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Abstract—In this paper, a new multiplier is presented 

which uses modified fourteen transistor adder and 

optimized hybrid counter for partial product reduction 

step. Conventional adder is modified to improve Wallace 

tree functionality. Reducing critical path in counter 

structure can reduce VLSI area in whole multiplier 

structure. This paper uses a new structure in partial 

product reduction step to increase speed. Four to two 

compressors are used in modified Wallace structure to 

minimize the critical path. In final addition step of 

algorithm a new carry lookahead network is presented 

which adds two final operands efficiently. It uses 

dynamic CMOS in transistor level to reduce power 

consumption. Proposed multiplier reduces critical path, 

increases speed and decreases wiring problems in 

compare with previous algorithms efficiently. A new 

Booth encoder is presented in radix 16 circuitry. It 

decreases number of partial products while hardware 

overhead is minimized.  

 
Index Terms—Adder, Booth encoder, CMOS, Multiplier, 

VLSI. 

 

I.  INTRODUCTION 

Multiplier is a central part of an ALU. Most high-

performance CPUs rely on hardware multiplication to 

achieve high speed and low power consumption. This is 

especially true for DSPs in which the basic building 

modules are counters, compressors, and multipliers. We 

have developed a high-speed low power multiplier 

architecture that is well suited for ALUs [1] and is easily 

developed to higher order partial product reduction 

techniques. This allows high-speed multipliers to use a 

small amount of IC and thus the implementation of high-

speed multipliers into a single chip area is possible. The 

critical path in a pipeline multiplier can be divided into 

three parts: partial product generator, partial product 

reduction tree and the final adder [2]. The delay 

introduced by the partial product generator is less than to 

the other two parts especially for the large width 

multipliers. This component latency is also relatively 

small and is independent of the size of the multiplier. The 

Dadda high-speed low-power multiplier uses full adders 

to decrease an M bit operand to an equivalent two M-bit 

final partial products that is added with a carry skip adder 

to give the result [1]. It is a fully pipeline algorithm of the 

multiplier used in the Intel processors [2]. The 

compressors are a kind of counters whose carries are not 

chained, so that three bits are taken in and two bits are 

outputs. As mentioned more clearly in [3], the Wallace 

multiplier also uses counters in the addition step. This 

paper shows a modified algorithm that greatly decreases 

the number of compressors in Dadda multipliers. In this 

paper, all input operands are assumed to be M-bit two's 

complement partial products. For the modified Dadda 

reduction method, once the partial product tree (of 𝑀2 

bits) is generated, adjacent lines are summed into 

different collections of tree. Each group of bits is 

decreased by using compressors applying a counter to 

each column that uses two bits, and removing any even 

rows to the next step without summing. This compression 

algorithm is applied to each step until only two partial 

products remain. The final two partial products are added 

with a carry skip counter. This algorithm is presented by 

the modified 8-bit-by-8-bit Dadda multiplier shown in 

Fig. 1. Squares show the two column collections. The 

summation is done in four steps (each with the wiring of 

one counter) with a total of 35 counters and 15 

compressors. The second step will need an 8-bit carry 

lookahead adder. In comparison with Dadda algorithm, 

the Wallace method [4] does the fastest decrease needed 

at each step. To determine how much compression is 

needed, the wiring of each step is computed by summing 

from the previous step. It has a height of three columns. 

The delay introduced by the partial product reduction and 

the counter constitutes a large critical path in the 

multiplier, which the delay introduced in the rows of the 

tree is about half of the final carry skip adder. Therefore, 

major concern to the speed of a multiplier will result for 

improvement in partial product reduction and final 

addition steps. In this paper, we discuss the performance 

of various known algorithms for compressing the input 

operands. Modified Booth encoder block diagram is 

shown in Fig. 1. The number representation for the 

floating point multiplication used in the algorithm is 

based on [5]. Therefore, both input operands are double 

precision numbers. With the progress of electronic 

portable devices, the requirement of low power 

equipment is getting more concern in recent years [1]. 

The primary rule in electronic mobile devices is to extend 
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functional hours without changing the battery technology. 

Although advanced technology improves battery life to 

operate for longer time, the complicated calculations in 

the high-end portable devices have high power 

consumption and are critical for low power architectures. 

Low power structure can be implemented at system, 

VLSI, technology, architecture and circuit 

implementation. Power reduction can be significant if the 

low power design is programmed in the earlier step at 

circuit level. Optimizing logic structure in circuit 

implementation is also critical in low power architectures. 

