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Abstract—Fault tolerant scheduling of many jobs in an 

environment with millions of unpredictable nodes is not an 

easy issue. To the best of our knowledge, no work in the 

literature has proposed a solution that combines the merits 

of active and passive replication schemes of fault tolerance 

with the advantages of performance-driven load balancing 

so as to make the most of the strong points of each. While 

extensive fault tolerant scheduling and load balancing 

methods have been presented for the sequential jobs, none 

have taken into account fault-tolerant load balancing that 

minimizes the job make-span, provides efficient network 

and node utilization, achieves a Ill-balanced load and high 

system flexibility even during the resource failures. Hence, 

in this article, I present an Adaptive Scheduling Algorithm 

namely ASA that overcomes these problems. With 

thorough simulations, I conclude that ASA allocates any 

number of jobs to a million nodes with relatively low 

overhead and high flexibility. Experimental results show 

that the performance of ASA is better than those of its 

counterparts. 

 

Index Terms—Computing Grid, Fault-Tolerant 

Scheduling, Load Balancing. 

 

I.  INTRODUCTION 

Due to the growth of science and engineering, problems 

in these fields have become complicated. To solve such 

complex problems, a dominant computing facility is 

required. A computing grid is a federation of hardware and 

software infrastructures from various locations that offer 

reliable, consistent, persistent and economical access to 

high-end computational capabilities [1]. They enable 

active sharing, aggregation and selection of 

geographically dispersed, autonomous and diverse nodes 

at run-time based on their availability, performance and 

capability. 

In a real world scenario, the job arrival patterns are 

volatile and the computing capabilities erratic and 

asymmetrical. The nodes in a particular grid site may 

become overloaded while other grid sites may be 

under-loaded [2]. Therefore, the heterogeneous and the 

dynamic environment of grids require load balancing and 

fault-tolerance in order to make the best usage of the 

performance of the grid nodes.  

1.2  Background 

Job scheduling is an efficient approach to realize high 

application performance in grid environments. Job 

scheduling algorithms are divided into two types: batch 

mode and on-line mode. In batch mode, jobs are queued 

and collected into a set. The scheduling algorithm initiates 

after a fixed time period. Batch mode algorithms are more 

suitable for environments utilizing the same resource. In 

on-line mode, jobs are scheduled when they arrive. Since 

the grid environment is heterogeneous and processor 

speeds vary among nodes, on-line mode scheduling is 

more appropriate for the grid environment [3]. Our work is 

focused on non-pre-emptive online scheduling of 

a-periodic and sequential jobs. 

Load balancing plays an imperative role in improving 

grid node utilization and reducing the usage of time. Also, 

the method used for load balancing affects the 

performance of the grid system. Hence, load balancing 

techniques should be “fair” in distributing the load across 

the grid nodes. The meaning of “fair” is that the difference 

between the “heaviest loaded” node and “lightest loaded” 

node should be minimized [4]. 

In a grid system, resource failures come about 

frequently leading to damaging consequences. Hence, I 

need to develop efficient methods to tolerate such failures. 

Fault tolerance can be classified as [5] 

 

(1) Active replication mode: This method is based on 

space redundancy and does not require fault 

detection. 

(2) Passive replication mode: In this method, a 

backup copy of a job is activated only if a fault 

occurs while executing its primary copy. The 

techniques applied while scheduling primary and 

backup copies of a job are: (1) Backup 

Overloading: This consists of scheduling backups 

for multiple primary jobs during the same time slot. 

(2) De-allocation of resources reserved for backup 

jobs when the corresponding primaries complete 

successfully. 
 

1.2  Motivation 

There have been huge efforts in the recent years for 

developing fault-tolerant scheduling and load balancing 

algorithms to realize high job performance in a grid 

environment. Unfortunately, many practical instances of 

such problems are found to be NP-complete [2]. Hence, 

our work is motivated by the need for the competent 

techniques that takes into consideration grid architecture, 

resource and job heterogeneity, communication delay and 
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resource volatility. Our foremost intention is to arrive at 

job assignments that realize minimum job make-span, 

efficient network and node utilization, an Ill-balanced load, 

high system reliability and flexibility even during the 

resource failures. A resource failure can be a link and/or 

processor failure. 

Many fault-tolerant scheduling techniques and load 

balancing methods have been designed for computing 

grids supporting sequential jobs. However, to the best of 

our literature understanding, this study is the first of its 

kinds to jointly consider hybrid fault-tolerant scheduling 

and load balancing for sequential jobs. It is a challenge to 

propose a new hybrid fault-tolerant scheduling and load 

balancing strategy for sequential jobs running on a 

computing grid. This challenge is the motivation to extend 

the scheduling method proposed in [6] and integrate it with 

fault-tolerant load balancing approach [7] for sequential 

jobs.  

1.3  Contribution 

My contributions in this article are multifold. I have 

proposed a hybrid fault-tolerant load balancing technique 

for a computing grid. Given that, grid infrastructures are 

dynamic in nature with a varying network topology; I 

generate a random topology with nodes of varying 

capacities and varying bandwidth between the links 

connecting them. 

