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Abstract—Recent prognoses about the future of Internet 

of Things and Internet Services show growing demand 

for an efficient processing of huge amounts of data within 

strict time limits. First of all, a real-time data store is 

necessary to fulfill that requirement. One of the most 

promising architecture that is able to efficiently store 

large volumes of data in distributed environment is SDDS 

(Scalable Distributed Data Structure). In this paper we 

present SDDS LH
*

RT, an architecture that is suitable for 

real-time applications. We assume that deadlines, 

defining the data validity, are associated with real-time 

requests. In the data store a real-time scheduling strategy 

is applied to determine the order of processing the 

requests. Experimental results shows that our approach 

significantly improves the storage Quality-of-service in a 

real-time environment. 

 
Index Terms—Real-time, distributed data store, scalable 

distributed data structures. 

 

I.  INTRODUCTION 

The efficient storing and processing of data becomes 

one of the most crucial problems in modern IT systems. 

Emerging technologies brought up new challenges for 

data stores. Cloud computing [1, 2] offers a new business 

model called Storage as a Service and causes rapid 

progress in distributed data stores. Internet of Things (IoT) 

[3] causes the explosion of machine-generated data with 

large diversity, from large image files to simple sensor 

data. Big Data analytics requires fast access to large 

amount of data. Thus the organization of the data store 

should be suitable to the method of data processing. 

The majority of contemporary data repositories is built 

with the purpose to store data for off-line processing. The 

Relational Database Management Systems (RDBMs) are 

in a common use, however a recent grow of interest in 

Big Data processing environments caused a significant 

development of other data store models like NoSQL or 

NewSQL. 

The increasing number of Internet of Things (IoT) 

devices and Internet services introduces a new category 

of data sets, the Fast Data [4, 5]. They are characterized 

not only by a high volume but also by a high velocity. 

In Fast Data every data set and every request 

concerning the data have attributed validity that starts to 

decrease after a given deadline. Proper storing and 

processing of such data may thus require a real-time 

approach. The consequences of missing a deadline 

depend on the type of a real-time policy [6 - 8]: 

 

- In a hard real-time policy a negative value of 

validity is assigned to tardy requests and data, 

- In a firm real-time policy tardy requests and data 

have no validity, 

- In a soft real-time policy the validity of tardy 

requests and data is still positive, but it diminishes 

over time. 

 

The problem of Fast Data storing and processing was 

addressed in several data store implementations, however 

most of them do not enforce any time restrictions on that 

operations. They usually define the real-time as ―as fast 

as possible‖. In this paper we introduce SDDS LH
*
RT, a 

Scalable Distributed Data Structure (SDDS)-based 

architecture for data store that adheres to the firm real-

time policy. The data validity is specified by the deadline 

associated with the request. The SDDS server schedules 

requests using real-time scheduling method. 

Experimental results showed that in our approach 

significantly more requests may be served in the required 

time, than in existing data stores, where requests are 

processed in the FIFO order. In this way a significantly 

better storage Quality of Service (QoS) may be achieved. 

The paper is organized as follows. Section 2 contains a 

short summary of related work. Section 3 describes the 

concept of SDDS and in Section 4 a motivation for the 

research is given. An implementation of real-time policy 

for SDDS is described in Section 5. Results of testing the 



22 An SDDS-Based Architecture for a Real-Time Data Store  

Copyright © 2016 MECS                                        I.J. Information Engineering and Electronic Business, 2016, 1, 21-28 

prototype implementation of SDDS LH
*

RT are presented 

in Section 6. The paper is concluded in Section 7. 

 

II.  RELATED WORK 

An RDBM that supports a real-time request processing 

is called a Real-Time Database System (RTDBS). Many 

such systems were built for both research and commercial 

purposes [6 - 8]. Some of them offer only partial real-

time functionality while others provide a full support [8].  

The real-time data stores are a less explored subject. 

The majority of such systems is built with the purpose of 

storing as quickly as possible huge amounts of real-time 

data. In that context real-time means ―happening 

recently‖.  

VoltDB [5] is an in-memory scalable relational 

database designed for handling Fast Data. Some large 

companies like Ericsson and HP take advantage of 

VoltDB. Similarly to other RDBMs, VoltDB stores data 

in tables. However, these tables are partitioned column-

wise and distributed together with stored procedures over 

nodes of a cluster. Every stored procedure is executed in 

a single thread, hence it does not require locking or 

synchronization. That allows VoltDB to process many 

queries in parallel, which greatly contributes to its 

efficiency. To further improve its performance VoltDB 

replicates some of the most frequently used tables. 

Despite all of these features, the VoltDB does not 

guarantee that requests from clients will be processed 

within predictable time periods. 

The Mahanaxar [9] is an ongoing research project, 

which goal is to build a data storage for intercepting, 

evaluating and storing real-time data for latter processing. 