To reach this goal, software simulation requires to be 

extended. In section two to six we have presented a new 

multiplier architecture which has reduced three different 

electronic parameters. Presented multiplier reduces 

transistor count, latency and area efficiently in compare 

with conventional multipliers [1-4]. In section two, the 

partial 

 

 

Fig.1. Modified Booth encoder block diagram 

product reduction algorithm for presented multiplier is 

described. In section three and four, counter tree, which 

is needed for partial product reduction algorithm, and 

modified Booth generator, which is necessary, for partial 

product generation step is proposed. In section five, 

counter array is implemented using a dynamic 

architecture. In section six, hybrid addition using carry 

hybrid adder is designed. 

 

II.  THE PARTIAL PRODUCT REDUCTION ALGORITHM FOR 

PRESENTED MULTIPLIER 

Because the floating-point multiplier is dedicated for a 

floating point DSP, the necessity for increasing speed and 

decreasing power is very high. For the floating-point 

multiplier to be synthesized to run consistently at the 

speed of 230 MHz the parallel method is selected in the 

algorithm, in which critical path is separated into several 

steps, and the operands are used between the steps to 

save the wiring path. Fig. 2 shows carry network for final 

addition. Because the wiring path length of the input 

operands through the tree structure is decreased in two-

clock cycle, the clock intervals are increased significantly. 

The operational frequency is greater than conventional 

logic tree. The faster the critical path of tree, the shorter 

the signal path between the output operands, and the 

greater the partial product path dealt with, concludes 

higher efficiency. As a result, the operational speed of 

Wallace algorithm is increased significantly by the 

parallel algorithm. The structure is very appropriate for 

adoption of the parallel technique because of efficiency 

of their method. Let 𝑎𝑛−1𝑎𝑛−2 … 𝑎0  and 𝑏𝑛−1𝑏𝑛−2 … 𝑏0 

be two m-bit binary numbers with a sum of 

𝑠𝑛−1𝑠𝑛−2 … 𝑠0. The carry-hybrid algorithm computes the 

𝑠𝑖 's by 

 

𝑆𝑖+1 = 𝑎�̅� ⊕ 𝑏�̅� ⊕ 𝑐𝑖 

 

𝐶𝑖+1 = 𝑎�̅�𝑏�̅� + (𝑎�̅� ⊕ 𝑏�̅�)𝑐𝑖 

 

= 𝑎�̅�𝑏�̅� + (𝑎𝑖𝑏�̅� + 𝑎�̅�𝑏𝑖)𝑐𝑖 

 

= 𝑎�̅�𝑏�̅� + 𝑎𝑖𝑏�̅�𝑐𝑖 + 𝑎�̅�𝑏𝑖𝑐𝑖 

 

= 𝑎�̅�𝑏�̅� + 𝑏�̅�𝑐𝑖 + 𝑎�̅�𝑐𝑖                          (1) 
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Fig.2. Carry network for final addition 

For large m, the above carry calculation is difficult to 

implement due to the practical restrictions on fan-in and 

fan-out. In order to decrease the complexity, it is 

common practice to group outputs into adders [6].  

 

III.  COUNTER TREE 

The counter suitable for use in a digital processing 

algorithm was implemented using these basic structures. 

In addition to normal add, subtract, multiplication and 

division needed for the ALU module, we also had to 

design an absolute value subtraction algorithm. Sign 

magnitude arithmetic is not particularly well designed for 

complex operations, since another computation stage is 

needed whenever the calculated outputs are not positive. 

We decided to use the two's complement method for 

doing the arithmetic calculations, which in turn computes 

the following extra stages. Fig. 3 shows six to two 

counter at transistor level.  

 

1. Exor logic is needed prior to summation (converting 

from two's complement to sign magnitude). 

2. Compute carry to perform two's complement 

addition. 

3. Exnor logic is needed after summation (converting 

back to two's complement). 

 

This was not a complex algorithm in our case since we 

were calculating 16-bit numbers. Taking the overall 

wiring and speed into computations, we decided to 

design the 16-bit two's complement adder. The computed 

carry introduced only four extra gate delays at the carry 

production step. 