To the best of our knowledge, I are the first to 

cumulatively tackle the following: 

 

1. Juxtaposing the merits of active replication and 

passive replication schemes of fault-tolerance, the 

advantages of performance-driven load balancing 

to form a hybrid one so as to make the most of the 

strong points of each. 

2. ASA takes into account grid architecture, resource 

and job heterogeneity, communication delay and 

resource unpredictability for sequential jobs.  

3. ASA minimizes the communication cost and 

replication cost of sequential jobs. 

4. ASA aims to deal with millions of nodes with 

varying frequency of failures. 

5. I have conducted trace-driven simulation tests 

using a million nodes. 

 

The key contributions of this study to the related 

existing work are summarized as follows: 

 

1. Mutual information feedback scheme and neighbor 

selection strategy proposed in [7] are further 

enhanced. 

2. Estimating the availability and efficiency of nodes 

by simplifying the modeling of decision making in 

fault-tolerant scheduling. 

 

Simulation results show that high job performance gains 

are achieved in terms of jobs make-span. 

Remainder of this work is organized as follows: Section 

2 reviews related work in literature. The overview of the 

system model is presented in section 3. Section 4 presents 

our proposed algorithm in detail. Section 5 focuses on the 

setup of the simulation and the experimental results. 

Finally, section 6 is dedicated to conclusion and future 

work.  

 

II.  RELATED WORK 

Despite the facts that load balancing, job scheduling and 

fault-tolerance are active exploration areas in grid 

environments, these areas have more often than not been 

and continue to be developed independently of one 

another, each focusing on diverse aspects of computing.  

It has been shown that as more information is collected 

by an algorithm, the algorithm can make better load 

balancing decisions however at an increased overhead [16]. 

Dynamic load balancing technique is opted for 

heterogeneous systems in computational grids because the 

technique considers nodes with different processing 

speeds and memory sizes, bandwidth and load [16].    

With respect to load balancing and job scheduling, Lu et 

al. [10] proposed a distributed load balancing technique 

for a computing grid which took into account the issues of 

scalability, resource heterogeneity and significant 

communication overhead. However, Lu did not consider 

the execution scheme for data distribution. Braun et al. [11] 

proposed Minimum Execution Time (MET) and 

Minimum Completion Time (MCT) scheduling methods. 

But both MET and MCT leads to poor make-span. The 

Most Fit Task First (MFTF) method proposed in [12] 

discovers the fitness between jobs and nodes. However 

MFTF does not consider node utilization and the 

estimation function is an ideal function leading to 

incorrect scheduling in real environment. Lee et al. [13] 

proposed hierarchical job scheduling framework for load 

balancing and minimizing the job make-spans. However, 

Lee neglected job length and assumed the system to be 

static. 

Rafiqul and Ali proposed a diffusion load balancing 

algorithm for distributed computing systems [16]. They 

have shown that the communication overhead depends on 

the load of the nodes. However, they have not considered 

the dynamics of communication delay incurred due to 

distance among the nodes while making a load balancing 

decision.      

Faulty nodes in a distributed environment can lead to 

prolonged job waiting times and have a major impact on 

the load balancing performance. Hence, for improving the 

throughput of a system it is important to make the system 

fault-tolerant.  

Many fault-tolerant methods have been proposed for 

grid systems [6], [9] and [14].  Luo et al. [14] proposed 

DYFARS for heterogeneous systems. DYFARS considers 

both active and passive replication methods thereby 

proving high system flexibility. However, it did not 

substantiate its work with realistic workload and large 

number of nodes. Zhu et al. [6] proposed fault-tolerant 

scheduling algorithm for heterogeneous clusters. However, 

they focused on a centralized scheduling model and did 

not take into account network bandwidth while scheduling 

real-time tasks.   
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Danial et al. proposed a distributed fault tolerant 

algorithm for distributed computing systems for 

eliminating single point of failure [17]. A major advantage 

of the algorithm is that it exchanges fever messages as 

compared to ring algorithm, modified Bully algorithm. 

However, the work does not consider optimizing nodes for 

message transfer.  

In this article, I pay interest on the issues of hybrid load 

balancing and non-pre-emptive fault-tolerant scheduling 

of sequential jobs for a computing grid. Given a 

dynamically changing load, ASA adaptively switches 

between passive replication scheme and active replication 

scheme. To achieve high scheduling ability and an Ill- 

balanced load, ASA optimizes the resource and network 

utilization for sequential jobs. 

 

III.  SYSTEM MODEL 

In this section, I bring in the models, concepts and 

terminology used in this article. The model presented in 

this article provides a scalable fault-tolerant load 

balancing service to nearly any type of a computing grid 

platform. 

3.1  Scheduling Model 

The scheduling model and node model addressed in this 

article are based on the scheduling model and node model 

outlined in [8]; with similar ideas and terminologies as in 

[8]. 

