
I.J. Information Engineering and Electronic Business, 2016, 1, 21-28
Published Online January 2016 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijieeb.2016.01.03

Copyright © 2016 MECS I.J. Information Engineering and Electronic Business, 2016, 1, 21-28

An SDDS-Based Architecture for a Real-Time

Data Store

Maciej Lasota
Department of Computer Science, Kielce University of Technology, Kielce, Poland

E-mail: m.lasota@tu.kielce.pl

Stanisław Deniziak
Department of Computer Science, Kielce University of Technology, Kielce, Poland

E-mail: s.deniziak@tu.kielce.pl

Arkadiusz Chrobot
Department of Computer Science, Kielce University of Technology, Kielce, Poland

E-mail: a.chrobot@tu.kielce.pl

Abstract—Recent prognoses about the future of Internet

of Things and Internet Services show growing demand

for an efficient processing of huge amounts of data within

strict time limits. First of all, a real-time data store is

necessary to fulfill that requirement. One of the most

promising architecture that is able to efficiently store

large volumes of data in distributed environment is SDDS

(Scalable Distributed Data Structure). In this paper we

present SDDS LH
*

RT, an architecture that is suitable for

real-time applications. We assume that deadlines,

defining the data validity, are associated with real-time

requests. In the data store a real-time scheduling strategy

is applied to determine the order of processing the

requests. Experimental results shows that our approach

significantly improves the storage Quality-of-service in a

real-time environment.

Index Terms—Real-time, distributed data store, scalable

distributed data structures.

I. INTRODUCTION

The efficient storing and processing of data becomes

one of the most crucial problems in modern IT systems.

Emerging technologies brought up new challenges for

data stores. Cloud computing [1, 2] offers a new business

model called Storage as a Service and causes rapid

progress in distributed data stores. Internet of Things (IoT)

[3] causes the explosion of machine-generated data with

large diversity, from large image files to simple sensor

data. Big Data analytics requires fast access to large

amount of data. Thus the organization of the data store

should be suitable to the method of data processing.

The majority of contemporary data repositories is built

with the purpose to store data for off-line processing. The

Relational Database Management Systems (RDBMs) are

in a common use, however a recent grow of interest in

Big Data processing environments caused a significant

development of other data store models like NoSQL or

NewSQL.

The increasing number of Internet of Things (IoT)

devices and Internet services introduces a new category

of data sets, the Fast Data [4, 5]. They are characterized

not only by a high volume but also by a high velocity.

In Fast Data every data set and every request

concerning the data have attributed validity that starts to

decrease after a given deadline. Proper storing and

processing of such data may thus require a real-time

approach. The consequences of missing a deadline

depend on the type of a real-time policy [6 - 8]:

- In a hard real-time policy a negative value of

validity is assigned to tardy requests and data,

- In a firm real-time policy tardy requests and data

have no validity,

- In a soft real-time policy the validity of tardy

requests and data is still positive, but it diminishes

over time.

The problem of Fast Data storing and processing was

addressed in several data store implementations, however

most of them do not enforce any time restrictions on that

operations. They usually define the real-time as ―as fast

as possible‖. In this paper we introduce SDDS LH
*
RT, a

Scalable Distributed Data Structure (SDDS)-based

architecture for data store that adheres to the firm real-

time policy. The data validity is specified by the deadline

associated with the request. The SDDS server schedules

requests using real-time scheduling method.

Experimental results showed that in our approach

significantly more requests may be served in the required

time, than in existing data stores, where requests are

processed in the FIFO order. In this way a significantly

better storage Quality of Service (QoS) may be achieved.

The paper is organized as follows. Section 2 contains a

short summary of related work. Section 3 describes the

concept of SDDS and in Section 4 a motivation for the

research is given. An implementation of real-time policy

for SDDS is described in Section 5. Results of testing the

22 An SDDS-Based Architecture for a Real-Time Data Store

Copyright © 2016 MECS I.J. Information Engineering and Electronic Business, 2016, 1, 21-28

prototype implementation of SDDS LH
*

RT are presented

in Section 6. The paper is concluded in Section 7.