Unfortunately many details about this effort are not yet 

known. 

Druid [10] is an in-memory real-time data store used 

by such companies like Netflix or eBay. Its architecture 

consists of four main elements: 

 

- Real-Time Nodes are responsible for ingesting data 

about events that happened in a given period of time; 

these data are immediately available for clients, 

- Historical Nodes store previously acquired data 

about past events, 

- Broker Nodes direct requests to Historical or Real-

Time Nodes, 

- Coordinator Nodes distribute and manage Historical 

Nodes. 

 

Aside from these elements Druid also utilizes external 

components like databases and file systems. It is built to 

be high available and fault-tolerant. However, its main 

drawback, as far as in real-time applications are 

considered, is significant variability in request processing 

time (latency). 

An interesting real-time distributed storage was 

developed for gathering and processing data from Phasor 

Measurement Units used in Wide-Area Measurement 

System (WAMS) for power grids [11]. The data store is 

based on Chord protocol which basic version is well-

suited for the needs of WAMS. The real-time 

requirements are met by recognizing a pattern in which 

periodic and aperiodic tasks appear and by applying a 

cyclic executive which serves those tasks within given 

time intervals called time frames. Periodic tasks are given 

precedence before aperiodic ones. Failing to serve a task 

of any kind in a given time frame results in postponing its 

execution to the next time frame. That means that the 

system adheres to soft real-time requirements. 

 

III.  SCALABLE DISTRIBUTED DATA STRUCTURES (SDDSS) 

Multicomputer systems are often used in applications 

that need huge data storage with a short access time. 

Local hard disks are not sufficient in such situations. 

Scalable Distributed Data Structures (SDDSs) are a 

family of data structures designed for efficient data 

management in a multicomputer [12-14]. The basic data 

unit in SDDS may be either a record or an object with a 

unique key. Those data are organized in larger structures 

called servers/buckets and stored usually in RAM of 

multicomputer nodes that run an SDDS server software 

and connected each other with the Fast Local Area 

Network (Gigabit or Infiniband). Data from a bucket are 

saved on a hard disk only when necessary e.g. when the 

server is shutting down. All of the buckets form an SDDS 

file (Figure 1). 

 

 

Fig.1. SDDS Architecture 

Initially, SDDS file consists of only one bucket which 

level is equal to zero. When the bucket reaches its 

capacity limit a collision occurs. SDDS adjusts its 

capacity to current needs by splitting buckets. When a 

bucket is overloaded it sends a message to the Split 

Coordinator (SC) [12, 14, 15]. The SC takes a decision 

which bucket should split. During a split operation a new 

bucket is created with the level higher by one than the 

splitting bucket. Next, about half of the data stored in the 

splitting bucket is moved to the new bucket. When the 

transfer is completed the splitting bucket increments its 

level by one and acknowledges the SC. After the split, 

both buckets have the same level (Figure 2). 
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Fig.2. SDDS Server Split 

The data in the SDDS file are accessed by an SDDS 

client software executing on multicomputer nodes, other 

than servers. The client does not have the whole 

information about the file. Instead it has its own file 

image, which may differ from the actual image of the file. 

The client uses a special function to address data item (a 

record or an object) in buckets. SDDS may be classified 

according to addressing functions they use, for example: 

 

- LH* - the client uses linear hashing [12], 

- RP* - the client uses range partitioning [13]. 

 

Every client has its private image of SDDS file. After 

the split this image becomes outdated and the client may 

send request to an incorrect bucket. In such situations the 

message is forwarded to the correct bucket and the client 

receives Image Adjustment Message (IAM). The IAM 

contains new parameters for client's addressing function, 

that updates its SDDS image. 

There is no single point of failure in SDDS, except for 

the SC, because no central directory is used for 

addressing. However, there are SDDS architectures (like 

RP) that do not require the SC. All SDDS 

implementations follow the same designs rules [12 - 15]: 

 

1) For performance reasons, no central directory is 

used by the clients in the process of data 

addressing. 

2) The SDDS file adjusts its size to the clients needs 

by splitting buckets, i.e. moving about half of the 

content of buckets that reached their capacity to 

the newly created buckets. 

3) Due to the split operations the client's image may 

become outdated, but it is corrected only when the 

client makes an addressing error. 

4) None of the basic operations on data requires 

immediate, atomic updating of client's image. 

5) If the client incorrectly addresses data, then an 

Image Adjusting Message (IAM) that allows it to 

update its image is sent, and the data are 

forwarded to the correct server. 

 

The SDDSs constitute an example of NoSQL data 

store design. The data items are stored in-memory in a 

key-value form. However, the original concept of SDDS 

is not entirely suitable for Fast Data processing. It lacks 

the real-time capabilities. 

