is the result of optimization.

The main steps of ICA are summarized in the

flowchart shown in Fig. 2.

A. Creation of initial empires

The initial population of ICA is created randomly.

Each member of this population is a vector of random

numbers which is called a country. The cost of objective

function (also called its fitness value in GA) is calculated

for each of these countries and is preferred to be a

minimum. The colonies are required to be proportionally

divided among imperialists. Imperialists with a lot of

power will be associated with a large number of countries.

With respect to software clustering, let us see how we

define a country. Each node in the MDG has been

assigned a unique numerical identifier. These identifiers

define the position of the node in the encoded string. The

encoded string defines the cluster that each node has been

assigned to. So, if we have a graph with n number of

nodes, then a country is defined as s1,s2,....sn where each

si is the label of the module or cluster to which the node

has been assigned.

The job of ICA is to find the optimal solution to the

problem; the solution with the least cost value.

TurboMQ is a function (Mitchell and Mancoridis, 2002)

that is found to be quite efficient and effective for

measuring the cost of each country and, hence, the quality

of software clustering. In this function, interconnectivity

and intra-connectivity are measured independently.

Fig.2. Flowchart of Imperialist Competitive Algorithm

Intra-connectivity (cohesion)

Intra-connectivity (A) measures the degree of

connectivity between components that are grouped in the

same cluster. A higher value of A indicates good

partitioning whereas a lower value of A indicates low

degree of intra-connectivity, and hence, poor subsystem

partitioning. Therefore, intra-connectivity for cluster i

could be calculated as Eq. (1).

2
A =μ /N

i i i
N :Number of components

i
μ :Intra-edge depnendencies

i

 (1)

Inter-connectivity (coupling)

Inter-connectivity (E) measures the degree of

connectivity between two distinct clusters. The larger the

number of interdependencies means the larger the

difficulty in maintenance. This is because changes to a

46 Software Module Clustering Using Hybrid Socio-Evolutionary Algorithms

Copyright © 2016 MECS I.J. Information Engineering and Electronic Business, 2016, 4, 43-53

module may affect many other parts of the system due to

the subsystem relationships. Inter-connectivity Eij

between clusters i and j is mentioned in Eq. (2).

0 if i=j

(2) if i j

: Number of components in module i

: Number of components in module j

Eij

E N Nij ij i j

Ni
N j





 
 (2)

ɛij: Inter edge dependencies

0 ≤ Eij ≤ 1

Eij is 0 when there are no module-level dependencies

between module i and module j.

Eij is 1 when each module in subsystem i depends on all

of the modules in subsystem j and vice-versa.

The Turbo MQ measurement for an MDG partitioned

into k clusters is calculated by summing the Cluster

Factor (CF) for each cluster.

0 if μ 0

/ 2 () otherwise
1,

1

CFi i k
CFi i i ij ji

j i jk
TurboMQ CFi

i

   

 

  
 

 


 (3)

As we need a system with maximum cohesion and

minimum coupling, the cost function TurboMQ should

have maximum value. It means the higher the value of

TurboMQ, the better the quality of the partition. On the

other hand, ICA and GA works on the principal of cost

minimization. This means it selects the partition with the

minimum value of objective function. Therefore, in order

to use TurboMQ (maximization function) as objective

function in ICA and GA (minimization-based), we use

negation of TurboMQ (-TurboMQ) as cost minimization

function. This means if ICA or GA selects partition with

minimum value of –TurboMQ, it is actually selecting a

partition with the highest value of TurboMQ i.e. the

clustering of best quality.

B. Assimilation: movement of colonies toward the

imperialist

In ICA, the assimilation process is modeled by moving

all of the colonies toward the imperialist along different

optimization axis. Fig. 3 shows this movement.

Continuation of assimilation will cause all of the colonies

to be fully assimilated into the imperialist. In this figure,

x is a random variable with uniform distribution. The

value of x lies in the range as shown in equation

~ (0,)x U Xd

where β (also called AssimilationCoefficient) is a number

greater than one, and d is the distance between the colony

and the imperialist state. β >1 causes the colonies to get

closer to the imperialist state from both sides. The most

appropriate value for β is found to be 1.5.