II. RELATED WORK

An RDBM that supports a real-time request processing

is called a Real-Time Database System (RTDBS). Many

such systems were built for both research and commercial

purposes [6 - 8]. Some of them offer only partial real-

time functionality while others provide a full support [8].

The real-time data stores are a less explored subject.

The majority of such systems is built with the purpose of

storing as quickly as possible huge amounts of real-time

data. In that context real-time means ―happening

recently‖.

VoltDB [5] is an in-memory scalable relational

database designed for handling Fast Data. Some large

companies like Ericsson and HP take advantage of

VoltDB. Similarly to other RDBMs, VoltDB stores data

in tables. However, these tables are partitioned column-

wise and distributed together with stored procedures over

nodes of a cluster. Every stored procedure is executed in

a single thread, hence it does not require locking or

synchronization. That allows VoltDB to process many

queries in parallel, which greatly contributes to its

efficiency. To further improve its performance VoltDB

replicates some of the most frequently used tables.

Despite all of these features, the VoltDB does not

guarantee that requests from clients will be processed

within predictable time periods.

The Mahanaxar [9] is an ongoing research project,

which goal is to build a data storage for intercepting,

evaluating and storing real-time data for latter processing.

Unfortunately many details about this effort are not yet

known.

Druid [10] is an in-memory real-time data store used

by such companies like Netflix or eBay. Its architecture

consists of four main elements:

- Real-Time Nodes are responsible for ingesting data

about events that happened in a given period of time;

these data are immediately available for clients,

- Historical Nodes store previously acquired data

about past events,

- Broker Nodes direct requests to Historical or Real-

Time Nodes,

- Coordinator Nodes distribute and manage Historical

Nodes.

Aside from these elements Druid also utilizes external

components like databases and file systems. It is built to

be high available and fault-tolerant. However, its main

drawback, as far as in real-time applications are

considered, is significant variability in request processing

time (latency).

An interesting real-time distributed storage was

developed for gathering and processing data from Phasor

Measurement Units used in Wide-Area Measurement

System (WAMS) for power grids [11]. The data store is

based on Chord protocol which basic version is well-

suited for the needs of WAMS. The real-time

requirements are met by recognizing a pattern in which

periodic and aperiodic tasks appear and by applying a

cyclic executive which serves those tasks within given

time intervals called time frames. Periodic tasks are given

precedence before aperiodic ones. Failing to serve a task

of any kind in a given time frame results in postponing its

execution to the next time frame. That means that the

system adheres to soft real-time requirements.

III. SCALABLE DISTRIBUTED DATA STRUCTURES (SDDSS)

Multicomputer systems are often used in applications

that need huge data storage with a short access time.

Local hard disks are not sufficient in such situations.

Scalable Distributed Data Structures (SDDSs) are a

family of data structures designed for efficient data

management in a multicomputer [12-14]. The basic data

unit in SDDS may be either a record or an object with a

unique key. Those data are organized in larger structures

called servers/buckets and stored usually in RAM of

multicomputer nodes that run an SDDS server software

and connected each other with the Fast Local Area

Network (Gigabit or Infiniband). Data from a bucket are

saved on a hard disk only when necessary e.g. when the

server is shutting down. All of the buckets form an SDDS

file (Figure 1).

Fig.1. SDDS Architecture

Initially, SDDS file consists of only one bucket which

level is equal to zero. When the bucket reaches its

capacity limit a collision occurs. SDDS adjusts its

capacity to current needs by splitting buckets. When a

bucket is overloaded it sends a message to the Split

Coordinator (SC) [12, 14, 15]. The SC takes a decision

which bucket should split. During a split operation a new

bucket is created with the level higher by one than the

splitting bucket. Next, about half of the data stored in the

splitting bucket is moved to the new bucket. When the

transfer is completed the splitting bucket increments its

level by one and acknowledges the SC. After the split,

both buckets have the same level (Figure 2).

