
I.J. Information Engineering and Electronic Business, 2015, 4, 1-8
Published Online July 2015 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijieeb.2015.04.01

Copyright © 2015 MECS I.J. Information Engineering and Electronic Business, 2015, 4, 1-8

A New Partial Product Reduction Algorithm

using Modified Counter and Optimized Hybrid

Network

Pouya Asadi
Department of Computer, College of Engineering, Varamin-Pishva Branch, Islamic Azad University, Varamin, Iran

p_asadi@iauvaramin.ac.ir

Abstract—In this paper, a new multiplier is presented

which uses modified fourteen transistor adder and

optimized hybrid counter for partial product reduction

step. Conventional adder is modified to improve Wallace

tree functionality. Reducing critical path in counter

structure can reduce VLSI area in whole multiplier

structure. This paper uses a new structure in partial

product reduction step to increase speed. Four to two

compressors are used in modified Wallace structure to

minimize the critical path. In final addition step of

algorithm a new carry lookahead network is presented

which adds two final operands efficiently. It uses

dynamic CMOS in transistor level to reduce power

consumption. Proposed multiplier reduces critical path,

increases speed and decreases wiring problems in

compare with previous algorithms efficiently. A new

Booth encoder is presented in radix 16 circuitry. It

decreases number of partial products while hardware

overhead is minimized.

Index Terms—Adder, Booth encoder, CMOS, Multiplier,

VLSI.

I. INTRODUCTION

Multiplier is a central part of an ALU. Most high-

performance CPUs rely on hardware multiplication to

achieve high speed and low power consumption. This is

especially true for DSPs in which the basic building

modules are counters, compressors, and multipliers. We

have developed a high-speed low power multiplier

architecture that is well suited for ALUs [1] and is easily

developed to higher order partial product reduction

techniques. This allows high-speed multipliers to use a

small amount of IC and thus the implementation of high-

speed multipliers into a single chip area is possible. The

critical path in a pipeline multiplier can be divided into

three parts: partial product generator, partial product

reduction tree and the final adder [2]. The delay

introduced by the partial product generator is less than to

the other two parts especially for the large width

multipliers. This component latency is also relatively

small and is independent of the size of the multiplier. The

Dadda high-speed low-power multiplier uses full adders

to decrease an M bit operand to an equivalent two M-bit

final partial products that is added with a carry skip adder

to give the result [1]. It is a fully pipeline algorithm of the

multiplier used in the Intel processors [2]. The

compressors are a kind of counters whose carries are not

chained, so that three bits are taken in and two bits are

outputs. As mentioned more clearly in [3], the Wallace

multiplier also uses counters in the addition step. This

paper shows a modified algorithm that greatly decreases

the number of compressors in Dadda multipliers. In this

paper, all input operands are assumed to be M-bit two's

complement partial products. For the modified Dadda

reduction method, once the partial product tree (of 𝑀2

bits) is generated, adjacent lines are summed into

different collections of tree. Each group of bits is

decreased by using compressors applying a counter to

each column that uses two bits, and removing any even

rows to the next step without summing. This compression

algorithm is applied to each step until only two partial

products remain. The final two partial products are added

with a carry skip counter. This algorithm is presented by

the modified 8-bit-by-8-bit Dadda multiplier shown in

Fig. 1. Squares show the two column collections. The

summation is done in four steps (each with the wiring of

one counter) with a total of 35 counters and 15

compressors. The second step will need an 8-bit carry

lookahead adder. In comparison with Dadda algorithm,

the Wallace method [4] does the fastest decrease needed

at each step. To determine how much compression is

needed, the wiring of each step is computed by summing

from the previous step. It has a height of three columns.

The delay introduced by the partial product reduction and

the counter constitutes a large critical path in the

multiplier, which the delay introduced in the rows of the

tree is about half of the final carry skip adder. Therefore,

major concern to the speed of a multiplier will result for

improvement in partial product reduction and final

addition steps. In this paper, we discuss the performance

of various known algorithms for compressing the input

operands. Modified Booth encoder block diagram is

shown in Fig. 1. The number representation for the

floating point multiplication used in the algorithm is

based on [5]. Therefore, both input operands are double

precision numbers. With the progress of electronic

portable devices, the requirement of low power

equipment is getting more concern in recent years [1].

The primary rule in electronic mobile devices is to extend

2 A New Partial Product Reduction Algorithm using Modified Counter and Optimized Hybrid Network

Copyright © 2015 MECS I.J. Information Engineering and Electronic Business, 2015, 4, 1-8

functional hours without changing the battery technology.