The distributed scheduling model that has been 

proposed in this article is divided into two models namely 

a local model and a global model. The local model 

describes the working of the local scheduler. The local 

scheduler runs on each processing node, to control the 

processing of jobs in its job queue. The global model 

describes the availability status, the efficiency information 

and the forwarding algorithm. The global scheduler 

determines the implementation of these three elements.  

 Each local scheduler computes the availability of its 

node to execute the jobs using an event-driven policy and 

exports this information. The availability status is then 

used by the forwarding algorithm to route the jobs to the 

most appropriate processing node. 

3.2  Node Model 

Physical nodes are structured in a logical overlay 

manner. The nodes are connected via different 

communication links with different speeds. In this overlay 

structure; a node ci may take part in any of the following 

roles: 

 

1. The processing node Pi provides a local scheduler 

and a scheduling environment for the processing 

of the jobs. 

2. The submission node Si is in charge of the 

assignment and monitoring of the jobs.  

3. The routing node Ri is a part of the global model. 

It distributes the availability status, efficiency 

information and forwards the jobs.  

 

Nodes can play all the three roles for load balancing 

purpose. The roles played by the same physical nodes are 

placed independently within the overlay. The processing 

environment at each processing node Pi allows the node 

owner to arbitrarily limit the type and amount of resources 

that a job may use.  

 

1. The processing power PPi is measured in million 

instructions per second (MIPS). 

2. The available memory reserved for processing a 

job AMi is measured in megabytes. 

3. The available disk space ADi is also measured in 

megabytes. 

 

To account for different network topologies, a random 

connection graph is generated with a definite set of nodes. 

Initially, a minimum spanning tree with all the nodes is 

generated and then arbitrary links are added to the tree so 

as to reproduce the final grid topology. This approach not 

only gives flexibility on the number of links and the grid 

topology but also allows the rearrangement of any of the 

roles played by a node without affecting the other ones.  

3.3  Fault Model 

In our model, the node availability information is 

distributed in a reactive manner. Hence, any omitted 

information is rapidly recovered by the neighbor nodes in 

case of failures [8]. The nodes deal with the failures by 

setting timeouts so as to discover lost and aborted jobs [8]. 

Nodes also deal with their own failures by saving the state 

of their submitted jobs into a database.  

The global scheduler GSi together with the set of nodes 

that GSi interacts with is called a group. A node may 

belong to more than one group. The fault model outlined 

below is employed in each group [6], [7] and [8]. 

 

 Faults can be transient or permanent and are 

independent.  

 The failure may occur in the hardware, operating 

system, grid middleware module or in the network 

connection.  

 

When the primary job finishes its execution, its backup 

is deleted so that the backup slot can be freed timely for 

new jobs. This process is called resource reclaiming. In 

passive backup-copy mode, the backup jobs can overload 

as long as their primaries are scheduled on different 

processors. 

3.4  Job Model 

I consider a set of sequential jobs J= {j1,j2,…,jn} of 

computationally intensive, independent, non-pre-emptive, 

real-time and a-periodic jobs with no required order of 

execution. The jobs are of different computational sizes 

and have different input and output size requirements. 

Each node is characterized by its processing capacity, 

which is defined as the product of CPU speed and the idle 

CPU percentage. Furthermore, all the jobs in the job queue 

JQ (Pi) are prioritized by their arrival time, hence there is 

only a single job being executed by a node Pi at a given  
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time while other jobs are waiting in the job queue. The 

global scheduler is responsible for inquiring the present 

states of all nodes in its group and then the execution time 

of the jobs is estimated accordingly. 

The job model addressed in this article is based on the 

task model outlined in [6]; with analogous notions and 

terminologies as in [6]. Since I are using primary-backup 

approach, each job ji has two copies ji
P
 and ji

B
 executed on 

primary and backup nodes respectively. 

Let PRi=(ai,di,eik,ami,adi,…) be the tuple that describes 

the job ji. Given a job ji belonging to J, I denote the arrival 

time as ai, deadline as di, execution time of job ji on 

processing node Pk as eik, required memory as rmi, and 

required disk space as rdi. This configuration is very 

common in a grid scheduling platform due to its high 

degree of parallelism [8]. 

Let fi
P
 and fi

B
 be the finish times of the primary copy ji

P
 

and the backup copy ji
B
 respectively. Let li

P
 denote the 

laxity of ji
P
 i.e. li

P
=di-fi

P
. 

Xi
P
 and Xi

B
 represent all possible schedules for primary 

copy ji
P
 and backup copy ji

B
 respectively. xi

P∈Xi
P
 is a 

scheduling decision of ji
P
. Similarly xi

B∈Xi
B
 is the 

scheduling decision of ji
B
. xi

P
and xi

B 
are feasible 

scheduling decisions if fi
P
≤ di and  fi

B
≤ di.  

Let ek(xi
P
) and ek(xi

B
) denote the execution time of job 

ji
P
 and ji

B
 on node Pk using scheduling decision xi

P 
and xi

B
 

respectively. Recollect that backup copies may be active 

or passive. ASA adaptively decides the backup-copy mode 

based on the laxities of the primary copies.  

