
I.J. Information Engineering and Electronic Business, 2015, 6, 53-62
Published Online November 2015 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijieeb.2015.06.08

Copyright © 2015 MECS I.J. Information Engineering and Electronic Business, 2015, 6, 53-62

Improving Fault-Tolerant Load Balancing

Algorithms in Computational Grids

Jasma Balasangameshwara
Atria Institute of Technology, Karnataka, India

Email: jasma2002@gmail.com

Abstract—Fault tolerant scheduling of many jobs in an

environment with millions of unpredictable nodes is not an

easy issue. To the best of our knowledge, no work in the

literature has proposed a solution that combines the merits

of active and passive replication schemes of fault tolerance

with the advantages of performance-driven load balancing

so as to make the most of the strong points of each. While

extensive fault tolerant scheduling and load balancing

methods have been presented for the sequential jobs, none

have taken into account fault-tolerant load balancing that

minimizes the job make-span, provides efficient network

and node utilization, achieves a Ill-balanced load and high

system flexibility even during the resource failures. Hence,

in this article, I present an Adaptive Scheduling Algorithm

namely ASA that overcomes these problems. With

thorough simulations, I conclude that ASA allocates any

number of jobs to a million nodes with relatively low

overhead and high flexibility. Experimental results show

that the performance of ASA is better than those of its

counterparts.

Index Terms—Computing Grid, Fault-Tolerant

Scheduling, Load Balancing.

I. INTRODUCTION

Due to the growth of science and engineering, problems

in these fields have become complicated. To solve such

complex problems, a dominant computing facility is

required. A computing grid is a federation of hardware and

software infrastructures from various locations that offer

reliable, consistent, persistent and economical access to

high-end computational capabilities [1]. They enable

active sharing, aggregation and selection of

geographically dispersed, autonomous and diverse nodes

at run-time based on their availability, performance and

capability.

In a real world scenario, the job arrival patterns are

volatile and the computing capabilities erratic and

asymmetrical. The nodes in a particular grid site may

become overloaded while other grid sites may be

under-loaded [2]. Therefore, the heterogeneous and the

dynamic environment of grids require load balancing and

fault-tolerance in order to make the best usage of the

performance of the grid nodes.

1.2 Background

Job scheduling is an efficient approach to realize high

application performance in grid environments. Job

scheduling algorithms are divided into two types: batch

mode and on-line mode. In batch mode, jobs are queued

and collected into a set. The scheduling algorithm initiates

after a fixed time period. Batch mode algorithms are more

suitable for environments utilizing the same resource. In

on-line mode, jobs are scheduled when they arrive. Since

the grid environment is heterogeneous and processor

speeds vary among nodes, on-line mode scheduling is

more appropriate for the grid environment [3]. Our work is

focused on non-pre-emptive online scheduling of

a-periodic and sequential jobs.

Load balancing plays an imperative role in improving

grid node utilization and reducing the usage of time. Also,

the method used for load balancing affects the

performance of the grid system. Hence, load balancing

techniques should be “fair” in distributing the load across

the grid nodes. The meaning of “fair” is that the difference

between the “heaviest loaded” node and “lightest loaded”

node should be minimized [4].

In a grid system, resource failures come about

frequently leading to damaging consequences. Hence, I

need to develop efficient methods to tolerate such failures.

Fault tolerance can be classified as [5]

(1) Active replication mode: This method is based on

space redundancy and does not require fault

detection.

(2) Passive replication mode: In this method, a

backup copy of a job is activated only if a fault

occurs while executing its primary copy. The

techniques applied while scheduling primary and

backup copies of a job are: (1) Backup

Overloading: This consists of scheduling backups

for multiple primary jobs during the same time slot.

(2) De-allocation of resources reserved for backup

jobs when the corresponding primaries complete

successfully.

1.2 Motivation

There have been huge efforts in the recent years for

developing fault-tolerant scheduling and load balancing

algorithms to realize high job performance in a grid

environment. Unfortunately, many practical instances of

such problems are found to be NP-complete [2]. Hence,

our work is motivated by the need for the competent

techniques that takes into consideration grid architecture,

resource and job heterogeneity, communication delay and

54 Improving Fault-Tolerant Load Balancing Algorithms in Computational Grids

Copyright © 2015 MECS I.J. Information Engineering and Electronic Business, 2015, 6, 53-62

resource volatility. Our foremost intention is to arrive at

job assignments that realize minimum job make-span,

efficient network and node utilization, an Ill-balanced load,

high system reliability and flexibility even during the

resource failures. A resource failure can be a link and/or

processor failure.

Many fault-tolerant scheduling techniques and load

balancing methods have been designed for computing

grids supporting sequential jobs. However, to the best of

our literature understanding, this study is the first of its

kinds to jointly consider hybrid fault-tolerant scheduling

and load balancing for sequential jobs. It is a challenge to

propose a new hybrid fault-tolerant scheduling and load

balancing strategy for sequential jobs running on a

computing grid. This challenge is the motivation to extend

the scheduling method proposed in [6] and integrate it with

fault-tolerant load balancing approach [7] for sequential

jobs.

1.3 Contribution

My contributions in this article are multifold. I have

proposed a hybrid fault-tolerant load balancing technique

for a computing grid. Given that, grid infrastructures are

dynamic in nature with a varying network topology; I

generate a random topology with nodes of varying

capacities and varying bandwidth between the links

connecting them.

To the best of our knowledge, I are the first to

cumulatively tackle the following:

1. Juxtaposing the merits of active replication and

passive replication schemes of fault-tolerance, the

advantages of performance-driven load balancing

to form a hybrid one so as to make the most of the

strong points of each.

2. ASA takes into account grid architecture, resource

and job heterogeneity, communication delay and

resource unpredictability for sequential jobs.