 An SDDS-Based Architecture for a Real-Time Data Store 23

Copyright © 2016 MECS I.J. Information Engineering and Electronic Business, 2016, 1, 21-28

Fig.2. SDDS Server Split

The data in the SDDS file are accessed by an SDDS

client software executing on multicomputer nodes, other

than servers. The client does not have the whole

information about the file. Instead it has its own file

image, which may differ from the actual image of the file.

The client uses a special function to address data item (a

record or an object) in buckets. SDDS may be classified

according to addressing functions they use, for example:

- LH* - the client uses linear hashing [12],

- RP* - the client uses range partitioning [13].

Every client has its private image of SDDS file. After

the split this image becomes outdated and the client may

send request to an incorrect bucket. In such situations the

message is forwarded to the correct bucket and the client

receives Image Adjustment Message (IAM). The IAM

contains new parameters for client's addressing function,

that updates its SDDS image.

There is no single point of failure in SDDS, except for

the SC, because no central directory is used for

addressing. However, there are SDDS architectures (like

RP) that do not require the SC. All SDDS

implementations follow the same designs rules [12 - 15]:

1) For performance reasons, no central directory is

used by the clients in the process of data

addressing.

2) The SDDS file adjusts its size to the clients needs

by splitting buckets, i.e. moving about half of the

content of buckets that reached their capacity to

the newly created buckets.

3) Due to the split operations the client's image may

become outdated, but it is corrected only when the

client makes an addressing error.

4) None of the basic operations on data requires

immediate, atomic updating of client's image.

5) If the client incorrectly addresses data, then an

Image Adjusting Message (IAM) that allows it to

update its image is sent, and the data are

forwarded to the correct server.

The SDDSs constitute an example of NoSQL data

store design. The data items are stored in-memory in a

key-value form. However, the original concept of SDDS

is not entirely suitable for Fast Data processing. It lacks

the real-time capabilities.

IV. MOTIVATION

Aside of Fast Data processing there are many

applications that could benefit from using a real-time data

store [16, 17]. For example, cloud computing

environments offer services that typically follow the soft

real-time policy by monitoring Quality of Service (QoS)

and dynamically allocating resources to applications that

are critical for clients [18 - 20]. Using a real-time data

storage could simplify this task. Also the automated

trading [21], financial [22] and surveillance [23] systems

require an access to relevant data in a limited time [6].

The architecture of SDDS is relatively simple and

easily to modify, when compared to such data stores like

Druid [10]. In our research we have addressed the issue

of enabling firm real-time requests of data fetching from

SDDS LH
*
. Such operations are more critical for real-

time applications than data write requests.

We have assumed that the data store is used by many

clients with different time requirements. This is a

common case in many systems. For example, in a large

scale medical information system access to the data about

intensive care patients should be of higher priority than

the access to information about patients who undergo a

long term diagnostic procedure. Here, the priority is

based on combination of a deadline and service time of a

request. Without a real-time scheduling the requests with

a longer deadline and time of service (ToS) would

postpone the more time constrained ones. As a result they

would fail to complete before their deadlines. Figure 3

illustrates such a situation. When requests will be

serviced according to the first-in first-out rule (Fig.3 (a))

then only the deadline for request Rq1 will satisfied. If all

requests will be reordered according to their deadlines

then all time requirements will be met (Fig.3 (b)).

Fig.3. Handling of Requests

We have also assumed that the time of transferring

request through network may be properly managed or, at

least to some extend, predicted [24].

In our approach we have chosen SDDS LH
*
 [11]. This

type of SDDS uses distributed linear hashing for

addressing buckets. This algorithm requires an additional

element in SDDS architecture called Split Coordinator for

overseeing the order in which buckets split. The split

operation is performed only after a write requests. Hence

providing firm real-time writes for such an SDDS would

be more challenging than in the case of any other version

24 An SDDS-Based Architecture for a Real-Time Data Store

Copyright © 2016 MECS I.J. Information Engineering and Electronic Business, 2016, 1, 21-28

of Scalable Distributed Data Structure. On the other hand,

it would also give a more general solution to the problem.