Let mi
B
 denotes the backup-copy mode of the job ji

B
. 

The back-up copy mode can be expressed as in equation 1. 

 

mi
B
 = passive If li

P
>ek(xi

B
)                  (1) 

else active 

 

3.5  Hybrid Load Balancing Model and Scheduling 

Principles 

The load LDi,t of a node Pi at a particular instant of time 

t is estimated by the weighted sum of squares method. I 

take four parameters into account; network utilization, 

memory utilization, idle CPU percentage and length of 

jobs in JQ(Pi) divided by the processing capacity of the 

node.  

The instantaneous policy uses First-Come-First-Served 

(FCFS) to find the earliest completion time of each job 

independently based on the information provided by the 

global scheduler. The instantaneous policy decides 

whether the job has to be executed locally or sent to its 

neighbors. This choice depends on whether the job gets a 

performance gain if it is routed to a neighboring node 

(neighbor selection and performance gain function are 

discussed in section 4).  

The following principles are adopted by ASA: 

 

 ASA realizes job assignments that accomplish 

minimum response time and optimal node 

utilization.  

 Given the same execution time, ASA schedules 

jobs on the nodes with low failure rates.  

 For a group of nodes with the same failure rate, 

ASA assigns jobs in order to the nodes that offer 

least load.  

 

IV.  ADAPTIVE SCHEDULING ALGORITHM 

4.1  Group Creation Method 

The group creation method considered in this article is 

based on the neighbor selection policy outlined in [7]; with 

similar notions and terminologies as in [7]. The neighbors 

for a node are formed in terms of communication cost. 

Communication cost is determined using weighted sum of 

squares method. It has two parameters; data transmission 

rate and bandwidth [7]. They are computed as given in [7]. 

For a global scheduler GSi, a global scheduler GSk is 

considered as its neighbor global scheduler as long as the 

communication cost between GSi and GSk is within β 

times the communication cost between GSi and the nearest 

global scheduler and the load of GSk is less than GSi. The 

distance coefficient β=1.375 yields superior results (the 

variations of this random value for experiments are 

provided later).  

A group is a subset of G. The group groupi of a global 

scheduler GSi includes the global scheduler GSi and its 

neighbors. Global scheduler updates load based on the 

information collected in the last exchange interval.  

4.2  Node Efficiency Estimation Technique 

The efficiency estimation technique addressed in this 

article is based on the resource efficiency estimation 

policy outlined in [7]. 

Each global scheduler maintains a Schedule List (SL) to 

record a schedule. It deletes the recorded schedule from 

the SL if the job is completed. The global scheduler 

records the schedule information of a job ji as a tuple PRi 

with additional parameters as node Pq, estimated 

completion time ecti and job size jsi in million instructions. 

If a global scheduler has not at all scheduled jobs to a 

node, it knows nothing about it. Each global scheduler 

creates a count based on the jobs states in the SL. If a 

schedule is successfully finished then the count is set to -1 

else the count is +1. If numerous jobs are scheduled to the 

same processing node, then an independent count is 

assigned to each schedule. Finally, the fitness of a 

processing node is computed by summing up all the counts. 

The efficiency of a processing node is as shown in 

equation 2. 

 

(k)
i
.effi+=h(Pq)                          (2) 

 

Where (k)
i
.effi is the efficiency of k number of 

schedules on the processing node Pq maintained by global 

scheduler GSi and h(Pq) is the fitness of processing node Pq. 

A processing node is said to be the most efficient if it has 

the smallest efficiency value.  

4.3  Availability Status Estimation Technique 

The availability status is the join between the local 

scheduler and the forwarding algorithm [8]. The  
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availability function describes the availability of a 

processing node to accept new jobs. It is defined as 

follows: 

Definition 1: The availability function AFi(PRu) 

describes the availability of the processing node Pi at the 

current time with the job parameters PRu that Pi is able to 

process [8]. 

The availability function for Pi would be AFi(rmu,rdu). 

For any pair of job parameters (rmu,rdu) such that 

rmu≤AMi and rdu≤ADi, the function returns a value of 1 

else 0. Processing nodes send their availability to the 

routing nodes, thereby providing their state to the 

forwarding algorithm. The forwarding algorithm decides 

as to how to distribute the jobs among the routing nodes.  

 

Property 1. A group can tolerate one computing node‟s 

failure if and only if the job‟s primary copy and the backup 

copy are scheduled on two different computing nodes [7]. 

Property 2.The earliest start time estij
P
 of a primary 

copy ji
P
 on the processing node Pj must satisfy the 

following constraints [6]: 

 

 Processing node Pj has an idle time slot adequate 

enough to hold ji
P
 

 The finish time of ji
P
 must be less than or equal to 

the deadline of ji. 