3. ASA minimizes the communication cost and

replication cost of sequential jobs.

4. ASA aims to deal with millions of nodes with

varying frequency of failures.

5. I have conducted trace-driven simulation tests

using a million nodes.

The key contributions of this study to the related

existing work are summarized as follows:

1. Mutual information feedback scheme and neighbor

selection strategy proposed in [7] are further

enhanced.

2. Estimating the availability and efficiency of nodes

by simplifying the modeling of decision making in

fault-tolerant scheduling.

Simulation results show that high job performance gains

are achieved in terms of jobs make-span.

Remainder of this work is organized as follows: Section

2 reviews related work in literature. The overview of the

system model is presented in section 3. Section 4 presents

our proposed algorithm in detail. Section 5 focuses on the

setup of the simulation and the experimental results.

Finally, section 6 is dedicated to conclusion and future

work.

II. RELATED WORK

Despite the facts that load balancing, job scheduling and

fault-tolerance are active exploration areas in grid

environments, these areas have more often than not been

and continue to be developed independently of one

another, each focusing on diverse aspects of computing.

It has been shown that as more information is collected

by an algorithm, the algorithm can make better load

balancing decisions however at an increased overhead [16].

Dynamic load balancing technique is opted for

heterogeneous systems in computational grids because the

technique considers nodes with different processing

speeds and memory sizes, bandwidth and load [16].

With respect to load balancing and job scheduling, Lu et

al. [10] proposed a distributed load balancing technique

for a computing grid which took into account the issues of

scalability, resource heterogeneity and significant

communication overhead. However, Lu did not consider

the execution scheme for data distribution. Braun et al. [11]

proposed Minimum Execution Time (MET) and

Minimum Completion Time (MCT) scheduling methods.

But both MET and MCT leads to poor make-span. The

Most Fit Task First (MFTF) method proposed in [12]

discovers the fitness between jobs and nodes. However

MFTF does not consider node utilization and the

estimation function is an ideal function leading to

incorrect scheduling in real environment. Lee et al. [13]

proposed hierarchical job scheduling framework for load

balancing and minimizing the job make-spans. However,

Lee neglected job length and assumed the system to be

static.

Rafiqul and Ali proposed a diffusion load balancing

algorithm for distributed computing systems [16]. They

have shown that the communication overhead depends on

the load of the nodes. However, they have not considered

the dynamics of communication delay incurred due to

distance among the nodes while making a load balancing

decision.

Faulty nodes in a distributed environment can lead to

prolonged job waiting times and have a major impact on

the load balancing performance. Hence, for improving the

throughput of a system it is important to make the system

fault-tolerant.

Many fault-tolerant methods have been proposed for

grid systems [6], [9] and [14]. Luo et al. [14] proposed

DYFARS for heterogeneous systems. DYFARS considers

both active and passive replication methods thereby

proving high system flexibility. However, it did not

substantiate its work with realistic workload and large

number of nodes. Zhu et al. [6] proposed fault-tolerant

scheduling algorithm for heterogeneous clusters. However,

they focused on a centralized scheduling model and did

not take into account network bandwidth while scheduling

real-time tasks.

 Improving Fault-Tolerant Load Balancing Algorithms in Computational Grids 55

Copyright © 2015 MECS I.J. Information Engineering and Electronic Business, 2015, 6, 53-62

Danial et al. proposed a distributed fault tolerant

algorithm for distributed computing systems for

eliminating single point of failure [17]. A major advantage

of the algorithm is that it exchanges fever messages as

compared to ring algorithm, modified Bully algorithm.

However, the work does not consider optimizing nodes for

message transfer.

In this article, I pay interest on the issues of hybrid load

balancing and non-pre-emptive fault-tolerant scheduling

of sequential jobs for a computing grid. Given a

dynamically changing load, ASA adaptively switches

between passive replication scheme and active replication

scheme. To achieve high scheduling ability and an Ill-

balanced load, ASA optimizes the resource and network

utilization for sequential jobs.

III. SYSTEM MODEL

In this section, I bring in the models, concepts and

terminology used in this article. The model presented in

this article provides a scalable fault-tolerant load

balancing service to nearly any type of a computing grid

platform.

3.1 Scheduling Model

The scheduling model and node model addressed in this

article are based on the scheduling model and node model

outlined in [8]; with similar ideas and terminologies as in

[8].

The distributed scheduling model that has been

proposed in this article is divided into two models namely

a local model and a global model. The local model

describes the working of the local scheduler. The local

scheduler runs on each processing node, to control the

processing of jobs in its job queue. The global model

describes the availability status, the efficiency information

and the forwarding algorithm. The global scheduler

determines the implementation of these three elements.

 Each local scheduler computes the availability of its

node to execute the jobs using an event-driven policy and

exports this information. The availability status is then

used by the forwarding algorithm to route the jobs to the

most appropriate processing node.

3.2 Node Model

Physical nodes are structured in a logical overlay

manner. The nodes are connected via different

communication links with different speeds. In this overlay

structure; a node ci may take part in any of the following

roles:

1. The processing node Pi provides a local scheduler

and a scheduling environment for the processing

of the jobs.

2. The submission node Si is in charge of the

assignment and monitoring of the jobs.

3. The routing node Ri is a part of the global model.

It distributes the availability status, efficiency

information and forwards the jobs.

Nodes can play all the three roles for load balancing

purpose. The roles played by the same physical nodes are

placed independently within the overlay. The processing

environment at each processing node Pi allows the node

owner to arbitrarily limit the type and amount of resources

that a job may use.

1. The processing power PPi is measured in million

instructions per second (MIPS).

2. The available memory reserved for processing a

job AMi is measured in megabytes.

3. The available disk space ADi is also measured in

megabytes.

To account for different network topologies, a random

connection graph is generated with a definite set of nodes.