Fig.3. Moving colonies toward their relevant Imperialist

Assimilating the colonies by the imperialist states does

not result in direct movement of the colonies toward the

imperialist. So a random amount of deviation θ is added

to the direction of movement to increase the ability to

search more area around the imperialist (as shown in Fig.

3). In this figure, θ is a parameter with uniform (or any

proper) distribution as shown in equation below

~ (,)U  

where γ (also called AssimilationAngleCoefficient) is a

parameter that adjusts the deviation from the original

direction.

It is found that for the software systems under

consideration, the values of 3π/4 (Rad) for γ results in

good convergence of countries to the global minimum.

C. Exchanging positions of the imperialist and a colony

While moving toward the imperialist, a colony might

reach a position with cost lower than the imperialist. In

this case, the imperialist and the colony change their

positions. The algorithm then continues with the

imperialist in the new position. Total power of an empire

can be calculated as shown in equation 8.

Cos () Cos (_ _)TC t imperialist t colonies of empiren n n 

where TCn is total cost of the nth empire and ζ is a

positive small number.

Value of ζ influences the total power of the empire. If

it is a small value then the total power is determined by

just the imperialist, and increasing it will increase the role

of the colonies in determining the total power of an

empire. The value of 0.05 for ζ has shown good results in

most of the software systems under consideration.

D. Imperialistic competition

It is a main part of ICA and is expected to cause

colonies to converge at global minimum cost. All empires

try to take the possession of colonies of other empires.

The weaker empires start combining with powerful

empires.

The process of selecting an empire is similar to the

roulette wheel approach for selecting parents in GA. But

 Software Module Clustering Using Hybrid Socio-Evolutionary Algorithms 47

Copyright © 2016 MECS I.J. Information Engineering and Electronic Business, 2016, 4, 43-53

this method of selection is much faster than the roulette

wheel because cumulative distribution function is not

required to be calculated. This is the main reason for

better behavior of ICA. As a result, the execution speed

of the algorithm increases, leading to earlier convergence.

More information and its Matlab code are available at

http://icasite-en.blogspot.in/. The re-modularized design

structure obtained automatically after the application of

ICA is shown in Fig. 4.

V. GENETIC ALGORITHM

GA is created on the basis of Darwin’s theory of

evolution. For a specific problem, it randomly defines an

initial population of individuals called chromosomes that

represent a part of the solution space of the problem. Next,

on the basis of the value of fitness value (objective

function), the individuals are selected in a competitive

manner. The genetic search operators such as selection,

mutation and crossover are then applied one after another

to obtain a new generation of chromosomes in which the

expected quality over all the chromosomes will be better

than that of the previous generation. This process is

repeated until the termination criterion is met, and the

best chromosome of the last generation is reported as the

final solution [27]. A step by step procedure for the same

is shown in Fig. 5.

Fig.4. Structure of Mini-Tunis as described by ICA

Fig.5. Flowchart for GA

VI. ICA-GA

In this technique, ICA is used to optimize the cost

function and identify the optimum software clusters. The

resulting software clusters obtained are used as the initial

population of GA. The flowchart for the same is shown in

Fig. 6. Flowchart for GA is shown in Fig. 5. The

parameters and their most appropriate values obtained by

repeated execution of these algorithms are shown in

Tables 2 and 3. The re-modularized design structure

obtained automatically after the application of GA and

ICA-GA are shown in Fig. 7 and 8.

Table 2. Parameters for GA

Number of generations 200

Population size 200

% of cross-over 60

% of mutation 2

Table 3. Parameters for ICA

Number of generations 200

Number of countries 200

Number of imperialists

10% of countries
20

Assimilation coefficient β 2

AssimilationAngleCoefficient 0.5

Zeta ξ 0.1

48 Software Module Clustering Using Hybrid Socio-Evolutionary Algorithms

Copyright © 2016 MECS I.J. Information Engineering and Electronic Business, 2016, 4, 43-53

Fig.6. Flowchart for ICA-GA

Fig.7. Structure of Mini-Tunis as described by GA

Start

Initialize the empire

Transmit the population (empire)

Imperialistic Competitive Algorithm

Transmit the population

Genetic Algorithm

Stop

Stopping Criteria

Met?