 

𝑍 = −22𝑛−1 + 𝑥𝑛−1𝑦𝑛−122𝑛−2 + ∑ 𝑥𝑛−1𝑦𝑗̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑛−2

𝑗=0

2𝑛+𝑗−1 

                                                                                      (2) 

 

+ ∑ 𝑦𝑛−1𝑥𝑖̅̅ ̅̅ ̅̅ ̅̅

𝑛−2

𝑖=0

2𝑛+𝑖−1 + ∑ ∑ 𝑥𝑖𝑦𝑗2𝑖+𝑗 + 2𝑛

𝑛−2

𝑗=0

𝑛−2

𝑖=0

 

 

After implementing gate expressions and control logic 

we found the counter to be slower than required by the 

frequency (clock speed = 17.68 MHz). The counter was 

originally implemented as a step in an ALU. Throughput 

is more important than delay. We decided to divide the 

counter in three steps. This led to an improved 

implementation of a parallel counter. Hybrid lookahead 

adder as shown in Fig. 5 for a Wallace tree of the 

lookahead adder is implemented. Each pair of 

expressions is partitioned into 8-bit numbers with no 

delay. The tree are however designed such that when the 

signals that could result from collecting any expression 

are summed in the carry hybrid array (one line in this 

step), they are computed in one row to each other without 

conflict. The result is that the signals produce a number 

already in binary tree, unlike the carry-hybrid adder. The 

sum of 16 bits results in 8 bits, plus the auxiliary array 

expression for a total of 5 bits. This is a decrease of 32 to 

24, or 20%. However, the actual signals of the 8 bits have 

to be calculated and then extracted in the hybrid array 

presented. The reduction from 32 to 4 bits is obtained in 

the time required to add two eight-bit expressions and 

transfer the resulting signal to the hybrid tree. Latency is 

independent of the summands bit length (64 bits in this 

case). This counter needs at least a sum of eight-bit 

operands, which are decreased to four. This method is 

extendable to its Wallace version in an appropriate 

algorithm. Fig. 5 presents proposed tree network. 

 

IV.  MODIFIED BOOTH ALGORITHM 

In the Wallace multiplication implementation, only 

one bit of the operand is selected to produce the partial-

products. The modified partial product producer has a 

short latency time but many output operands. For the m-

bit operand will be n partial-products in the Wallace 

multiplication algorithm. As the m-bit of the operand can 

be checked in Booth algorithm, only m/n operands are 

produced. Therefore, the number of the output operands 

is decreased. The modified Booth algorithm (k=m) can 

implement the sign magnitudes multiplication. The two 

input operands are both in the form of sign magnitude 

and the addition and subtraction are used to calculate the 

final operands. The process of producing the partial-

products is presented as follows: 

Stage 1: initialize Booth encoder string to '1'; the input 

operand A and input operand B are ready. 
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Fig.3. Six to two counter at transistor level 

 

Fig.4. A slice of final adder module 
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Fig.5. Proposed tree network 

Stage 2: Add '0' at the left of the most significant bit of 

the input operand, so the length of the output operand is 

(m+1)-bit. 

Stage 3: four-bit string ( 𝑀𝑖+1𝑀𝑖𝑀𝑖−1𝑀𝑖−2 ) of the 

operand are checked and one bit is computed every time 

from the previous partial product to the most significant 

bit. 

Stage 4: According to the mentioned expressions 

(010~101) of the four-bit operand (𝑀𝑖+1𝑀𝑖𝑀𝑖−1𝑀𝑖−2 ), 

there are six different functions for the input operands. 

"+0", "+2B", "-2B", "+3B", "-3B", "+4B (+0 presents no 

operation, and the partial-products does not change; "'2B" 

presents add process for the operand B to the input 

operands; "-2B" presents subtracting the operand B from 

the other operand two times; the rest may be calculated 

by analogy). In addition, the functions "-2B" and "+2B" 

are performed through adding the sign significant of B 

and 2B, respectively.  

Stage 5: the operand B is shifted left three bits.  

Stage 6: Repeat stages two to six, m/3 times to 

calculate final operand. 

The six functions in Step 3 are separated as three types: 

"±0", "±2B", "±3B". Four input signals are required, 𝑠𝑒1 

selects function "+0", 𝑠𝑒2 selects function "±2A", and 𝑠𝑒3 

selects operation "±3A". the select outputs are presented 

as the following bit strings by  

 

𝐴 = −𝑎𝑛−12𝑛−1 + ∑ 𝑎𝑖2
𝑖

𝑛−2

𝑖=0

 

 

𝐵 = −𝑏𝑛−12𝑛−1 + ∑ 𝑏𝑖2
𝑖

𝑛−2

𝑖=0
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𝐴 × 𝐵 = (−𝑎𝑛−12𝑛−1 + ∑ 𝑎𝑖2
𝑖

𝑛−2

𝑖=0

) 

 

× (−𝑏𝑛−12𝑛−1 + ∑ 𝑏𝑗2𝑗

𝑛−2

𝑗=0

) 

 

𝐴 × 𝐵 = 𝑎𝑛−1𝑏𝑛−122𝑛−2 − 𝑎𝑛−12𝑛−1. ∑ 𝑏𝑗2𝑗𝑛−2
𝑗=0       (3) 

 