Initially, a minimum spanning tree with all the nodes is

generated and then arbitrary links are added to the tree so

as to reproduce the final grid topology. This approach not

only gives flexibility on the number of links and the grid

topology but also allows the rearrangement of any of the

roles played by a node without affecting the other ones.

3.3 Fault Model

In our model, the node availability information is

distributed in a reactive manner. Hence, any omitted

information is rapidly recovered by the neighbor nodes in

case of failures [8]. The nodes deal with the failures by

setting timeouts so as to discover lost and aborted jobs [8].

Nodes also deal with their own failures by saving the state

of their submitted jobs into a database.

The global scheduler GSi together with the set of nodes

that GSi interacts with is called a group. A node may

belong to more than one group. The fault model outlined

below is employed in each group [6], [7] and [8].

 Faults can be transient or permanent and are

independent.

 The failure may occur in the hardware, operating

system, grid middleware module or in the network

connection.

When the primary job finishes its execution, its backup

is deleted so that the backup slot can be freed timely for

new jobs. This process is called resource reclaiming. In

passive backup-copy mode, the backup jobs can overload

as long as their primaries are scheduled on different

processors.

3.4 Job Model

I consider a set of sequential jobs J= {j1,j2,…,jn} of

computationally intensive, independent, non-pre-emptive,

real-time and a-periodic jobs with no required order of

execution. The jobs are of different computational sizes

and have different input and output size requirements.

Each node is characterized by its processing capacity,

which is defined as the product of CPU speed and the idle

CPU percentage. Furthermore, all the jobs in the job queue

JQ (Pi) are prioritized by their arrival time, hence there is

only a single job being executed by a node Pi at a given

56 Improving Fault-Tolerant Load Balancing Algorithms in Computational Grids

Copyright © 2015 MECS I.J. Information Engineering and Electronic Business, 2015, 6, 53-62

time while other jobs are waiting in the job queue. The

global scheduler is responsible for inquiring the present

states of all nodes in its group and then the execution time

of the jobs is estimated accordingly.

The job model addressed in this article is based on the

task model outlined in [6]; with analogous notions and

terminologies as in [6]. Since I are using primary-backup

approach, each job ji has two copies ji
P
 and ji

B
 executed on

primary and backup nodes respectively.

Let PRi=(ai,di,eik,ami,adi,…) be the tuple that describes

the job ji. Given a job ji belonging to J, I denote the arrival

time as ai, deadline as di, execution time of job ji on

processing node Pk as eik, required memory as rmi, and

required disk space as rdi. This configuration is very

common in a grid scheduling platform due to its high

degree of parallelism [8].

Let fi
P
 and fi

B
 be the finish times of the primary copy ji

P

and the backup copy ji
B
 respectively. Let li

P
 denote the

laxity of ji
P
 i.e. li

P
=di-fi

P
.

Xi
P
 and Xi

B
 represent all possible schedules for primary

copy ji
P
 and backup copy ji

B
 respectively. xi

P∈Xi
P
 is a

scheduling decision of ji
P
. Similarly xi

B∈Xi
B
 is the

scheduling decision of ji
B
. xi

P
and xi

B
are feasible

scheduling decisions if fi
P
≤ di and fi

B
≤ di.

Let ek(xi
P
) and ek(xi

B
) denote the execution time of job

ji
P
 and ji

B
 on node Pk using scheduling decision xi

P
and xi

B

respectively. Recollect that backup copies may be active

or passive. ASA adaptively decides the backup-copy mode

based on the laxities of the primary copies.

Let mi
B
 denotes the backup-copy mode of the job ji

B
.

The back-up copy mode can be expressed as in equation 1.

mi
B
 = passive If li

P
>ek(xi

B
) (1)

else active

3.5 Hybrid Load Balancing Model and Scheduling

Principles

The load LDi,t of a node Pi at a particular instant of time

t is estimated by the weighted sum of squares method. I

take four parameters into account; network utilization,

memory utilization, idle CPU percentage and length of

jobs in JQ(Pi) divided by the processing capacity of the

node.

The instantaneous policy uses First-Come-First-Served

(FCFS) to find the earliest completion time of each job

independently based on the information provided by the

global scheduler. The instantaneous policy decides

whether the job has to be executed locally or sent to its

neighbors. This choice depends on whether the job gets a

performance gain if it is routed to a neighboring node

(neighbor selection and performance gain function are

discussed in section 4).

The following principles are adopted by ASA:

 ASA realizes job assignments that accomplish

minimum response time and optimal node

utilization.

 Given the same execution time, ASA schedules

jobs on the nodes with low failure rates.

 For a group of nodes with the same failure rate,

ASA assigns jobs in order to the nodes that offer

least load.

IV. ADAPTIVE SCHEDULING ALGORITHM

4.1 Group Creation Method

The group creation method considered in this article is

based on the neighbor selection policy outlined in [7]; with

similar notions and terminologies as in [7]. The neighbors

for a node are formed in terms of communication cost.

Communication cost is determined using weighted sum of

squares method. It has two parameters; data transmission

rate and bandwidth [7]. They are computed as given in [7].

For a global scheduler GSi, a global scheduler GSk is

considered as its neighbor global scheduler as long as the

communication cost between GSi and GSk is within β

times the communication cost between GSi and the nearest

global scheduler and the load of GSk is less than GSi. The

distance coefficient β=1.375 yields superior results (the

variations of this random value for experiments are

provided later).

A group is a subset of G. The group groupi of a global

scheduler GSi includes the global scheduler GSi and its

neighbors. Global scheduler updates load based on the

information collected in the last exchange interval.

4.2 Node Efficiency Estimation Technique

The efficiency estimation technique addressed in this

article is based on the resource efficiency estimation

policy outlined in [7].