We also do not discuss in the paper the read requests that

result in IAM messages. Those may be prevented by

allowing the clients to use filled-up read-only SDDS LH
*

or by permitting only those writes that modify data

instead of adding them. However, we want to address

both of the aforementioned issues in our future works.

V. IMPLEMENTATION OF REAL-TIME POLICY IN SDDS

LH
*

The original non-real-time SDDS LH
*
 architecture

consists of three basic software components:

1) A client that accesses data items in buckets,

2) A server which manages a single bucket located in

RAM,

3) A split coordinator overseeing split operations of

all buckets.

This type of the SDDS architecture does not support

real-time data fetching requests. Such operations critical

for real-time applications. Providing a real-time

scheduling policy for read requests requires designing a

proper internal structure of the server component. In our

SDDS architecture we added support for handling real-

time operations by using the priority queue and the

requests scheduling algorithm in the server. Proposed

server organization is shown in Figure 4.

Fig.4. Server Organization

The incoming requests from clients are received by a

pool of at most 32 threads that operate on a connection

queue. The threads insert the requests into a request

queue which is handled by a single thread. If a read

request taken form the head of the queue meets its

deadline, the thread fetches a corresponding data item

from the bucket and sends it to the client. Otherwise the

request is rejected. Requests that need to be forwarded to

another servers are put into forward queue that is

processed by a dedicated thread pool of at most 16

threads. In non-real-time SDDS LH
*
 servers the request

queue is a regular FIFO. In real-time servers a priority

queue is used instead. Requests are ordered using Least

Laxity First (LLF) scheduling method. Figure 5 shows

the overall concept of LLF implementation used for

SDDS LH
*
RT.

Fig.5. LLF Schema

After receiving a request the algorithm checks if it has

real-time requirements. If no, the FIFO algorithm is

applied for that request. Next, the LLF calculates a

priority of the request. The priority is given by the

Formula 1:

 (1)

where D is a deadline and TRP is time of request

processing. Requests are processed in descending order

of their priorities. Requests with priority equal to 0 are

rejected. The others are placed in appropriate locations of

the priority queue, according to the value of their

priorities. Then the algorithm processes a request from

 An SDDS-Based Architecture for a Real-Time Data Store 25

Copyright © 2016 MECS I.J. Information Engineering and Electronic Business, 2016, 1, 21-28

the head of the priority queue and sends response to the

client which made the request.

Since the time of accessing a data item in a bucket is

negligible comparing to the average time of transmitting

the item through a network (Tnm), we define the TRP as

follows (Formula 2):

 (2)

where the n factor is equal 4 and it is introduced to

provide for potential delays in network transmission. In

the rest of the paper we refer to the real-time enabled

SDDS LH
*
 by the name SDDS LH

*
RP.

VI. EXPERIMENTAL RESULTS

In the experiments we have evaluated the amount of

rejected time-constrained read requests and the maximal

queue length for the real-time and the non-real-time

servers.

As an environment for tests we have used two nodes of

a cluster computer. The client software was executed on a

node with Intel Xeon E5410@2.33GHz processor (4

cores) and 16GiB RAM. Server software was run on a

node with Intel Xeon E5205@1.86GHz processor (2

cores) and 6GiB RAM. Both nodes were connected

through Gigabit Ethernet network.

In a single test scenario the client was sending a

number of GET requests ranging from 100 to 10000. The

deadlines for the request was chosen from 20ms to

2000ms accordingly to an estimated size of the request's

response which ranged from 4KiB to 1024KiB. The

stream of requests in each test was unordered i.e. the

request formed a random pattern with the respect to the

value of deadlines.

Figures 6 and 7 show that with the growing load, the

SDDS LH
*
 server (FIFO queue) may reject up to 97% of

all requests, while the rejection rate of the SDDS LH
*

RT

server (PRIORITY queue) stays below 13%. Thus, the

QoS was improved by more than 7 times.