 

Before estij
P
 can be computed, it is assumed that a set of 

jobs j1,j2,…,jq have been allocated to node Pj. These jobs 

can be either primary copies or backup copies. Hence, the 

idle time slots on Pj can be represented as 

[0,s1],[f1,s2],…,[f(q-1),sq],[fq,∞]. To get estij
P
, all idle time 

slots are scanned from left to right. The first idle time slot 

[fk,s(k+1)] that satisfies the following is chosen as shown in 

equation 3: 

 

s(k+1)-max(ak,fk)≥eij(xi
P
)                    (3) 

 

Thus, the earliest start time estij
P
 of ji on pj is determined 

as shown in equation 4. 

 

estij
P
= max(ak,fk)                          (4) 

 

To efficiently utilize the grid system resources, the 

backup copy of a job needs to employ passive replication 

mode. If a backup copy adopts active replication mode, 

then its processing time should be as less as possible. 

Hence, in our model, the primary copy of a job is 

scheduled as early as possible and the backup copy of the 

corresponding job is scheduled as late as possible. A 

similar model can be found in [6]. 

4.4  Performance Gain Function 

The performance gain function (PBF) considered in this 

article is analogous to that outlined in [7]. Jobs are 

allocated to processing nodes with enough memory and 

disk space.  

∀GSi∈G, the transfer cost of sending a job jx∈J from 

GSi to GSq at time instant t is estimated by equation 5. 

 

tc(jx,GSi,GSq,t) =                        (5) 

 

TransIn(jx,GSi,GSq,t)+LDq+(k)
q
.effi+TransOut(jx,GSq,

GSi,t) 

TransIn(jx,GSi,GSq,t) and TransOut(jx,GSq,GSi,t) 

measure the time taken to transfer jx from GSi to GSq and 

GSq to GSi respectively. The performance gain function 

PBFx for a job jx is calculated as shown in equation 6. 

 
∀GSi∈GGSi≠GSq 

If AFq returns 1 and Property 2 is satisfied then   (6) 

 

PBFx=tc(jx,GSi,GSi,t)-tc(jx,GSi,GSq,t) 

 

The performance gain function for a job jx is based on 

the thought that jx can be allocated to a processing node 

that would gain most in terms of the expected response 

time [7]. 

4.5  Distribution of Availability Status and Efficiency 

Information 

Processing node availability and efficiency changes 

frequently, at least every time a job starts or finishes. 

Hence, the availability status and efficiency information 

must be kept up to date at the routing nodes. This involves 

deciding how and when to propagate the updates 

information. Hence, in our work, I have used the mutual 

information feedback policy given in [7] to propagate the 

updated information.   

4.6  Efficient Forwarding Algorithm 

I have further improved the mutual information 

feedback policy (MIF) presented in [7] by taking into 

account network performance, making the job transfer 

request (JTR) and job completion reply (JCR) small sized 

and reducing the overhead induced due to timestamp 

comparisons during the job transfers. Each global 

scheduler GSi maintains the state information of its 

neighbors in a state object Y
i
. Each item in Y

i
[k] has a 

property list (load, efficiency, idle time slots, time). 

Y
i
[k].load, Y

i
[k].efficiency, Y

i
[k].idleTimeSlots, 

Y
i
[k].time denotes the load, efficiency, list of idle time 

slots and the local time when the load, efficiency and idle 

time slots information respectively of the global scheduler 

GSk is reported.  The MIF policy employs piggy-backing 

strategy.  The global scheduler GSi will send JTR to GSk 

only if GSk is available and property 1 and 2 are satisfied. 

When GSi sends a JTR to GSk for processing for the first 

time, GSi appends to the JTR the state information of itself 

and its neighbors. If  GSk is updating its state object for the 

first time, then it compares the timestamps to check if the 

global schedulers contained in the JTR received from GSi 

belong to its neighbors.  

If the JTR from GSi to GSk is not for the first time, then 

GSi appends to the JTR the state information of itself, its 

and GSk‟s common neighbors so that GSk can update its 

state object and vice versa. In order to surmount the 

overhead induced on the network bandwidth due to 

frequent job migration, the JTR carries the source grid 

scheduler‟s information to the destination. Thus whenever  
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the JTR reaches its target, the job can be downloaded from 

the source as required [7].  

4.7  Load Balancing Policy 

The load balancing policy is triggered whenever the 

global scheduler GSi receives state information from its 

neighbors. The policy will use the most recent state 

information to route the job. Each global scheduler 

without violating property 1 and property 2 submits some 

jobs to one of its neighbor which has minimum load 

among all. If all its neighbors are busier than itself, no job 

is submitted from that node. In exchanging load from a 

heavier loaded node to lighter loaded node, attention is 

given not to violate property 1 and property 2 and not to 

burden the lighter node such that it exceeds the load of the 

second lighter node among its neighbors. Neighbors of ci 

are sort in ascending order based on the load. 

4.8  Primary Copy Allocation 

Consider a job ji∈ J with ji
P
 and ji

B
 as its primary copy 

and backup copy respectively. To make the backup copy 

ji
B 

employ passive replication mode, its corresponding 

primary copy ji
P
 should be scheduled as early as possible 

on a processing node Pu. If ji
P
 is allocated to Pu, then it 

must finish within its deadline. If ji
P
 can be scheduled on 

numerous nodes, then a node with maximum performance 

gain is selected. If some nodes make the system have 

identical performance gain, then the node on which the 

start time of ji
P
 is earliest is selected. If ji

P
 cannot be 

finished within its deadline on any nodes, then ji
P
 it is 

rejected. 