Each global scheduler maintains a Schedule List (SL) to

record a schedule. It deletes the recorded schedule from

the SL if the job is completed. The global scheduler

records the schedule information of a job ji as a tuple PRi

with additional parameters as node Pq, estimated

completion time ecti and job size jsi in million instructions.

If a global scheduler has not at all scheduled jobs to a

node, it knows nothing about it. Each global scheduler

creates a count based on the jobs states in the SL. If a

schedule is successfully finished then the count is set to -1

else the count is +1. If numerous jobs are scheduled to the

same processing node, then an independent count is

assigned to each schedule. Finally, the fitness of a

processing node is computed by summing up all the counts.

The efficiency of a processing node is as shown in

equation 2.

(k)
i
.effi+=h(Pq) (2)

Where (k)
i
.effi is the efficiency of k number of

schedules on the processing node Pq maintained by global

scheduler GSi and h(Pq) is the fitness of processing node Pq.

A processing node is said to be the most efficient if it has

the smallest efficiency value.

4.3 Availability Status Estimation Technique

The availability status is the join between the local

scheduler and the forwarding algorithm [8]. The

 Improving Fault-Tolerant Load Balancing Algorithms in Computational Grids 57

Copyright © 2015 MECS I.J. Information Engineering and Electronic Business, 2015, 6, 53-62

availability function describes the availability of a

processing node to accept new jobs. It is defined as

follows:

Definition 1: The availability function AFi(PRu)

describes the availability of the processing node Pi at the

current time with the job parameters PRu that Pi is able to

process [8].

The availability function for Pi would be AFi(rmu,rdu).

For any pair of job parameters (rmu,rdu) such that

rmu≤AMi and rdu≤ADi, the function returns a value of 1

else 0. Processing nodes send their availability to the

routing nodes, thereby providing their state to the

forwarding algorithm. The forwarding algorithm decides

as to how to distribute the jobs among the routing nodes.

Property 1. A group can tolerate one computing node‟s

failure if and only if the job‟s primary copy and the backup

copy are scheduled on two different computing nodes [7].

Property 2.The earliest start time estij
P
 of a primary

copy ji
P
 on the processing node Pj must satisfy the

following constraints [6]:

 Processing node Pj has an idle time slot adequate

enough to hold ji
P

 The finish time of ji
P
 must be less than or equal to

the deadline of ji.

Before estij
P
 can be computed, it is assumed that a set of

jobs j1,j2,…,jq have been allocated to node Pj. These jobs

can be either primary copies or backup copies. Hence, the

idle time slots on Pj can be represented as

[0,s1],[f1,s2],…,[f(q-1),sq],[fq,∞]. To get estij
P
, all idle time

slots are scanned from left to right. The first idle time slot

[fk,s(k+1)] that satisfies the following is chosen as shown in

equation 3:

s(k+1)-max(ak,fk)≥eij(xi
P
) (3)

Thus, the earliest start time estij
P
 of ji on pj is determined

as shown in equation 4.

estij
P
= max(ak,fk) (4)

To efficiently utilize the grid system resources, the

backup copy of a job needs to employ passive replication

mode. If a backup copy adopts active replication mode,

then its processing time should be as less as possible.

Hence, in our model, the primary copy of a job is

scheduled as early as possible and the backup copy of the

corresponding job is scheduled as late as possible. A

similar model can be found in [6].

4.4 Performance Gain Function

The performance gain function (PBF) considered in this

article is analogous to that outlined in [7]. Jobs are

allocated to processing nodes with enough memory and

disk space.

∀GSi∈G, the transfer cost of sending a job jx∈J from

GSi to GSq at time instant t is estimated by equation 5.

tc(jx,GSi,GSq,t) = (5)

TransIn(jx,GSi,GSq,t)+LDq+(k)
q
.effi+TransOut(jx,GSq,

GSi,t)

TransIn(jx,GSi,GSq,t) and TransOut(jx,GSq,GSi,t)

measure the time taken to transfer jx from GSi to GSq and

GSq to GSi respectively. The performance gain function

PBFx for a job jx is calculated as shown in equation 6.

∀GSi∈GGSi≠GSq

If AFq returns 1 and Property 2 is satisfied then (6)

PBFx=tc(jx,GSi,GSi,t)-tc(jx,GSi,GSq,t)

The performance gain function for a job jx is based on

the thought that jx can be allocated to a processing node

that would gain most in terms of the expected response

time [7].

4.5 Distribution of Availability Status and Efficiency

Information

Processing node availability and efficiency changes

frequently, at least every time a job starts or finishes.

Hence, the availability status and efficiency information

must be kept up to date at the routing nodes. This involves

deciding how and when to propagate the updates

information. Hence, in our work, I have used the mutual

information feedback policy given in [7] to propagate the

updated information.

4.6 Efficient Forwarding Algorithm

I have further improved the mutual information

feedback policy (MIF) presented in [7] by taking into

account network performance, making the job transfer

request (JTR) and job completion reply (JCR) small sized

and reducing the overhead induced due to timestamp

comparisons during the job transfers. Each global

scheduler GSi maintains the state information of its

neighbors in a state object Y
i
. Each item in Y

i
[k] has a

property list (load, efficiency, idle time slots, time).

Y
i
[k].load, Y

i
[k].efficiency, Y

i
[k].idleTimeSlots,

Y
i
[k].time denotes the load, efficiency, list of idle time

slots and the local time when the load, efficiency and idle

time slots information respectively of the global scheduler

GSk is reported. The MIF policy employs piggy-backing

strategy. The global scheduler GSi will send JTR to GSk

only if GSk is available and property 1 and 2 are satisfied.

When GSi sends a JTR to GSk for processing for the first

time, GSi appends to the JTR the state information of itself

and its neighbors. If GSk is updating its state object for the

first time, then it compares the timestamps to check if the

global schedulers contained in the JTR received from GSi

belong to its neighbors.