Yes

No

Stopping Criteria

Met?

Yes

No

 Software Module Clustering Using Hybrid Socio-Evolutionary Algorithms 49

Copyright © 2016 MECS I.J. Information Engineering and Electronic Business, 2016, 4, 43-53

Fig.8. Structure of Mini-Tunis as described by ICA-GA

VII. RECURSIVE ICA-GA

In another approach, the two basic algorithms ICA and

GA are applied recursively one after another until some

stopping criteria is met. The required parameters and their

most appropriate values obtained by repeated execution

of these algorithms are shown in Tables 2 and 3. GA

avoids the concentration of countries near imperialists.

On the other hand, ICA always sends the colonies toward

the imperialists and mainly concentrates on the

populations near the imperialists. The flowchart for this

technique is shown in Fig. 9. The global optimum is

usually near the local optimums in most of the problems.

So, the populations which are concentrated near the

imperialists of ICA (which may be near the global

optimum), will expand and tremble by recursive

combination of these two algorithms. This algorithm is

based on ICA and takes the help of GA to expand the

populations of colonies which are concentrated near the

imperialists [23]. This combination leads to a fast

decrease in the convergence curve and increase in the

quality of resultant clusters obtained. The re-modularized

design structure obtained automatically after the

application of ICA is much more similar to original

design structure and is shown in Fig. 10.

Fig.9. Flowchart for Recursive ICA-GA

Start

Initialize the empire

Transmit the population (empire)

Imperialistic Competitive Algorithm

Transmit the population

Genetic Algorithm

Stop

Stopping Criteria

Met?

Yes

No

50 Software Module Clustering Using Hybrid Socio-Evolutionary Algorithms

Copyright © 2016 MECS I.J. Information Engineering and Electronic Business, 2016, 4, 43-53

VIII. SIMILARITY MEASURE

Over the past few years, several clustering techniques

have been presented in literature that leads to efficient

system decomposition. The effectiveness of these

clustering techniques must be measured. One way to

measure it is to identify similarity between the resulting

modularization and original design or between two

different decompositions of the same system.

In order to accomplish this, the authors [28] identify

the similarity between decompositions by considering

how much a module depends on other modules in its

subsystem, as well how much it depends on the modules

of other subsystems. They found measures EdgeSim and

MeCl which present both a similarity and a distance

measurement that ranks the individual differences

between the decompositions, and applies an appropriate

weighted penalty to each disagreement.

IX. EXPERIMENTAL RESULTS ON SOFTWARE GRAPHS

The technique was tested on a large number of

software systems. The proposed methods have been

applied on a large number of software systems and

compared with the well-known Bunch tool http://icasite-

en.blogspot.in/. Said known work done was based on

heuristic search algorithms that automatically cluster the

source code into subsystems. It has been observed that

the recursive ICA-GA re-modularized software systems

into partitions much more similar to original design

architecture. The parameters required are set to values

shown in Tables 2 and 3. In order to show the

improvement in terms of convergence speed and efficient

clustering, we show the result of the experiment on five

popular software systems described in Table 1. Fig. 11

and 12 show the minimum and average fitness of

software system 'Mini-Tunis' on the execution of GA,

ICA, ICA-GA and R- ICA-GA respectively. These plots

demonstrate that R-ICA-GA converges at a very early

stage and execution time of the algorithm is smaller than

the others. Along with it, the value of fitness function or

cost of the final empire comes out to be higher than the

other earlier algorithms which mean a better clustering

output. In order to compare the clustering output of all

these algorithms for Mini-Tunis, we calculate EdgeSim

and MeCl values to compare similarity of clustering of all

of these algorithms with respect to original design

documentation. The values thus obtained are shown in

Table 4. This table illustrates that the algorithm R-ICA-

GA results in the output most similar to that of original

design structure. It is depicted by the highest value of

EdgeSim and MeCl metrics for Recursive ICA-GA.