4.9  Distributed Fault Tolerant Model 

The distributed fault tolerant model employed by ASA 

is as follows: If a node shuts down manually, it sends a 

notice message to its backup and its other neighbors before 

shutting down. ASA uses a peer-to-peer fail-over strategy 

such that each node is a backup of another neighbor node 

in a grid system. In the present implementation, for a 

primary node, I have chosen those backup nodes that 

completes the jobs quickly and have nominal replication 

cost among other neighbors [7]. 

Replication cost is defined as the actual percentage of 

time needed for scheduling the backup copy in addition to 

all the overloaded periods with the existing backup copies. 

Scheduling the backup of a job where its start time and/or 

finish time collides with the boundaries of interval or 

boundaries of over-loadable backup schedules is referred 

to as a boundary schedule. All the neighbor nodes in 

addition to the one where the primary copy is scheduled on 

the boundary schedules within the time window are 

considered and their replication cost is compared. The 

boundary schedule which has the least replication cost is 

chosen. A schedule is said to be qualified if it is contained 

in the time window and does not overlie on any primary 

schedule or non-over-loadable backup schedule. In 

particular, there must not exist any primary schedule or 

non-over-loadable backup schedule that starts and/or ends 

in this schedule or contains this schedule [9]. 

4.10  Backup Copy Allocation 

To make ji
B
 employ passive replication mode, ji

B
‟s 

execution begins as late as possible. The latest start time 

lstij
B
 of job ji

B
 on the processing node Pj is calculated as 

shown in equation 7 [6] 

 

lstij
B
= stx-eij(xi

B
)      iff   di≥stx 

di-eij(xi
B
)        else                            (7) 

 

where stx denotes the start time of job jx that is scheduled 

following ji
B
 and it cannot overlap with ji

B
. If ji

B
 can be 

scheduled on Pj, then ji
B
 should satisfy property 2 and 

finish within its deadline. If the latest start time of ji
B
 is 

later than or equal to the finish timeof ji
P
, then ji

B
 is capable 

of employing passive replication mode. Hence, ji
B
 need 

not use active replication mode on other nodes any more. 

If ji
B
 can execute using active replication mode on some 

nodes, then the node which gives maximum PBF is 

selected. If the lastest start time of ji
B
 is earlier than the 

finish time of ji
P
, then ji

B
 executes using active replication 

mode. In this circumstance, the concurrent processing time 

of ji
P
 and ji

B
 should be as little as possible. Hence, the node 

on which ji
B
 has latest start time is selected. If ji

B
 cannot 

satisfy the timing constriant or property 2 on any nodes, 

both ji
P
 and ji

B
 are rejected.  

 

Theorem 1. The time complexity of ASA is O(kq), 

where k is the number of processing nodes in the grid 

system and q is the number of waiting jobs on the 

processing node.  

 

Proof: To obtain estij
P
 and lstij

B
 of ji

P
 and ji

B
 respectively 

on some node Pj, the time complexity is O(q). The time 

complexity to calculate the system reliability after the job 

is allocated to Pj is O(1).  Hence the time complexity of 

ASA is calculated as O(k)(O(q))=O(kq). 

The theorem shows that the operation time of the 

algorithm is proportional to the number of processing 

nodes and the number of waiting jobs on a processing 

node.  

 

V.  BRIEF DESCRIPTION OF PD_MINRC 

To demonstrate the performance improvements gained 

by ASA, I contrast it with PD_MinRC [7]. 

PD_MinRC juxtaposes the strong points of 

neighbor-based and cluster-based load balancing methods. 

Neighbors for a resource are formed in terms of transfer 

delay. The distribution and location policies are 

performance-driven to minimize replication cost and 

communication cost. The communication overhead 

involved in information collection is reduced by using 

enhanced MIF policy where the job transfer request is 

made simple and small-sized. PD_MinRC also takes into 

account the resource efficiency and dynamic resource 

failure in a grid.  

However, PD_MinRC ignored data transmission rate 

during neighbor selection. In MIF policy of PD_MinRC, 

each time a resource updates its state object, it comparesits 

timestamps. ASA eliminates the overhead induced due to 

frequent timestamp comparisons thus making the JTR  



 Improving Fault-Tolerant Load Balancing Algorithms in Computational Grids 59 

Copyright © 2015 MECS                                        I.J. Information Engineering and Electronic Business, 2015, 6, 53-62 

even more simple and small-sized. PD_MinRC does not 

consider the memory and disk space requirements of a job 

which is taken care by ASA. PD_MinRC employs passive 

replication scheme while ASA adaptively switches 

between passive and active schemes. Load and 

communication cost in ASA are computed using the 

weighted sum of squares method. PD_MinRC is tested 

using just 500 sites with one node at each site. ASA deals 

with millions of nodes with varying frequency of failures. 