If the JTR from GSi to GSk is not for the first time, then

GSi appends to the JTR the state information of itself, its

and GSk‟s common neighbors so that GSk can update its

state object and vice versa. In order to surmount the

overhead induced on the network bandwidth due to

frequent job migration, the JTR carries the source grid

scheduler‟s information to the destination. Thus whenever

58 Improving Fault-Tolerant Load Balancing Algorithms in Computational Grids

Copyright © 2015 MECS I.J. Information Engineering and Electronic Business, 2015, 6, 53-62

the JTR reaches its target, the job can be downloaded from

the source as required [7].

4.7 Load Balancing Policy

The load balancing policy is triggered whenever the

global scheduler GSi receives state information from its

neighbors. The policy will use the most recent state

information to route the job. Each global scheduler

without violating property 1 and property 2 submits some

jobs to one of its neighbor which has minimum load

among all. If all its neighbors are busier than itself, no job

is submitted from that node. In exchanging load from a

heavier loaded node to lighter loaded node, attention is

given not to violate property 1 and property 2 and not to

burden the lighter node such that it exceeds the load of the

second lighter node among its neighbors. Neighbors of ci

are sort in ascending order based on the load.

4.8 Primary Copy Allocation

Consider a job ji∈ J with ji
P
 and ji

B
 as its primary copy

and backup copy respectively. To make the backup copy

ji
B

employ passive replication mode, its corresponding

primary copy ji
P
 should be scheduled as early as possible

on a processing node Pu. If ji
P
 is allocated to Pu, then it

must finish within its deadline. If ji
P
 can be scheduled on

numerous nodes, then a node with maximum performance

gain is selected. If some nodes make the system have

identical performance gain, then the node on which the

start time of ji
P
 is earliest is selected. If ji

P
 cannot be

finished within its deadline on any nodes, then ji
P
 it is

rejected.

4.9 Distributed Fault Tolerant Model

The distributed fault tolerant model employed by ASA

is as follows: If a node shuts down manually, it sends a

notice message to its backup and its other neighbors before

shutting down. ASA uses a peer-to-peer fail-over strategy

such that each node is a backup of another neighbor node

in a grid system. In the present implementation, for a

primary node, I have chosen those backup nodes that

completes the jobs quickly and have nominal replication

cost among other neighbors [7].

Replication cost is defined as the actual percentage of

time needed for scheduling the backup copy in addition to

all the overloaded periods with the existing backup copies.

Scheduling the backup of a job where its start time and/or

finish time collides with the boundaries of interval or

boundaries of over-loadable backup schedules is referred

to as a boundary schedule. All the neighbor nodes in

addition to the one where the primary copy is scheduled on

the boundary schedules within the time window are

considered and their replication cost is compared. The

boundary schedule which has the least replication cost is

chosen. A schedule is said to be qualified if it is contained

in the time window and does not overlie on any primary

schedule or non-over-loadable backup schedule. In

particular, there must not exist any primary schedule or

non-over-loadable backup schedule that starts and/or ends

in this schedule or contains this schedule [9].

4.10 Backup Copy Allocation

To make ji
B
 employ passive replication mode, ji

B
‟s

execution begins as late as possible. The latest start time

lstij
B
 of job ji

B
 on the processing node Pj is calculated as

shown in equation 7 [6]

lstij
B
= stx-eij(xi

B
) iff di≥stx

di-eij(xi
B
) else (7)

where stx denotes the start time of job jx that is scheduled

following ji
B
 and it cannot overlap with ji

B
. If ji

B
 can be

scheduled on Pj, then ji
B
 should satisfy property 2 and

finish within its deadline. If the latest start time of ji
B
 is

later than or equal to the finish timeof ji
P
, then ji

B
 is capable

of employing passive replication mode. Hence, ji
B
 need

not use active replication mode on other nodes any more.

If ji
B
 can execute using active replication mode on some

nodes, then the node which gives maximum PBF is

selected. If the lastest start time of ji
B
 is earlier than the

finish time of ji
P
, then ji

B
 executes using active replication

mode. In this circumstance, the concurrent processing time

of ji
P
 and ji

B
 should be as little as possible. Hence, the node

on which ji
B
 has latest start time is selected. If ji

B
 cannot

satisfy the timing constriant or property 2 on any nodes,

both ji
P
 and ji

B
 are rejected.

Theorem 1. The time complexity of ASA is O(kq),

where k is the number of processing nodes in the grid

system and q is the number of waiting jobs on the

processing node.

Proof: To obtain estij
P
 and lstij

B
 of ji

P
 and ji

B
 respectively

on some node Pj, the time complexity is O(q). The time

complexity to calculate the system reliability after the job

is allocated to Pj is O(1). Hence the time complexity of

ASA is calculated as O(k)(O(q))=O(kq).

The theorem shows that the operation time of the

algorithm is proportional to the number of processing

nodes and the number of waiting jobs on a processing

node.

V. BRIEF DESCRIPTION OF PD_MINRC

To demonstrate the performance improvements gained

by ASA, I contrast it with PD_MinRC [7].

PD_MinRC juxtaposes the strong points of

neighbor-based and cluster-based load balancing methods.

Neighbors for a resource are formed in terms of transfer

delay. The distribution and location policies are

performance-driven to minimize replication cost and

communication cost. The communication overhead

involved in information collection is reduced by using

enhanced MIF policy where the job transfer request is

made simple and small-sized. PD_MinRC also takes into

account the resource efficiency and dynamic resource

failure in a grid.