Along with this, the same is obtained by R-ICA-GA in

least number of epochs. Similarly, the output of other

software systems after repeatedly executing these

algorithms is summarized in Table 5 and 6. By close

evaluation of Tables 5 and 6, it depicts that although ICA

takes much more time to converge as compared to GA,

the quality of resulting cluster is better (overall cost is

higher) than the earlier available tool bunch. When

compared to ICA-GA, the quality improves further. In the

case of R-ICA-GA, the result shows much higher quality

as well as much less convergence time; hence, it is found

to be the best of all the above combinations.

Table 4. Clustering output of algorithms for Mini-Tunis using EdgeSim

and MeCl

Algorithm EdgeSim MeCl
Overall cost/

fitness values

Generations

used to

converge

GA 71.9298 40 -1.9980 52

ICA 61.4035 5 -2.1573 2400

ICA-GA 77.1930 65 -2.2268 51

R-ICA-GA 68.4211 60 -2.2866 70

Table 5. Clustering output (mean and mode) of algorithms for various software systems

Software

System

Mean Mode

GA ICA ICA-GA R-ICA-GA GA ICA ICA-GA R-ICA-GA

Ispell -2.2600 -1.9456 -2.2254 -2.3305 -2.3784 -2.3364 -2.3708 -2.3697

Boxer -3.0447 -2.9360 -2.9966 -3.1011 -3.1011 -3.0639 -3.1011 -3.1011

Bison -2.4594 -1.7309 -2.2963 -2.6828 -2.5123 -2.2700 -2.5464 -2.7234

Grappa -13.9035 -9.3913 -13.7490 -17.0071 -15.6346 -12.2182 -15.7460 -18.3984

Mini-
Tunis

-2.1533 -1.6614 -2.1940 -2.2897 -2.2254 -2.1642 -2.2406 -2.3145

Table 6. Clustering output (maximum value and standard deviation) of algorithms for various software systems

Software

system

Maximum Standard deviation

GA ICA ICA-GA R-ICA-GA GA ICA ICA-GA R-ICA-GA

Ispell -2.2739 -2.2348 -2.2824 -2.2952 0.0707 0.1719 0.1171 0.0330

Boxer -2.3784 -2.3364 -2.3708 -2.3885 0.1014 0.1380 0.1211 0.0665

Bison -3.1011 -3.2545 -3.1011 -3.1011 0.0831 0.1980 0.1549 0

Grappa -2.6709 -2.4455 -2.5464 -2.7474 0.1298 0.2312 0.1816 0.0640

M-Tunis -15.6346 -13.6062 -16.0569 -18.4226 0.8185 1.5591 1.1269 1.2316

 Software Module Clustering Using Hybrid Socio-Evolutionary Algorithms 51

Copyright © 2016 MECS I.J. Information Engineering and Electronic Business, 2016, 4, 43-53

Fig.10. Structure of Mini-Tunis as described by Recursive ICA-GA

Fig.11. Minimum and average fitness of software system Mini-Tunis on the execution of ICA and GA

Fig.12. Minimum and average fitness of software system ‘Mini-Tunis’ on the execution of ICA-GA and Recursive ICA-GA

52 Software Module Clustering Using Hybrid Socio-Evolutionary Algorithms

Copyright © 2016 MECS I.J. Information Engineering and Electronic Business, 2016, 4, 43-53

X. CONCLUSION AND FUTURE WORK

This paper contributes to the field of reverse

engineering by using the combination of meta-heuristic

search-based techniques ICA and GA to solve the

software clustering problem. This work to cluster the

structure of large, real world software systems is efficient

and useful especially in the absence of original design

documentation. The automatic clustering technique

generates better and faster results. This approach is useful

to software maintainers as it quickly partitions the

software system using the resource dependencies

specified in the static structure of the source code.