 

IV.  MOTIVATION 

Aside of Fast Data processing there are many 

applications that could benefit from using a real-time data 

store [16, 17]. For example, cloud computing 

environments offer services that typically follow the soft 

real-time policy by monitoring Quality of Service (QoS) 

and dynamically allocating resources to applications that 

are critical for clients [18 - 20]. Using a real-time data 

storage could simplify this task. Also the automated 

trading [21], financial [22] and surveillance [23] systems 

require an access to relevant data in a limited time [6]. 

The architecture of SDDS is relatively simple and 

easily to modify, when compared to such data stores like 

Druid [10]. In our research we have addressed the issue 

of enabling firm real-time requests of data fetching from 

SDDS LH
*
. Such operations are more critical for real-

time applications than data write requests. 

We have assumed that the data store is used by many 

clients with different time requirements. This is a 

common case in many systems. For example, in a large 

scale medical information system access to the data about 

intensive care patients should be of higher priority than 

the access to information about patients who undergo a 

long term diagnostic procedure. Here, the priority is 

based on combination of a deadline and service time of a 

request. Without a real-time scheduling the requests with 

a longer deadline and time of service (ToS) would 

postpone the more time constrained ones. As a result they 

would fail to complete before their deadlines. Figure 3 

illustrates such a situation. When requests will be 

serviced according to the first-in first-out rule (Fig.3 (a)) 

then only the deadline for request Rq1 will satisfied. If all 

requests will be reordered according to their deadlines 

then all time requirements will be met (Fig.3 (b)). 

 

 

Fig.3. Handling of Requests 

We have also assumed that the time of transferring 

request through network may be properly managed or, at 

least to some extend, predicted [24]. 

In our approach we have chosen SDDS LH
*
 [11]. This 

type of SDDS uses distributed linear hashing for 

addressing buckets. This algorithm requires an additional 

element in SDDS architecture called Split Coordinator for 

overseeing the order in which buckets split. The split 

operation is performed only after a write requests. Hence 

providing firm real-time writes for such an SDDS would 

be more challenging than in the case of any other version 
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of Scalable Distributed Data Structure. On the other hand, 

it would also give a more general solution to the problem. 

We also do not discuss in the paper the read requests that 

result in IAM messages. Those may be prevented by 

allowing the clients to use filled-up read-only SDDS LH
*
 

or by permitting only those writes that modify data 

instead of adding them. However, we want to address 

both of the aforementioned issues in our future works. 

 

V.  IMPLEMENTATION OF REAL-TIME POLICY IN SDDS 

LH
*
 

The original non-real-time SDDS LH
*
 architecture 

consists of three basic software components: 

 

1) A client that accesses data items in buckets, 

2) A server which manages a single bucket located in 

RAM, 

3) A split coordinator overseeing split operations of 

all buckets. 

 

This type of the SDDS architecture does not support 

real-time data fetching requests. Such operations critical 

for real-time applications. Providing a real-time 

scheduling policy for read requests requires designing a 

proper internal structure of the server component. In our 

SDDS architecture we added support for handling real-

time operations by using the priority queue and the 

requests scheduling algorithm in the server. Proposed 

server organization is shown in Figure 4. 

 

 

Fig.4. Server Organization 

The incoming requests from clients are received by a 

pool of at most 32 threads that operate on a connection 

queue. The threads insert the requests into a request 

queue which is handled by a single thread. If a read 

request taken form the head of the queue meets its 

deadline, the thread fetches a corresponding data item 

from the bucket and sends it to the client. Otherwise the 

request is rejected. Requests that need to be forwarded to 

another servers are put into forward queue that is 

processed by a dedicated thread pool of at most 16 

threads. In non-real-time SDDS LH
*
 servers the request 

queue is a regular FIFO. In real-time servers a priority 

queue is used instead. Requests are ordered using Least 

Laxity First (LLF) scheduling method. Figure 5 shows 

the overall concept of LLF implementation used for 

SDDS LH
*
RT. 

 

 

Fig.5. LLF Schema 

After receiving a request the algorithm checks if it has 

real-time requirements. If no, the FIFO algorithm is 

applied for that request. Next, the LLF calculates a 

priority of the request. The priority is given by the 

Formula 1: 

 

              (1) 

 

where D is a deadline and TRP is time of request 

processing. Requests are processed in descending order 

of their priorities. Requests with priority equal to 0 are 

rejected. The others are placed in appropriate locations of 

the priority queue, according to the value of their 

priorities. Then the algorithm processes a request from 
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the head of the priority queue and sends response to the 

client which made the request. 

Since the time of accessing a data item in a bucket is 

negligible comparing to the average time of transmitting 

the item through a network (Tnm), we define the TRP as 

follows (Formula 2): 

 

                            (2) 

 

where the n factor is equal 4 and it is introduced to 

provide for potential delays in network transmission. In 

the rest of the paper we refer to the real-time enabled 

SDDS LH
*
 by the name SDDS LH

*
RP. 