Although advanced technology improves battery life to

operate for longer time, the complicated calculations in

the high-end portable devices have high power

consumption and are critical for low power architectures.

Low power structure can be implemented at system,

VLSI, technology, architecture and circuit

implementation. Power reduction can be significant if the

low power design is programmed in the earlier step at

circuit level. Optimizing logic structure in circuit

implementation is also critical in low power architectures.

To reach this goal, software simulation requires to be

extended. In section two to six we have presented a new

multiplier architecture which has reduced three different

electronic parameters. Presented multiplier reduces

transistor count, latency and area efficiently in compare

with conventional multipliers [1-4]. In section two, the

partial

Fig.1. Modified Booth encoder block diagram

product reduction algorithm for presented multiplier is

described. In section three and four, counter tree, which

is needed for partial product reduction algorithm, and

modified Booth generator, which is necessary, for partial

product generation step is proposed. In section five,

counter array is implemented using a dynamic

architecture. In section six, hybrid addition using carry

hybrid adder is designed.

II. THE PARTIAL PRODUCT REDUCTION ALGORITHM FOR

PRESENTED MULTIPLIER

Because the floating-point multiplier is dedicated for a

floating point DSP, the necessity for increasing speed and

decreasing power is very high. For the floating-point

multiplier to be synthesized to run consistently at the

speed of 230 MHz the parallel method is selected in the

algorithm, in which critical path is separated into several

steps, and the operands are used between the steps to

save the wiring path. Fig. 2 shows carry network for final

addition. Because the wiring path length of the input

operands through the tree structure is decreased in two-

clock cycle, the clock intervals are increased significantly.

The operational frequency is greater than conventional

logic tree. The faster the critical path of tree, the shorter

the signal path between the output operands, and the

greater the partial product path dealt with, concludes

higher efficiency. As a result, the operational speed of

Wallace algorithm is increased significantly by the

parallel algorithm. The structure is very appropriate for

adoption of the parallel technique because of efficiency

of their method. Let 𝑎𝑛−1𝑎𝑛−2 … 𝑎0 and 𝑏𝑛−1𝑏𝑛−2 … 𝑏0

be two m-bit binary numbers with a sum of

𝑠𝑛−1𝑠𝑛−2 … 𝑠0. The carry-hybrid algorithm computes the

𝑠𝑖 's by

𝑆𝑖+1 = 𝑎�̅� ⊕ 𝑏�̅� ⊕ 𝑐𝑖

𝐶𝑖+1 = 𝑎�̅�𝑏�̅� + (𝑎�̅� ⊕ 𝑏�̅�)𝑐𝑖

= 𝑎�̅�𝑏�̅� + (𝑎𝑖𝑏�̅� + 𝑎�̅�𝑏𝑖)𝑐𝑖

= 𝑎�̅�𝑏�̅� + 𝑎𝑖𝑏�̅�𝑐𝑖 + 𝑎�̅�𝑏𝑖𝑐𝑖

= 𝑎�̅�𝑏�̅� + 𝑏�̅�𝑐𝑖 + 𝑎�̅�𝑐𝑖 (1)

 A New Partial Product Reduction Algorithm using Modified Counter and Optimized Hybrid Network 3

Copyright © 2015 MECS I.J. Information Engineering and Electronic Business, 2015, 4, 1-8

Fig.2. Carry network for final addition

For large m, the above carry calculation is difficult to

implement due to the practical restrictions on fan-in and

fan-out. In order to decrease the complexity, it is

common practice to group outputs into adders [6].

III. COUNTER TREE

The counter suitable for use in a digital processing

algorithm was implemented using these basic structures.

In addition to normal add, subtract, multiplication and

division needed for the ALU module, we also had to

design an absolute value subtraction algorithm. Sign

magnitude arithmetic is not particularly well designed for

complex operations, since another computation stage is

needed whenever the calculated outputs are not positive.

We decided to use the two's complement method for

doing the arithmetic calculations, which in turn computes

the following extra stages. Fig. 3 shows six to two

counter at transistor level.

1. Exor logic is needed prior to summation (converting

from two's complement to sign magnitude).

2. Compute carry to perform two's complement

addition.

3. Exnor logic is needed after summation (converting

back to two's complement).

This was not a complex algorithm in our case since we

were calculating 16-bit numbers. Taking the overall

wiring and speed into computations, we decided to

design the 16-bit two's complement adder. The computed

carry introduced only four extra gate delays at the carry

production step.