In this paper, the four evolutionary optimization

algorithms ICA, GA, ICA-GA and R-ICA-GA were used

to reverse engineer the software system. All of the named

algorithms are compared to each other in a number of

generations needed to converge and quality of the clusters

is obtained. Results show that the Recursive ICA-GA is

the best algorithm among these four algorithms for

reverse engineering.

A encoding of the country has an impact on the quality

of the clustering. So we can use some other better

encoding scheme to further improve the results.

ACKNOWLEDGMENT

The authors are grateful to Spiros Mancoridis for

providing both the Bunch tool and the MDGs used in this

paper. We are also pleased to thank Mr. Harjit Singh,

senior consultant, Tata Consultancy Services, New Delhi

and Pavneet Kaur, component design engineer, Intel

Corporation, USA, for their able guidance and useful

suggestions.

REFERENCES

[1] S. E. S. Committee, "IEEE Standard for Software

Maintenance," IEEE Std, pp. 1219-1998, 1998.

[2] P. Tonella, "Reverse engineering of object oriented code,"

in Proceedings of the 27th international conference on

Software engineering, 2005, pp. 724-725.

[3] M. V. Zelkowitz, A. C. Shaw, and J. D. Gannon,

Principles of software engineering and design: Prentice-

Hall Englewood Cliffs, 1979.

[4] P. Dugerdil and J. Repond, "Automatic generation of

abstract views for legacy software comprehension," in

Proceedings of the 3rd India software engineering

conference, 2010, pp. 23-32.

[5] A. Lakhotia, "A unified framework for expressing

software subsystem classification techniques," Journal of

Systems and Software, vol. 36, pp. 211-231, 1997.

[6] R. Koschke, "Atomic architectural component recovery

for program understanding and evolution," 2000.

[7] P. Andritsos and V. Tzerpos, "Information-theoretic

software clustering," Software Engineering, IEEE

Transactions on, vol. 31, pp. 150-165, 2005.

[8] E. Atashpaz-Gargari and C. Lucas, "Imperialist

competitive algorithm: an algorithm for optimization

inspired by imperialistic competition," in Evolutionary

computation, 2007. CEC 2007. IEEE Congress on, 2007,

pp. 4661-4667.

[9] I. Rasekh, "Dynamic Search Optimization for Semantic

Webs Using Imperialistic Competitive Algorithm," in

Information Science and Applications (ICISA), 2012

International Conference on, 2012, pp. 1-5.

[10] B. S. Mitchell and S. Mancoridis, "Using Heuristic Search

Techniques To Extract Design Abstractions From Source

Code," in GECCO, 2002, pp. 1375-1382.

[11] B. S. Mitchell and S. Mancoridis, "On the automatic

modularization of software systems using the bunch tool,"

Software Engineering, IEEE Transactions on, vol. 32, pp.

193-208, 2006.

[12] B. S. Mitchell and S. Mancoridis, "On the evaluation of

the Bunch search-based software modularization

algorithm," Soft Computing, vol. 12, pp. 77-93, 2008.

[13] S. G. Eick, T. L. Graves, A. F. Karr, J. S. Marron, and A.

Mockus, "Does code decay? assessing the evidence from

change management data," Software Engineering, IEEE

Transactions on, vol. 27, pp. 1-12, 2001.

[14] M. F. Khan, K. Yousaf, A. Mustaqeem, and M. Maqsood,

"Improvement in Quality of Software Architecture via

Enhanced-Pattern Driven Architecture (EPDA),"

International Journal of Information Technology and

Computer Science (IJITCS), vol. 4, p. 31, 2012.

[15] M. Harman, "The current state and future of search based

software engineering," in 2007 Future of Software

Engineering, 2007, pp. 342-357.

[16] M. Harman, R. M. Hierons, and M. Proctor, "A New

Representation And Crossover Operator For Search-based

Optimization Of Software Modularization," in GECCO,

2002, pp. 1351-1358.