However, PD_MinRC ignored data transmission rate

during neighbor selection. In MIF policy of PD_MinRC,

each time a resource updates its state object, it comparesits

timestamps. ASA eliminates the overhead induced due to

frequent timestamp comparisons thus making the JTR

 Improving Fault-Tolerant Load Balancing Algorithms in Computational Grids 59

Copyright © 2015 MECS I.J. Information Engineering and Electronic Business, 2015, 6, 53-62

even more simple and small-sized. PD_MinRC does not

consider the memory and disk space requirements of a job

which is taken care by ASA. PD_MinRC employs passive

replication scheme while ASA adaptively switches

between passive and active schemes. Load and

communication cost in ASA are computed using the

weighted sum of squares method. PD_MinRC is tested

using just 500 sites with one node at each site. ASA deals

with millions of nodes with varying frequency of failures.

PD_MinRC assumes a definite distribution but ASA uses

real-time trace-driven workloads of many years.

VI. EXPERIMENTAL RESULTS

The scalability, performance and fault-tolerance of

ASA is measured through a set of simulations and tests.

Detailed tests have been considered to assess the

accurateness of the ad-hoc simulator written in java, so as

to monitor ASA under practical conditions. The ad-hoc

simulator minimizes the memory constraints so as to

create as many nodes as possible.

6.1 Simulation Setup

The simulation parameters used in our work are

analogous to those used in [8].

The ad-hoc simulator models the behavior of a network

of nodes with direct communication channels among each

pair of nodes. The network is of configurable size. To

check the scalability of ASA, networks from five thousand

up to a million nodes have been simulated. Since, both

ASA and PD_MinRC have low complexity, I Ire able to

simulate up to a million nodes. For each generated job, the

simulator considers the transmission delay and the

computation times. The transmission delay of a job is

computed by modeling the end-to-end link with 50Mbps

bandwidth and a delay ranging between 50ms to 500ms,

and of a fast cluster interconnection network of 2Gbps

bandwidth with a delay of 1ms to 2ms.

The job processing time is calculated using the

computing power of the processing nodes. There is a user

at each node endlessly submitting new jobs. The traces of

the workload contain activity of thousands of users with

information of millions of jobs taken from many years [8].

This information is also used for extracting the distribution

of computing power, job‟s computational requirements,

memory, disk space, mean time between failure and mean

time to recover. The deadline distribution is computed as

D=ω*(0.8/U-1)/0.05 where U is the standard uniform

distribution, where ω is a parameter less than 1.

In ASA, while calculating the load of each node, the

weighted values of the corresponding load attributes are

considered. The load of each node is computed by

considering memory utilization, network utilization, idle

CPU percentage and length of jobs in the job queue by the

processing capacity of the node. The weighted value

corresponding to memory utilization is w1, w2

corresponds to network utilization, w3 corresponds to idle

CPU percentage and w4 corresponds to length of jobs in

the job queue. The sum of the weighted values is equal to 1.

If the weighted value of w3 or w4 is too small, the

scheduler may assign the job to a heavily loaded node

thereby increasing the job completion time. Network

utilization mainly affects the transfer time especially when

the job size is large. If the selected node has a lower

bandwidth, selecting it will lead to increase in the transfer

time. Hence the weighted values are decided as follows:

While computing the performance gain function, the

weighted values for the load on a local node is considered

as w1=w2=0.1, w3=w4=0.4 and the weighted values for

the load on a neighbor node is computed as w1=0.1,

w2=w3=w4=0.3. In both the sets of weighted values, the

weighted value for memory utilization i.e. w1 is assigned a

minimum weight. This is because the technique of

memory is more advanced now and the memory utilization

may have less influence when compared to that of other

attributes [8].

To investigate the fault-tolerance of the ASA and

PD_MinRC, I simulate churn and catastrophic failures.

Churn is the constant process of node arrival and departure

[8]. The failures are modeled as in [8]. In churn failure,

every time a node of the group leaves, another node

replaces it, so that the network size is maintained. A

catastrophic failure is the concurrent failure of randomly

large set of nodes. The failure tests are performed with the

same parameters as in the simulation tests.

6.2 Performance Metrics

1. Response Time: This metric reflects the ability of an

algorithm in minimizing the job completion time.

2. Throughput: This metric represents the number of

jobs that are executed per second.

3. Allocation Time: This metric is defined as the time

elapsed between the job submitted and it being

scheduled. It measures the cost of the fault tolerant

scheduling algorithm as perceived by the user.

4. Guarantee Ratio: Total number of jobs guaranteed

to meet their deadlines/Total number of jobs * 100%

[6].

6.3 Results

Fig.1. Average Throughput by Network Size

Figure 1 presents the average throughput for varying

network size. Parameters other than network size are kept

constant. The number of jobs per second submitted to

network ranges from 5 to 15. The number of nodes

simulated ranges from 10K to 100,000K. I have

considered the absolute values for the throughput as both

algorithms tries to maximize the throughput. The

0

5

10

15

1
0

k

1
0

0
k

1
0

0
0

k

1
0

,0
0

0
k

1
0

0
,0

0
0

kTh
ro

u
gh

p
u

t
 (

jo
b

s/
s)

Network Size (k nodes)

ASA

60 Improving Fault-Tolerant Load Balancing Algorithms in Computational Grids

Copyright © 2015 MECS I.J. Information Engineering and Electronic Business, 2015, 6, 53-62

throughput in both cases increases linearly with increase in

network size. ASA maximizes the throughput by 35.7

percent as compared to PD_MinRC. This is because ASA

considers uses the efficiency gain technique as compared

to PD_MinRC.

From figure 1, I are confident that ASA would be able to

scale to much larger network sizes without affecting the

throughput.