𝑍 = −22𝑛−1 + 𝑥𝑛−1𝑦𝑛−122𝑛−2 + ∑ 𝑥𝑛−1𝑦𝑗̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑛−2

𝑗=0

2𝑛+𝑗−1

 (2)

+ ∑ 𝑦𝑛−1𝑥𝑖̅̅ ̅̅ ̅̅ ̅̅

𝑛−2

𝑖=0

2𝑛+𝑖−1 + ∑ ∑ 𝑥𝑖𝑦𝑗2𝑖+𝑗 + 2𝑛

𝑛−2

𝑗=0

𝑛−2

𝑖=0

After implementing gate expressions and control logic

we found the counter to be slower than required by the

frequency (clock speed = 17.68 MHz). The counter was

originally implemented as a step in an ALU. Throughput

is more important than delay. We decided to divide the

counter in three steps. This led to an improved

implementation of a parallel counter. Hybrid lookahead

adder as shown in Fig. 5 for a Wallace tree of the

lookahead adder is implemented. Each pair of

expressions is partitioned into 8-bit numbers with no

delay. The tree are however designed such that when the

signals that could result from collecting any expression

are summed in the carry hybrid array (one line in this

step), they are computed in one row to each other without

conflict. The result is that the signals produce a number

already in binary tree, unlike the carry-hybrid adder. The

sum of 16 bits results in 8 bits, plus the auxiliary array

expression for a total of 5 bits. This is a decrease of 32 to

24, or 20%. However, the actual signals of the 8 bits have

to be calculated and then extracted in the hybrid array

presented. The reduction from 32 to 4 bits is obtained in

the time required to add two eight-bit expressions and

transfer the resulting signal to the hybrid tree. Latency is

independent of the summands bit length (64 bits in this

case). This counter needs at least a sum of eight-bit

operands, which are decreased to four. This method is

extendable to its Wallace version in an appropriate

algorithm. Fig. 5 presents proposed tree network.

IV. MODIFIED BOOTH ALGORITHM

In the Wallace multiplication implementation, only

one bit of the operand is selected to produce the partial-

products. The modified partial product producer has a

short latency time but many output operands. For the m-

bit operand will be n partial-products in the Wallace

multiplication algorithm. As the m-bit of the operand can

be checked in Booth algorithm, only m/n operands are

produced. Therefore, the number of the output operands

is decreased. The modified Booth algorithm (k=m) can

implement the sign magnitudes multiplication. The two

input operands are both in the form of sign magnitude

and the addition and subtraction are used to calculate the

final operands. The process of producing the partial-

products is presented as follows:

Stage 1: initialize Booth encoder string to '1'; the input

operand A and input operand B are ready.

4 A New Partial Product Reduction Algorithm using Modified Counter and Optimized Hybrid Network

Copyright © 2015 MECS I.J. Information Engineering and Electronic Business, 2015, 4, 1-8

Fig.3. Six to two counter at transistor level

Fig.4. A slice of final adder module

 A New Partial Product Reduction Algorithm using Modified Counter and Optimized Hybrid Network 5

Copyright © 2015 MECS I.J. Information Engineering and Electronic Business, 2015, 4, 1-8

Fig.5. Proposed tree network

Stage 2: Add '0' at the left of the most significant bit of

the input operand, so the length of the output operand is

(m+1)-bit.

Stage 3: four-bit string (𝑀𝑖+1𝑀𝑖𝑀𝑖−1𝑀𝑖−2) of the

operand are checked and one bit is computed every time

from the previous partial product to the most significant

bit.

Stage 4: According to the mentioned expressions

(010~101) of the four-bit operand (𝑀𝑖+1𝑀𝑖𝑀𝑖−1𝑀𝑖−2),

there are six different functions for the input operands.

"+0", "+2B", "-2B", "+3B", "-3B", "+4B (+0 presents no

operation, and the partial-products does not change; "'2B"

presents add process for the operand B to the input

operands; "-2B" presents subtracting the operand B from

the other operand two times; the rest may be calculated

by analogy). In addition, the functions "-2B" and "+2B"

are performed through adding the sign significant of B

and 2B, respectively.

Stage 5: the operand B is shifted left three bits.

Stage 6: Repeat stages two to six, m/3 times to

calculate final operand.