Fig.6. Rejected Read Requests with the Regard to the Scheduling
Policy, Records Size 4kib - 1024kib, Deadlines 20ms - 2000ms

Fig.7. Rejected Read Requests with the Regard to the Scheduling
Policy, Records Size 4kib - 1024kib, Deadlines 20ms - 2000ms

Above experiments showed that scheduling policy is

very important in data stores with different times of

processing the requests and/or different deadlines

specified in requests. Real-time scheduling significantly

increases the QoS but we may observe that the number of

rejected requests grows slower with increasing load of the

server.

Fig.8. Maximal Length of the Requests Queue, Records Size 4kib -
1024kib, Deadlines 20ms - 2000ms

Fig.9. Maximal Length of the Requests Queue, Records Size 4kib -
1024kib, Deadlines 20ms - 2000ms

26 An SDDS-Based Architecture for a Real-Time Data Store

Copyright © 2016 MECS I.J. Information Engineering and Electronic Business, 2016, 1, 21-28

Plots 8 and 9 show the maximum length of requests

queue for a given scheduling policy. With the increasing

total number of request the SDDS LH
*
RT server unloads

its request queue almost twice more efficiently than the

SDDS LH
*
 server.

Similar experiments were performed in the

environment where one client was sending GET requests

while other was sending UPDATE ones. Figures 10 and

11 present results obtained using the FIFO scheduling,

while results obtained using real-time scheduling are

given on Figures 12 and 13. For comparison, the results

from the previous experiments are also presented. We

may observe that in this case, significantly more requests

were rejected in the PRIORITY queue while number of

rejected requests processed in the FIFO order is almost

unchanged. But still the real-time scheduling improves

the QoS by 2 times in comparison with the FIFO

scheduling.

UPDATE requests require more time for processing,

thus such requests significantly decrease the performance

of the data store. This results in higher number of rejected

requests as well as a longer queues waiting for the

processing. But still the queue length is shorter in the

PRIORITY queue.

Fig.10. Number of Rejected GET and GET-UPDATE Requests for
FIFO Queue

Fig.11. Number of Rejected GET and GET-UPDATE Requests for
FIFO Queue

Fig.12. Number of Rejected GET and GET-UPDATE Requests for
PRIORITY Queue

Fig.13. Number of Rejected GET and GET-UPDATE Requests for
PRIORITY Queue

VII. CONCLUSIONS

In this paper we have presented our work concerning

real-time requests in the data store based on SDDSs.

Instead of processing requests in the FIFO order, like in

classical data stores, in our approach requests are

scheduled using real-time scheduling policy. For this

purpose the LLF algorithm was applied. The

experimental results indicate that when a server is

overloaded with incoming requests, even a relatively

simple real-time scheduling policy allows it to process

significantly more request, before their deadlines expire.

Therefore, the number of rejected request is greatly

reduced and the QoS is improved by more than 7 times.

Since our implementation was not optimized, we

expect that the results could be further improved by

applying aging of queued requests or using a dedicated

implementation of the priority queue. In this way the time

of scheduling will be reduced.

In our future work we plan to address the problem of

assuring the firm real-time policy for data insertion

requests and bucket split operations. Solving those

problems will also require providing a real-time

 An SDDS-Based Architecture for a Real-Time Data Store 27

Copyright © 2016 MECS I.J. Information Engineering and Electronic Business, 2016, 1, 21-28

forwarding of misaddressed requests. Finally, we expect

to obtain a real-time distributed data store, that may be

used in a wide range of real-time Internet applications.

REFERENCES

[1] S. Goyal, ―Public vs Private vs Hybrid vs Community -

Cloud Computing: A Critical Review,‖ International

Journal of Computer Network and Information

Security(IJCNIS), MECS Publisher, IJCNIS Vol. 6, No. 3,

February 2014, pp. 20 – 28.

[2] S. Bilgaiyan, S. Sagnika, S. Mishra, and M. Das, ―Study

of Task Scheduling in Cloud Computing Environment

Using Soft Computing Algorithms,‖ International Journal

of Modern Education and Computer Science (IJMECS),

MECS Publisher, IJMECS Vol.7, No. 3, March 2015, pp.