Fig.2. Average Response Time vs. Network Size

In Figure 2, I investigate the average response time of

ASA and PD_MinRC under varying network size. The

average response time is measured in seconds. The

number of jobs simulated for both algorithms are 12

compute intensive jobs. The network is scaled from 100K

to 1000, 000K through simulation. The curves of the

different approaches show that ASA takes on an average

of 41.86 percent less time than PD_MinRC for different

network scales. This is because the weighted values for the

load attributes are dynamically set and while selecting

neighbor nodes network utilization is also taken into

consideration. PD_MinRC may select overloaded nodes

and may need to reselect other nodes.

Fig.3. Guarantee Ratio vs. Network Size

The guarantee ratio determines the number of jobs

guaranteed to meet their deadlines. The network is scaled

from 100k to 1000, 000k. The number of jobs submitted to

the network is 12 compute intensive jobs.

Figure 3 shows that with increase in network size, the

guarantee ratio of ASA and PD_MinRC gets increased.

But the increase in guarantee ratio of ASA is 30.25 percent

higher than that of PD_MinRC because of ASA‟s adaptive

nature. This is because ASA considers uses the efficiency

gain technique as compared to PD_MinRC.

Fig.4(a). Allocation Time vs. Network Size (Slow Link)

Figures 4(a) and 4(b) compare the average allocation

time of a 12 jobs. The network size is scaled from 10k to

1000, 000k for the slow link and from 50k to 250k for the

fast link. The reason for variation in the network sizes for

slow and fast link is to demonstrate the logarithmic

increase in allocation time for faster links.

Fig.4(b). Allocation Time vs. Network Size (Fast Link)

Figure 4(a) shows the results for a slow network link

model while the 4(b) is plotted with the results of the fast

network link model. It is seen that the increase in the

allocation time with increase in network size is

logarithmic for both ASA and PD_MinRC. PD_MinRC

takes an average allocation time of 42.67% more as

compared to ASA. From these results, I can highlight that

ASA is faster than PD_MinRC on low and high delay

interconnection networks.

Fig.5. Normalized finished computation for simulations with churn with
median session times of 10, 5 and 2.5 min (a) PD_MinRC (b) ASA

0
0.2
0.4
0.6
0.8

1

1
0

0
k

1
0

0
0

k

1
0

0
0

0
k

1
0

0
,0

0
0

kA
ve

ra
ge

R

e
sp

o
n

se

Ti
m

e
 (

In
 U

n
it

s)

Network Size (k Nodes)

PD_MinRC

ASA

0

50

100

G
u

ar
an

te
e

 R
at

io
(%

)

Network Size (k Nodes)

PD_MinRC

ASA

0
1
2
3

A
llo

ca
ti

o
n

 T
im

e
 (

s)

Network Size (k nodes)

PD_MinRC

ASA

14

16

18

20

22

5
0

k

1
0

0
k

1
5

0
k

2
0

0
k

2
5

0
k

A
llo

ca
ti

o
n

Ti

m
e

 (
m

s)

Network Size (k nodes)

ASA

PD_MinRC

0 0.05 0.1 0.15

10 min

5 min

2.5 min

0 0.05 0.1 0.15 0.2 0.25

10 min

5 min

2.5 min

 Improving Fault-Tolerant Load Balancing Algorithms in Computational Grids 61

Copyright © 2015 MECS I.J. Information Engineering and Electronic Business, 2015, 6, 53-62

Figure 5 shows that ASA is still capable of maintaining

its functionality with churn instead of failing and that the

performance degradation in ASA is 56.3 percent less as

compared to PD_MinRC. In churn failure, every time a

node of the group leaves, another node replaces it, so that

the network size is maintained. A catastrophic failure is

the concurrent failure of randomly large set of nodes. The

failure tests are performed with the same parameters as in

the simulation tests.

It is seen that churn reduces more the performance of

PD_MinRC. This is because deadlines are a heavy

requirement and since PD_MinRC employs only passive

replication scheme, some of the re-submitted jobs cannot

meet their deadlines.

6.4 Comparison With Other Works

Several solutions presented till date do not have the

strong substantiation for their scalability and

fault-tolerance. The problems that Ire found are that the

investigations are performed with only some thousand

nodes without considering failures or realistic loads. Table

1 compares our work with that of other works.

Table 1. Comparison to other works

Work

Name
Number of

Nodes
Failure LB

Work

load

ASA 1,000,000 Yes Yes Traces

PD_MinRC

[7]
500 Yes Yes

Poisson

Distribution

iHLBA

[13]
100 No Yes

Random

Generation

GA [15] 5 No Yes
Random

Generation

QAFT [6] 256 Yes No
Uniform

Distribution

New Model
[8]

1,000,000 Yes No Traces

More issues where found with other decentralized

scheduling platforms [7], [13], [15], [6] and [8]. They

experiment with less than 10,000 nodes, no node failures

or synthetic workloads.

VII. CONCLUSION & FUTURE WORK

I have presented a decentralized fault-tolerant load

balancing model for computing grids called ASA. ASA is

the extended study of PD_MinRC. ASA takes into account

the communication times; dispatching times, network

bandwidth, memory and data storage. It employs

backup-copy overlapping technology, striving to advance

the start time of primary schedules and delay the start time

of backup schedules within the timing constraints. ASA

adaptively switches between active and passive replication

schemes to reduce the job make-span, optimize node

utilization and improve system reliability. ASA scales to a

million nodes and tolerates high failure rates. ASA is the

first of its kind reported in the literature; it

comprehensively addresses the issues of fault tolerance,

load balancing, reliability, flexibility and scalability.

To evaluate the performance of ASA, I conduct

trace-driven simulations using a million nodes and

compared ASA with PD_MinRC. The allocation cost and

communication overhead show a logarithmic behavior

with increase in the system size, while throughput

increases linearly. The other experimental results show

that, ASA significantly improves the schedulability of jobs

as compared to PD_MinRC for computing grids. When

failure occurs, ASA is able to recover its functionality as

compared to PD_MinRC 56 percent as churn failure tests

and 47.02 percent as catastrophic failure tests report.