The six functions in Step 3 are separated as three types:

"±0", "±2B", "±3B". Four input signals are required, 𝑠𝑒1

selects function "+0", 𝑠𝑒2 selects function "±2A", and 𝑠𝑒3

selects operation "±3A". the select outputs are presented

as the following bit strings by

𝐴 = −𝑎𝑛−12𝑛−1 + ∑ 𝑎𝑖2
𝑖

𝑛−2

𝑖=0

𝐵 = −𝑏𝑛−12𝑛−1 + ∑ 𝑏𝑖2
𝑖

𝑛−2

𝑖=0

6 A New Partial Product Reduction Algorithm using Modified Counter and Optimized Hybrid Network

Copyright © 2015 MECS I.J. Information Engineering and Electronic Business, 2015, 4, 1-8

𝐴 × 𝐵 = (−𝑎𝑛−12𝑛−1 + ∑ 𝑎𝑖2
𝑖

𝑛−2

𝑖=0

)

× (−𝑏𝑛−12𝑛−1 + ∑ 𝑏𝑗2𝑗

𝑛−2

𝑗=0

)

𝐴 × 𝐵 = 𝑎𝑛−1𝑏𝑛−122𝑛−2 − 𝑎𝑛−12𝑛−1. ∑ 𝑏𝑗2𝑗𝑛−2
𝑗=0 (3)

−𝑏𝑛−12𝑛−1. ∑ 𝑎𝑖2
𝑖

𝑛−2

𝑖=0

+ ∑ ∑ 𝑎𝑖

𝑛−2

𝑗=0

𝑏𝑗2𝑖+𝑗

𝑛−2

𝑖=0

𝐴 × 𝐵 = 𝑎𝑛−1𝑏𝑛−122𝑛−2

+ [∑ 𝑎𝑛−1 . 𝑏𝑗
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅2𝑗+𝑛−1

𝑛−2

𝑗=0

+ ∑ 𝑎𝑖−1 . 𝑏𝑛−1
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 2𝑖+𝑛−1

𝑛−2

𝑖=0

]

+ ∑ ∑ 𝑎𝑖𝑏𝑗2𝑖+𝑗

𝑛−2

𝑗=0

+ 𝑎0𝑏0

𝑛−2

𝑖=0

+ 𝐷

using the Booth diagram. One partial product 𝑚𝑒1 (or

𝑚𝑒2) determines the addition or subtraction function at

one step. If the output 𝑚𝑒1 (or 𝑚𝑒2) is generated, which

function should be done solves a stage. According to the

result of adder operator between 𝑀𝑖+1 and the output

partial product, the appropriate function can be executed.

When 𝑀𝑖+1 is '0', the subtraction is performed; the adder

module result of the partial product and 𝑀𝑖+1 is the same

with the output signal. When 𝑀𝑖+1 is '1', the addition is

performed; the adder procedure results the output partial

product and 𝑀𝑖+1 is the operator's output code. In

addition, the circuit diagram of modified Wallace

algorithm, as shown in Fig. 4, can be calculated. The

procedure of add 'A' in tree will be performed in the

following stages: partial-product summation and partial-

product reduction stage. Except for the production circuit

of the multiplicand, only two three-to-two multiplexers

and one counter gate are required for each bit of the

output signal. So the delay of the Booth method equals

two-step adder latency, which is just one block delay

more than that of the adder tree, but the number of

operands produced by the Booth algorithm is just half

that of the counter tree.

V. COUNTER STRUCTURE ARRAY

To demonstrate the algorithmic varieties that can be

obtained by the compressing of the basic structures, all

possible wiring of interconnecting three basic counters

are computed. These diagrams are all separated. It can

produce distinct structures of basic blocks. Fig. 6 shows

all possible method of interconnecting two basic blocks.

When compared to conventional Booth algorithm for

three operands, the number of produced diagrams is

raised from three to six for the smallest counters. This

number would increase for other basic blocks such as

four to two compressors. Although the output signals of

the parallel basic compressors are similar for wiring and

structure, the wiring of the implementations are different.