32 – 38.

[3] G. Zhang and J. Liu, ―The Study of Access Control for

Service-Oriented Computing in Internet of Things,‖

International Journal of Wireless and Microwave

Technologies (IJWMT), MECS Publisher, IJWMT Vol.2,

No.3, June 2012, pp. 62 – 68.

[4] P. Hui, S. Chikkagoudar, D. Chavarría-Miranda and M.

Johnston, ―Towards a realtime cluster computing

infrastructure,‖ in Real-Time Systems Symposium (RTSS

2011), The 32nd IEEE Real-Time Systems Symposium,

Piscataway, NJ, IEEE (2011) 17-20.

[5] VoltDB, ―Fast data-fast, smart, scale|voltdb,‖

www.voltdb.com [Online: accessed 14-April-2015].

[6] B. Kao and H. Garcia-Molina, ―An overview of real-time

database systems,‖ in Advances in Real-Time Systems,

Springer-Verlag (1994) 463-486.

[7] S. A. Aldarmi, ―Real-time database systems: Concepts

and design,‖ (1998).

[8] J. Lindström, ―Real time database systems,‖ in Wiley

Encyclopedia of Computer Science and Engineering.

(2008).

[9] D. Bigelow, S. Brandt, J. Bent, H. Chen, J. Nunez and M.

Wingate, ―Mahanaxar: Managing High-Bandwidth Real-

Time Data Storage,‖

https://systems.soe.ucsc.edu/node/389 [Online: accessed

14-April-2015].

[10] F. Yang, E. Tschetter, X. Léauté, N. Ray, G. Merlino, and

D. Ganguli, ―Druid: A real-time analytical data store,‖ in

Proceedings of the 2014 ACM SIGMOD International

Conference on Management of Data, SIGMOD '14, New

York, NY, USA, ACM (2014) 157-168.

[11] T. Qian, A. Chakrabortty, F. Mueller and Y. Xin, ―A real-

time distributed storage system for multi-resolution virtual

synchrophasor,‖ in PES General Meeting | Conference &

Exposition, 2014 IEEE , vol., no., pp.1-5, 27-31 July 2014.

[12] W. Litwin, M. A. Neimat, and D. A. Schneider, ―LH* a

scalable, distributed data structure,‖ ACM Transactions on

Database Systems, 21(4) (1996) 480-525.

[13] W. Litwin, M. A. Neimat, and D. A. Schneider, ―RP*: A

Family of Order Preserving Scalable Distributed Data

Structures,‖ in Proceedings of the Twentieth International

Conference on Very Large Databases, Santiago, Chile

(1994) 342-353.

[14] Y. Ndiaye, A. Diene, W. Litwin, and T. Risch, ―AMOS-

SDDS: A Scalable Distributed Data Manager for

Windows Multicomputers,‖ in 14th Intl. Conference on

Parallel and Distributed Computing Systems - PDCS

2001, (2001).

[15] K. Sapiecha, and G. Łukawski, ―Scalable Distributed

Two-Layer Data Structures (SD2DS),‖ IJDST (2013) 15-

30.

[16] S. Deniziak, and S. Bak, ―Synthesis of Real Time

Distributed Applications for Cloud Computing,‖ in

Computer Science and Information Systems (FedCSIS),

2014 Federated Conference on. (Sept 2014) 743-752.

[17] C. McGregor, ―A cloud computing framework for real-

time rural and remote service of critical care,‖ in

Computer-Based Medical Systems (CBMS), 2011 24th

International Symposium on. (June 2011) 1-6.

[18] W. Tsai, Q. Shao, X. Sun and J. Elston, ―Real-Time

Service-Oriented Cloud Computing,‖ in 6th World

Congress on Services, SERVICES 2010, Miami, Florida,

USA, July 5-10, 2010. (2010) 473-478.