PD_MinRC assumes a definite distribution but ASA uses 

real-time trace-driven workloads of many years.  

 

VI.  EXPERIMENTAL RESULTS 

The scalability, performance and fault-tolerance of 

ASA is measured through a set of simulations and tests. 

Detailed tests have been considered to assess the 

accurateness of the ad-hoc simulator written in java, so as 

to monitor ASA under practical conditions. The ad-hoc 

simulator minimizes the memory constraints so as to 

create as many nodes as possible. 

6.1  Simulation Setup 

The simulation parameters used in our work are 

analogous to those used in [8].  

The ad-hoc simulator models the behavior of a network 

of nodes with direct communication channels among each 

pair of nodes. The network is of configurable size. To 

check the scalability of ASA, networks from five thousand 

up to a million nodes have been simulated. Since, both 

ASA and PD_MinRC have low complexity, I Ire able to 

simulate up to a million nodes. For each generated job, the 

simulator considers the transmission delay and the 

computation times. The transmission delay of a job is 

computed by modeling the end-to-end link with 50Mbps 

bandwidth and a delay ranging between 50ms to 500ms, 

and of a fast cluster interconnection network of 2Gbps 

bandwidth with a delay of 1ms to 2ms.  

The job processing time is calculated using the 

computing power of the processing nodes. There is a user 

at each node endlessly submitting new jobs. The traces of 

the workload contain activity of thousands of users with 

information of millions of jobs taken from many years [8]. 

This information is also used for extracting the distribution 

of computing power, job‟s computational requirements, 

memory, disk space, mean time between failure and mean 

time to recover. The deadline distribution is computed as 

D=ω*(0.8/U-1)/0.05 where U is the standard uniform 

distribution, where ω is a parameter less than 1. 

In ASA, while calculating the load of each node, the 

weighted values of the corresponding load attributes are 

considered. The load of each node is computed by 

considering memory utilization, network utilization, idle 

CPU percentage and length of jobs in the job queue by the 

processing capacity of the node. The weighted value 

corresponding to memory utilization is w1, w2 

corresponds to network utilization, w3 corresponds to idle 

CPU percentage and w4 corresponds to length of jobs in 

the job queue. The sum of the weighted values is equal to 1. 

If the weighted value of w3 or w4 is too small, the 

scheduler may assign the job to a heavily loaded node 

thereby increasing the job completion time. Network 

utilization mainly affects the transfer time especially when 

the job size is large. If the selected node has a lower 

bandwidth, selecting it will lead to increase in the transfer 

time. Hence the weighted values are decided as follows: 

While computing the performance gain function, the 

weighted values for the load on a local node is considered 

as w1=w2=0.1, w3=w4=0.4 and the weighted values for 

the load on a neighbor node is computed as w1=0.1, 

w2=w3=w4=0.3. In both the sets of weighted values, the 

weighted value for memory utilization i.e. w1 is assigned a 

minimum weight. This is because the technique of 

memory is more advanced now and the memory utilization 

may have less influence when compared to that of other 

attributes [8].  

To investigate the fault-tolerance of the ASA and 

PD_MinRC, I simulate churn and catastrophic failures. 

Churn is the constant process of node arrival and departure 

[8]. The failures are modeled as in [8]. In churn failure, 

every time a node of the group leaves, another node 

replaces it, so that the network size is maintained. A 

catastrophic failure is the concurrent failure of randomly 

large set of nodes. The failure tests are performed with the 

same parameters as in the simulation tests.  

6.2  Performance Metrics 

1. Response Time: This metric reflects the ability of an 

algorithm in minimizing the job completion time. 

2. Throughput: This metric represents the number of 

jobs that are executed per second.  

3. Allocation Time: This metric is defined as the time 

elapsed between the job submitted and it being 

scheduled. It measures the cost of the fault tolerant 

scheduling algorithm as perceived by the user.  

4. Guarantee Ratio: Total number of jobs guaranteed 

to meet their deadlines/Total number of jobs * 100% 

[6].  

6.3  Results 

 

Fig.1. Average Throughput by Network Size 

Figure 1 presents the average throughput for varying 

network size. Parameters other than network size are kept 

constant. The number of jobs per second submitted to 

network ranges from 5 to 15. The number of nodes 

simulated ranges from 10K to 100,000K. I have 

considered the absolute values for the throughput as both 

algorithms tries to maximize the throughput. The  
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throughput in both cases increases linearly with increase in 

network size. ASA maximizes the throughput by 35.7 

percent as compared to PD_MinRC. This is because ASA 

considers uses the efficiency gain technique as compared 

to PD_MinRC. 

From figure 1, I are confident that ASA would be able to 

scale to much larger network sizes without affecting the 

throughput. 

 

 

Fig.2. Average Response Time vs. Network Size 

In Figure 2, I investigate the average response time of 

ASA and PD_MinRC under varying network size. The 

average response time is measured in seconds. The 

number of jobs simulated for both algorithms are 12 

compute intensive jobs. The network is scaled from 100K 

to 1000, 000K through simulation. The curves of the 

different approaches show that ASA takes on an average 

of 41.86 percent less time than PD_MinRC for different 

network scales. This is because the weighted values for the 

load attributes are dynamically set and while selecting 

neighbor nodes network utilization is also taken into 

consideration. PD_MinRC may select overloaded nodes 

and may need to reselect other nodes. 