[17] O. Maqbool and H. Babri, "Hierarchical clustering for

software architecture recovery," Software Engineering,

IEEE Transactions on, vol. 33, pp. 759-780, 2007.

[18] V. Tzerpos and R. C. Holt, "ACDC: An algorithm for

comprehension-driven clustering," in wcre, 2000, p. 258.

[19] S. Mancoridis. 03 January 2014). Bunch tool.

[20] A. Ibrahim, D. Rayside, and R. Kashef, "Cooperative

based software clustering on dependency graphs," in

Electrical and Computer Engineering (CCECE), 2014

IEEE 27th Canadian Conference on, 2014, pp. 1-6.

[21] I. Hussain, A. Khanum, A. Q. Abbasi, and M. Y. Javed,

"A Novel Approach for Software Architecture Recovery

using Particle Swarm Optimization," International Arab

Journal of Information Technology (IAJIT), vol. 12, 2015.

[22] M. T. Ziabari, A. R. Sahab, and S. N. S. Fakhari,

"Synchronization New 3D Chaotic System Using Brain

Emotional Learning Based Intelligent Controller,"

International Journal of Information Technology and

Computer Science (IJITCS), vol. 7, p. 80, 2015.

[23] V. Khorani, F. Razavi, and A. Ghoncheh, "A New Hybrid

Evolutionary Algorithm Based on ICA and GA:

Recursive-ICA-GA," in IC-AI, 2010, pp. 131-140.

[24] S. Mancoridis, B. S. Mitchell, C. Rorres, Y. Chen, and E.

R. Gansner, "Using automatic clustering to produce high-

level system organizations of source code," in

International Conference on Program Comprehension,

1998, pp. 45-45.

[25] K. Mahdavi, M. Harman, and R. M. Hierons, "A multiple

hill climbing approach to software module clustering," in

Software Maintenance, 2003. ICSM 2003. Proceedings.

International Conference on, 2003, pp. 315-324.

[26] S. Mancoridis. (2002, 10 September 2013). Sample MDGs.

Available: https://www.cs.drexel.edu/~spiros/bunch/

[27] D. E. Goldberg, Genetic algorithms: Pearson Education

India, 2006.

[28] B. S. Mitchell and S. Mancoridis, "Comparing the

decompositions produced by software clustering

algorithms using similarity measurements," in

 Software Module Clustering Using Hybrid Socio-Evolutionary Algorithms 53

Copyright © 2016 MECS I.J. Information Engineering and Electronic Business, 2016, 4, 43-53

Proceedings of the IEEE International Conference on

Software Maintenance (ICSM'01), 2001, p. 744.

Authors’ Profiles

KawalJeet is an Assistant Professor in

Post-Graduate Department of Computer

Science, D.A.V. College, Jalandhar, India.

She received her Master’s of Technology

in Computer Science from Dr. B.R.

Ambedkar National Institute of

Technology, Jalandhar, India in 2012.

Currently, she is pursuing Ph.D from this

institute. Her current research interest

focuses on nature-inspired computation, software

modularization, Bayesian networks, and software quality. She

has published her research work in more than 20 international

journals and conference proceedings. She is a member of the

IRED, UACEE and ACM India.

Dr.RenuDhir is working as Associate

professor and Head in the Department of

Computer Science and Engineering

National Institute of Technology, Jalandhar

(Punjab), India. She has done M. Tech. in

Computer Science and Engineering from

TIET Patiala, India, in 1997 and Doctor of

Philosophy (Ph.D.) in Computer Science

and Engineering, Punjabi University,

Patiala, India, in March 2008. She has published her research

work in more than 40 International / National Conferences and

Journals in various fields like Information Security, Image

Processing, OCR, NLP and Pattern recognition.

How to cite this paper: Kawal Jeet, Renu Dhir,"Software Module Clustering Using Hybrid Socio-Evolutionary

Algorithms", International Journal of Information Engineering and Electronic Business(IJIEEB), Vol.8, No.4, pp.43-53,

2016. DOI: 10.5815/ijieeb.2016.04.06