[19] S. Liu, G. Quan, and S. Ren, ―On-Line Scheduling of

Real-Time Services for Cloud Computing,‖ in 6th World

Congress on Services, SERVICES 2010, Miami, Florida,

USA, July 5-10, 2010. (2010) 459-464.

[20] D. Kyriazis, A. Menychtas, K. Oberle, T. Voith, A.

Lucent, M. Boniface, E. Oliveros, T. Cucinotta, and S.

Berger, ―A real-time service oriented infrastructure,‖ in

Proc. Annual International Conference on Real-Time and

Embedded Systems.

[21] C. Freeny, ―Automatic Stock Trading System,‖

http://www.google.com/patents/ US6594643 (2003) US

Patent 6, 594, 643.

[22] G. Fenu, and S. Surcis, ―A cloud computing based real

time financial system,‖ in Bestak, R., 0002, L.G.,

Zaborovsky, V.S., Dini, C., eds.: ICN, IEEE Computer

Society (2009) 374-379.

[23] O. Javed, Z. Rasheed, O. Alatas, and M. Shah,

―KNIGHTTM: a Real Time Surveillance System for

Multiple and Non-Overlapping Cameras,‖ in Proceedings

of the 2003 IEEE International Conference on Multimedia

and Expo, ICME 2003, 6-9 July 2003, Baltimore, MD,

USA. (2003) 649-652.

[24] F. Lu, J. Wang, L. Cheng, M. Xu, M. Zhu, and G. K.

Chang, ―Millimeter-wave radioover-fiber access

architecture for implementing real-time cloud computing

service,‖ in CLEO: 2014, Optical Society of America

(2014) STu1J.1.

Authors’ Profiles

Maciej Lasota is a PhD candidate and

Assistant Researcher at the Department of

Computer Science in Kielce University of

Technology, Poland. He received MSc in

Computer Science from Kielce University

of Technology in 2007. In 2008 he received

Eng. in Control Engineering and Robotics

also from Kielce University of Technology,

Poland.

His primary technical and research interest is in distributed

systems, with a particular focus on scalable distributed data

structures, distributed data stores, cloud computing and real-

time systems.

Stanisław Deniziak is Professor of

Computer Science in Department of

Computer Science, Kielce University of

Technology, Poland. He received MSc in

Computer Science from Warsaw University

of Technology, and PhD degree from

Gdańsk University of Technology. In 2006

he received DSc in Computer Science from

28 An SDDS-Based Architecture for a Real-Time Data Store

Copyright © 2016 MECS I.J. Information Engineering and Electronic Business, 2016, 1, 21-28

Warsaw University of Technology. Now, he is Vice Dean for

Research and Promotion of Faculty of Electrical Engineering,

Automatics and Computer Science, Kielce University of

Technology.

He has published 85 research papers in various international

and national journals, books and conferences. He is active

reviewer end editorial member of 7 international journals such

Journal of Systems and Software, Computing, Microprocessors

and Microsystems, International Journal of Applied

Mathematics and Computer Science, The Open Cybernetics &

Systemic Journal, International Journal of the Physical Sciences,

Annales UMCS - Sectio A Informatica. He has reviewed

research papers of many international conferences like: IEEE

Design Automation Conference, International Conference of

Computational Methods in Sciences and Engineering etc.

Prof. Deniziak is IEEE and IEEE Computer Society Member.

Arkadiusz Chrobot is an Assistant

Professor at the Department of Computer

Science in Kielce University of

Technology. He received MSc degree in

Computer Science from Wrocław

University of Technology in 2001 and

PhD degree from Silesia University of

Technology in Gliwice in 2012.

His research interests include distributed and real-time

systems. Aside of research activities he is also involved in

teaching of Basics of Programming, Operating Systems and

Software Engineering.

How to cite this paper: Maciej Lasota, Stanisław Deniziak, Arkadiusz Chrobot,"An SDDS-Based Architecture for a

Real-Time Data Store", International Journal of Information Engineering and Electronic Business(IJIEEB), Vol.8, No.1,

pp.21-28, 2016. DOI: 10.5815/ijieeb.2016.01.03