 

 

Fig.3. Guarantee Ratio vs. Network Size 

The guarantee ratio determines the number of jobs 

guaranteed to meet their deadlines. The network is scaled 

from 100k to 1000, 000k. The number of jobs submitted to 

the network is 12 compute intensive jobs. 

Figure 3 shows that with increase in network size, the 

guarantee ratio of ASA and PD_MinRC gets increased. 

But the increase in guarantee ratio of ASA is 30.25 percent 

higher than that of PD_MinRC because of ASA‟s adaptive 

nature. This is because ASA considers uses the efficiency 

gain technique as compared to PD_MinRC. 

 
Fig.4(a). Allocation Time vs. Network Size (Slow Link) 

Figures 4(a) and 4(b) compare the average allocation 

time of a 12 jobs. The network size is scaled from 10k to 

1000, 000k for the slow link and from 50k to 250k for the 

fast link. The reason for variation in the network sizes for 

slow and fast link is to demonstrate the logarithmic 

increase in allocation time for faster links. 

 

 

Fig.4(b). Allocation Time vs. Network Size (Fast Link) 

Figure 4(a) shows the results for a slow network link 

model while the 4(b) is plotted with the results of the fast 

network link model. It is seen that the increase in the 

allocation time with increase in network size is 

logarithmic for both ASA and PD_MinRC. PD_MinRC 

takes an average allocation time of 42.67% more as 

compared to ASA. From these results, I can highlight that 

ASA is faster than PD_MinRC on low and high delay 

interconnection networks. 

 

 
 

 

Fig.5. Normalized finished computation for simulations with churn with 
median session times of 10, 5 and 2.5 min (a) PD_MinRC (b) ASA
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Figure 5 shows that ASA is still capable of maintaining 

its functionality with churn instead of failing and that the 

performance degradation in ASA is 56.3 percent less as 

compared to PD_MinRC. In churn failure, every time a 

node of the group leaves, another node replaces it, so that 

the network size is maintained. A catastrophic failure is 

the concurrent failure of randomly large set of nodes. The 

failure tests are performed with the same parameters as in 

the simulation tests.  

It is seen that churn reduces more the performance of 

PD_MinRC. This is because deadlines are a heavy 

requirement and since PD_MinRC employs only passive 

replication scheme, some of the re-submitted jobs cannot 

meet their deadlines.  

6.4  Comparison With Other Works 

Several solutions presented till date do not have the 

strong substantiation for their scalability and 

fault-tolerance. The problems that Ire found are that the 

investigations are performed with only some thousand 

nodes without considering failures or realistic loads. Table 

1 compares our work with that of other works. 

Table 1. Comparison to other works 

Work 

Name 
Number of  

Nodes 
Failure LB 

Work 

load 

ASA 1,000,000 Yes Yes Traces 

PD_MinRC 

[7] 
500 Yes Yes 

Poisson 

Distribution 

iHLBA 

[13] 
100 No Yes 

Random 

Generation 

GA [15] 5 No Yes 
Random 

Generation 

QAFT [6] 256 Yes No 
Uniform 

Distribution 

New Model 
[8] 

1,000,000 Yes No Traces 

 

More issues where found with other decentralized 

scheduling platforms [7], [13], [15], [6] and [8]. They 

experiment with less than 10,000 nodes, no node failures 

or synthetic workloads.   

 

VII.  CONCLUSION & FUTURE WORK 

I have presented a decentralized fault-tolerant load 

balancing model for computing grids called ASA. ASA is 

the extended study of PD_MinRC. ASA takes into account 

the communication times; dispatching times, network 

bandwidth, memory and data storage. It employs 

backup-copy overlapping technology, striving to advance 

the start time of primary schedules and delay the start time 

of backup schedules within the timing constraints. ASA 

adaptively switches between active and passive replication 

schemes to reduce the job make-span, optimize node 

utilization and improve system reliability. ASA scales to a 

million nodes and tolerates high failure rates. ASA is the 

first of its kind reported in the literature; it 

comprehensively addresses the issues of fault tolerance, 

load balancing, reliability, flexibility and scalability. 

To evaluate the performance of ASA, I conduct 

trace-driven simulations using a million nodes and 

compared ASA with PD_MinRC. The allocation cost and 

communication overhead show a logarithmic behavior 

with increase in the system size, while throughput 

increases linearly. The other experimental results show 

that, ASA significantly improves the schedulability of jobs 

as compared to PD_MinRC for computing grids. When 

failure occurs, ASA is able to recover its functionality as 

compared to PD_MinRC 56 percent as churn failure tests 

and 47.02 percent as catastrophic failure tests report. 

In the future, I want to take into consideration other user 

requirements and test our algorithm on a real computing 

grid.  
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