 

VI.  EXPERIMENTAL RESULTS 

In the experiments we have evaluated the amount of 

rejected time-constrained read requests and the maximal 

queue length for the real-time and the non-real-time 

servers. 

As an environment for tests we have used two nodes of 

a cluster computer. The client software was executed on a 

node with Intel Xeon E5410@2.33GHz processor (4 

cores) and 16GiB RAM. Server software was run on a 

node with Intel Xeon E5205@1.86GHz processor (2 

cores) and 6GiB RAM. Both nodes were connected 

through Gigabit Ethernet network. 

In a single test scenario the client was sending a 

number of GET requests ranging from 100 to 10000. The 

deadlines for the request was chosen from 20ms to 

2000ms accordingly to an estimated size of the request's 

response which ranged from 4KiB to 1024KiB. The 

stream of requests in each test was unordered i.e. the 

request formed a random pattern with the respect to the 

value of deadlines. 

Figures 6 and 7 show that with the growing load, the 

SDDS LH
*
 server (FIFO queue) may reject up to 97% of 

all requests, while the rejection rate of the SDDS LH
*

RT 

server (PRIORITY queue) stays below 13%. Thus, the 

QoS was improved by more than 7 times. 

 

 

Fig.6. Rejected Read Requests with the Regard to the Scheduling 
Policy, Records Size 4kib - 1024kib, Deadlines 20ms - 2000ms 

 

Fig.7. Rejected Read Requests with the Regard to the Scheduling 
Policy, Records Size 4kib - 1024kib, Deadlines 20ms - 2000ms 

Above experiments showed that scheduling policy is 

very important in data stores with different times of 

processing the requests and/or different deadlines 

specified in requests. Real-time scheduling significantly 

increases the QoS but we may observe that the number of 

rejected requests grows slower with increasing load of the 

server. 

 

 

Fig.8. Maximal Length of the Requests Queue, Records Size 4kib - 
1024kib, Deadlines 20ms - 2000ms 

 

Fig.9. Maximal Length of the Requests Queue, Records Size 4kib - 
1024kib, Deadlines 20ms - 2000ms
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Plots 8 and 9 show the maximum length of requests 

queue for a given scheduling policy. With the increasing 

total number of request the SDDS LH
*
RT server unloads 

its request queue almost twice more efficiently than the 

SDDS LH
*
 server. 

Similar experiments were performed in the 

environment where one client was sending GET requests 

while other was sending UPDATE ones. Figures 10 and 

11 present results obtained using the FIFO scheduling, 

while results obtained using real-time scheduling are 

given on Figures 12 and 13. For comparison, the results 

from the previous experiments are also presented. We 

may observe that in this case, significantly more requests 

were rejected in the PRIORITY queue while number of 

rejected requests processed in the FIFO order is almost 

unchanged. But still the real-time scheduling improves 

the QoS by 2 times in comparison with the FIFO 

scheduling.  

UPDATE requests require more time for processing, 

thus such requests significantly decrease the performance 

of the data store. This results in higher number of rejected 

requests as well as a longer queues waiting for the 

processing. But still the queue length is shorter in the 

PRIORITY queue. 

 

 

Fig.10. Number of Rejected GET and GET-UPDATE Requests for 
FIFO Queue 

 

Fig.11. Number of Rejected GET and GET-UPDATE Requests for 
FIFO Queue 

 

Fig.12. Number of Rejected GET and GET-UPDATE Requests for 
PRIORITY Queue 

 

Fig.13. Number of Rejected GET and GET-UPDATE Requests for 
PRIORITY Queue 

 

VII.  CONCLUSIONS 

In this paper we have presented our work concerning 

real-time requests in the data store based on SDDSs. 

Instead of processing requests in the FIFO order, like in 

classical data stores, in our approach requests are 

scheduled using real-time scheduling policy. For this 

purpose the LLF algorithm was applied. The 

experimental results indicate that when a server is 

overloaded with incoming requests, even a relatively 

simple real-time scheduling policy allows it to process 

significantly more request, before their deadlines expire. 

Therefore, the number of rejected request is greatly 

reduced and the QoS is improved by more than 7 times. 

Since our implementation was not optimized, we 

expect that the results could be further improved by 

applying aging of queued requests or using a dedicated 

implementation of the priority queue. In this way the time 

of scheduling will be reduced.  

In our future work we plan to address the problem of 

assuring the firm real-time policy for data insertion 

requests and bucket split operations. Solving those 

problems will also require providing a real-time 
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forwarding of misaddressed requests. Finally, we expect 

to obtain a real-time distributed data store, that may be 

used in a wide range of real-time Internet applications. 
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