In Fig. 6 a maximum of 16 bits is computed at a length of

three basic units. This fact is important when determining

the maximum bits that can be calculated at a given depth

of modified structures. The Wallace tree interconnections

should be modified as well as the kind of the counters

employed. The modified array method can be used in

various structures. It would extend the goal of compact

implementation in a high-speed reconfigurable

implementation such as DSP, by using the already

available structures using highest throughput. Connecting

a 4-to-2 multiplexer to one input of a counter does not

need any extra wiring. This would let modified Wallace

structures using basic modules be very efficiently

designed on an Intel ALU chip. Referring to the

simplified diagram of an Intel half-part, the dedicated

logic for the carry outputs and the reduction is beneficial

for designing high-speed arrays. Two modified structures

to design the basic algorithm in a single compressor are

given in Fig. 6. It should be noted that all high-speed

logics that may be designed in an ALU have the same

latency and wiring characteristics because they are

designed as diagrams in a memory. As presented in the

Fig. 4, a limited procedure of counter is presented. A

modified architecture controls both the counter and the

functionality of compressor. The displayed ALU

characteristics form an efficient module for DSP

implementation.

VI. HYBRID ADDITION

In this paper, ideas of carry skip adder and carry

lookahead adder have been merged to develop a new

carry hybrid adder. The parallel carry skip adder is a

popular CMOS design technique that accelerates an m-bit

addition by network of carry hybrid adders [7]. A block

diagram of a carry hybrid adder is shown in Fig. 4, where

the counter is seen to consist of three modules: input

operands, produce, and removable modules; the carry

hybrid adder and output sum modules. The input modules

compute the bit propagate, produce, and not remove

operands according to

{
𝑆 = 𝑆1

0 ⊕ 𝐶𝑝𝑏𝑙𝑜𝑐𝑘

𝑆𝑖 = 𝑆𝑖
0�̅�𝑝𝑏𝑙𝑜𝑐𝑘 + (𝑆𝑖

0 ⊕ 𝑆𝑆̅̅
�̅�−1
0)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅𝐶𝑝𝑏𝑙𝑜𝑐𝑘 𝑓𝑜𝑟 𝑖 > 1

 (4)

Respectively. The hybrid carry array combines the bit

produce and bit removable signals to calculate carry

outputs 𝑐𝑖, which are XOR'd with the bit generate outputs

in the operand modules to give the final sum bits. Fig. 4

shows the hybrid carry array presented by [8]. The black

circles are hybrid cells, which

 A New Partial Product Reduction Algorithm using Modified Counter and Optimized Hybrid Network 7

Copyright © 2015 MECS I.J. Information Engineering and Electronic Business, 2015, 4, 1-8

Fig.6. A detailed description of presented multiplier

implement the expression pair. Two's complement

arithmetic has a number of benefits over conventional

arithmetic

 Addition and subtraction operations may be done on

two's complement and signs of inputs separated of

one another

 The static range is synchronous

 Errors is simpler to detect

However, wiring difficulties of two's complement have

led to new modifications in array structures. Furthermore,

dynamic CMOS implementation is required to design

efficient structures, implying a three-stage compression

process because the area reduction issue. The carry

lookahaed adder easily conquers this problem so that

two's complement arithmetic logic can obtain similar

efficiency to conventional number systems. The first step

in performing a two's complement addition is deciding

whether left shifting or right shifting is performed by the

signs of the input strings and the multiplication operation.

A left shifting is performed if the two's complement of

the operands are equal and right shifting is specified if

the two's complement of the multiplicand are opposite. A

minimum set of 16-bit strings was presented to detect all

conditions in a 16-bit hybrid adder in which the 𝑝𝑖 output

in the counter is generated by a network [9]. This was

extracted to a set of 32-bit strings to analyze any carry

skip adder. Another bit string was presented, using the

24000 counter in [10] as the final adder, for a CMOS

implementation, which generates a 3 ∗ (𝑀 + 1) bit string

sequence to analyze an M-bit counter [11]. The operand

pattern producer implementation for this method needs

an M+1 bit string as providing the best overall

computation for carry hybrid adders in general, it does

not completely analyze all kinds of designs. For example,

three output carry strings are not detected in the least

significant bit of the counter for the VLSI

implementation for the propagate signal as shown in Fig.

4. One output is not produced in the carry production

register and an inverter to form a final counter in

connection with M XNOR gates and N XOR gates as

presented in Fig. 3. This low power circuit is modified

and the bit string sequence generated by this logic is

8 A New Partial Product Reduction Algorithm using Modified Counter and Optimized Hybrid Network

Copyright © 2015 MECS I.J. Information Engineering and Electronic Business, 2015, 4, 1-8

presented for M=16. Table 1 shows simulation results of

32*32 bit two's complement multiplier.