In the future, I want to take into consideration other user

requirements and test our algorithm on a real computing

grid.

REFERENCES

[1] Minoli, Daniel, “A Networking Approach to Grid

Computing,” Wiley-Interscience, 2004.

[2] Lu, Kai, Riky Subrata, and Albert Y. Zomaya, "On the

Performance-driven Load Distribution for Heterogeneous

Computational Grids," Journal of Computer and System

Sciences vol. 73, no. 8 pp. 1191-1206, 2007.

[3] Ernemann, Carsten, Volker Hamscher, UI Schwiegelshohn,

Ramin Yahyapour, and Achim Streit, "On Advantages of

Grid Computing for Parallel Job Scheduling,” In Cluster

Computing and the Grid, 2nd IEEE/ACM International

Symposium on, pp. 39-39, 2002.

[4] Subrata, Riky, Albert Y. Zomaya, and Bjorn Landfeldt,

"Artificial Life Techniques for Load Balancing in

Computational Grids," Journal of Computer and System

Sciences vol.73, no. 8 pp. 1176-1190, 2007.

[5] Erciyes, Kayhan, "A Replication-based Fault Tolerance

Protocol Using Group Communication for the Grid," In

Parallel and Distributed Processing and Applications,

Springer Berlin Heidelberg, pp. 672-681, 2006.

[6] Zhu, Xiaomin, Xiao Qin, and Meikang Qiu. "QoS-aware

Fault-tolerant Scheduling for Real-time Tasks on

Heterogeneous Clusters," IEEE Transactions on Computers,

vol. 60, no. 6, pp. 800-812, 2011.

[7] Balasangameshwara Jasma and Nedunchezhian Raju,

"Performance-Driven Load Balancing with

Primary-Backup Approach for Computational Grids with

Low Communication Cost and Replication Cost," IEEE

Transactions on Computers, vol. 62, no. 5, pp. 990-1003,

2013.

[8] Celaya, Javier, and Unai Arronategui, "A Task Routing

Approach to Large-Scale Scheduling," Future Generation

Computer Systems, vol.29, pp. 1097-1111, 2013.

[9] Zheng, Qin, Bharadwaj Veeravalli, and Chen-Khong Tham.

"On the Design of Fault-Tolerant Scheduling Strategies

Using Primary-Backup Approach for Computational Grids

with Low Replication Costs," IEEE Transactions on

Computers, vol. 58, no. 3, pp. 380-393, 2009.

[10] K. Lu, R. Subrata, and A. Y. Zumaya, “On the Performance

Driven Load Distribution for Heterogeneous Computational

Grids,” Journal of Computer and System Science, vol. 73,

no. 8, pp. 1191-1206, 2007.

[11] T. D. Braun, H.J. Siegel and N. Beck, “A Comparison of

Eleven Static Heuristics for Mapping a Class of

Independent Tasks onto Heterogeneous Distributed

Computing Systems,” Journal. Of Parallel and Distributed

Computing, vol. 61, pp. 810-837, 2001.

[12] S.-D. Wang, I.-T. Hsu and Z.-Y. Huang, “Dynamic

Scheduling Methods for Computational Grid Environments,”

Proc. Int‟l Conf. Parallel and Distributed Systems, vol. 1, pp.

62 Improving Fault-Tolerant Load Balancing Algorithms in Computational Grids

Copyright © 2015 MECS I.J. Information Engineering and Electronic Business, 2015, 6, 53-62

22-28, 2005.

[13] Y.-H. Lee, S. Leu and R.-S. Chang, “Improving Job

Scheduling Algorithms in a Grid Environment,” Future

Generation Computer Systems, vol. 27, pp. 991-998, 2011.

[14] W. Luo, J. Li, F. Yang, G. Tu, L. Pang and L. Shu,

“DYFARS: Boosting Reliability in Fault-Tolerant

Heterogeneous Distributed Systems through Dynamic

Scheduling,” Proc. Eighth ACIS Int‟l Conf. Software Eng.,

Artificial Intelligence, Networking, and Parallel/Distributed

Computing (SNPD „07), pp. 640-645, 2007.

[15] Yajun Li, Yuhang Yang, Maode Ma, Liang Zhou, “A

Hybrid Load Balancing Strategy of Sequential Tasks for

Grid Computing Environments,” Future Generation

Computer Systems, no. 25, pp. 819-828, 2009.

[16] Khan, Rafiqul Z., and Md F. Ali. "An Efficient Diffusion

Load Balancing Algorithm in Distributed System."

International Journal of Information Technology and

Computer Science (IJITCS) 6, no. 8 (2014): 65.

[17] Rahdari, Danial, Amir Masoud Rahmani, Niusha

Aboutaleby, and Ali Sheidaei Karambasti. "A Distributed

Fault Tolerance Global Coordinator Election Algorithm in

Unreliable High Traffic Distributed Systems." International

Journal of Information Technology and Computer Science

(IJITCS) 7, no. 3 (2015): 1.

Authors’ Profiles

Jasma Balasangameshwara received the

BE and MTech degrees in Information

Technology & Engineering and Computer

Science& Engineering from

Visveshwaraiah Technological University,

India, in 2005 and 2008, respectively. She

received her Ph.D. degree in Information

& Communication Technology from

Anna University, India in 2013. She is

currently working as Associate Professor

at the Atria Institute of Technology, Bangalore. Her research

interests include cluster computing, fault-tolerant computing and

distributed computing.

How to cite this paper: Jasma Balasangameshwara,"Improving Fault-Tolerant Load Balancing Algorithms in

Computational Grids", IJIEEB, vol.7, no.6, pp.53-62, 2015. DOI: 10.5815/ijieeb.2015.06.08