Table 1. Simulation results of 32*32 bit two’s complement multiplier

Multiplier Avg. power

(uW)

Delay (ps) Number of

transistors

[6] 26.3 312 12500

[11] 24.35 365 13600

[3] 27.3 290 11750

[9] 29.26 440 14440

Presented

multiplier

23.6 265 11200

VII. CONCLUSIONS

In this paper a new multiplier, using efficient

components are implemented. It uses more effective

adder cells, which reduces critical path and wiring in

compare with conventional implementations. Presented

adder uses fourteen transistors and has modified structure,

which increases speed and reduces critical path. Partial

product reduction step uses an advanced wiring technique,

which reduces noise and decreases critical path.

Presented tree uses less transistor and noise problem in

compare with conventional partial product reduction

methods. Final addition uses an improved carry network,

which adds two final operands very efficiently and

decreases power consumption. It combines ideas of

different conventional adders to design a new hybrid

adder. Proposed multiplier increases speed 11 percent in

compare with previous algorithms, decreases transistor

count 12 percent and has less noise problem in compare

with conventional Wallace algorithms.

ACKNOWLEDGMENT

This paper is supported and extracted from "A new

network multiplier using modified high-order encoder

and optimized hybrid adder in CMOS technology"

research project, which is done, funded and implemented

in Department of Computer, College of Engineering,

Varamin-Pishva Branch, Islamic Azad University,

Varamin, Iran.

REFERENCES

[1] Saha P., Banerjee A., Bhattacharayya P. and Dandapat A.,

"Improved matrix multiplier design for high-speed digital

signal processing applications", IET Circuits, Devices and

Systems, Vol. 8, No. 1, pp. 27-37, 2014.

[2] Ozgun M.T. and Torlak M., "Effects of random delay

errors in continues-time semi-digital transversal filters",

IEEE Transactions on Circuits and Systems I: Regular

Papers, pp. 183-190, 2014.

[3] Tanzawa T., "An optimum design for integrated switched-

capacitor Dickson charge pump multipliers with area

power balance", IEEE Transactions on Power Electronics,

Vol. 29, No. 2, 534-538, 2014.

[4] Ying Y. H., Lin, J. M. and Lee C. Y., "Low space-

complexity digit-serial dual basis systolic multiplier over

Galois field GF (2^m) using Hankel matrix and Karatsuba

algorithm", IET Information Security, Vol. 7, No. 2, 75-

86, 2013.

[5] Oivero A., Torresani B. and Martinet K. R., "A class of

algorithms for time-frequency multiplier estimation",

IEEE Transactions on Audio, Speech and Language

Processing, Vol. 21, No. 8, 1550-1559, 2013.

[6] Caro D. D., Petra N., Strollo A. G. M. and Tessitore F.,

"Fixed-width multipliers and multipliers-accumulators

with min-max approximation error", IEEE Transactions

on circuits and Systems I: Regular Papers, Vol. 60, No. 9,

pp. 2375-2388, 2013.

[7] Kuang S. R., Wang K. C. and Hsu H. W., "Energy-

efficient high-throughput Montgomery modular

multipliers for RSA cryptosystems", IEEE Transactions

on Very Large Scale Integration (VLSI) Systems, Vol. 21,

No. 11, 2013.

[8] Chen S. K., Liu C. W., Wu T. Y. and Tsai A. C., "Desiin

and implementation of high-speed and energy-efficient

variable-latency speculating Booth multiplier (VLSBM)",

IEEE Transactions on Circuits and Systems I: regular

Papers, Vol. 60, No. 10, pp. 2631-2643, 2013.

[9] Chen J. and Chang C. H., "High-level synthesis algorithm

for the design of reconfigurable constant multiplier",

IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, Vol. 28, No. 12, pp.

1844-1856, 2009.

[10] Yajuan H. and Chang C. H., "A new redundant binary

Booth encoding for fast 2^n-bit multiplier design", IEEE

Transactions on Circuits and Systems I: Regular Papers,

Vol. 56, No. 6, pp. 1192-1201, 2009.

[11] Seo Y. H. and Kim D. W., "A new VLSI architecture of

parallel multiplier-accumulator based on radix-2 modified

Booth algorithm", IEEE Transactions on Very Large

Scale Integration (VLSI) Systems, Vol. 18, No. 2, pp.

201-208, 2010.

Authors’ Profiles

Pouya Asadi received a PhD degree in

computer engineering from Islamic Azad

University, Tehran, Iran in 2007 and is

presently an assistant professor at

Department of Computer, College of

Engineering, Varamin-Pishva Branch,

Islamic Azad University, Varamin, Iran. He

has worked on computer architecture,

software engineering and computer

networks.