−𝑏𝑛−12𝑛−1. ∑ 𝑎𝑖2
𝑖

𝑛−2

𝑖=0

+ ∑ ∑ 𝑎𝑖

𝑛−2

𝑗=0

𝑏𝑗2𝑖+𝑗

𝑛−2

𝑖=0

 

 

𝐴 × 𝐵 = 𝑎𝑛−1𝑏𝑛−122𝑛−2 

 

+ [∑ 𝑎𝑛−1 .  𝑏𝑗
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅2𝑗+𝑛−1

𝑛−2

𝑗=0

+ ∑ 𝑎𝑖−1 .  𝑏𝑛−1
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 2𝑖+𝑛−1

𝑛−2

𝑖=0

] 

 

+ ∑ ∑ 𝑎𝑖𝑏𝑗2𝑖+𝑗

𝑛−2

𝑗=0

+ 𝑎0𝑏0

𝑛−2

𝑖=0

+ 𝐷 

 

using the Booth diagram. One partial product 𝑚𝑒1  (or 

𝑚𝑒2) determines the addition or subtraction function at 

one step. If the output 𝑚𝑒1 (or 𝑚𝑒2) is generated, which 

function should be done solves a stage. According to the 

result of adder operator between 𝑀𝑖+1  and the output 

partial product, the appropriate function can be executed. 

When 𝑀𝑖+1 is '0', the subtraction is performed; the adder 

module result of the partial product and 𝑀𝑖+1 is the same 

with the output signal. When 𝑀𝑖+1 is '1', the addition is 

performed; the adder procedure results the output partial 

product and 𝑀𝑖+1  is the operator's output code. In 

addition, the circuit diagram of modified Wallace 

algorithm, as shown in Fig. 4, can be calculated. The 

procedure of add 'A' in tree will be performed in the 

following stages: partial-product summation and partial-

product reduction stage. Except for the production circuit 

of the multiplicand, only two three-to-two multiplexers 

and one counter gate are required for each bit of the 

output signal. So the delay of the Booth method equals 

two-step adder latency, which is just one block delay 

more than that of the adder tree, but the number of 

operands produced by the Booth algorithm is just half 

that of the counter tree. 

 

V.  COUNTER STRUCTURE ARRAY 

To demonstrate the algorithmic varieties that can be 

obtained by the compressing of the basic structures, all 

possible wiring of interconnecting three basic counters 

are computed. These diagrams are all separated. It can 

produce distinct structures of basic blocks. Fig. 6 shows 

all possible method of interconnecting two basic blocks. 

When compared to conventional Booth algorithm for 

three operands, the number of produced diagrams is 

raised from three to six for the smallest counters. This 

number would increase for other basic blocks such as 

four to two compressors. Although the output signals of 

the parallel basic compressors are similar for wiring and 

structure, the wiring of the implementations are different. 

In Fig. 6 a maximum of 16 bits is computed at a length of 

three basic units. This fact is important when determining 

the maximum bits that can be calculated at a given depth 

of modified structures. The Wallace tree interconnections 

should be modified as well as the kind of the counters 

employed. The modified array method can be used in 

various structures. It would extend the goal of compact 

implementation in a high-speed reconfigurable 

implementation such as DSP, by using the already 

available structures using highest throughput. Connecting 

a 4-to-2 multiplexer to one input of a counter does not 

need any extra wiring. This would let modified Wallace 

structures using basic modules be very efficiently 

designed on an Intel ALU chip. Referring to the 

simplified diagram of an Intel half-part, the dedicated 

logic for the carry outputs and the reduction is beneficial 

for designing high-speed arrays. Two modified structures 

to design the basic algorithm in a single compressor are 

given in Fig. 6. It should be noted that all high-speed 

logics that may be designed in an ALU have the same 

latency and wiring characteristics because they are 

designed as diagrams in a memory. As presented in the 

Fig. 4, a limited procedure of counter is presented. A 

modified architecture controls both the counter and the 

functionality of compressor. The displayed ALU 

characteristics form an efficient module for DSP 

implementation. 

 

VI.  HYBRID ADDITION 

In this paper, ideas of carry skip adder and carry 

lookahead adder have been merged to develop a new 

carry hybrid adder. The parallel carry skip adder is a 

popular CMOS design technique that accelerates an m-bit 

addition by network of carry hybrid adders [7]. A block 

diagram of a carry hybrid adder is shown in Fig. 4, where 

the counter is seen to consist of three modules: input 

operands, produce, and removable modules; the carry 

hybrid adder and output sum modules. The input modules 

compute the bit propagate, produce, and not remove 

operands according to 

 

{
𝑆 = 𝑆1

0 ⊕ 𝐶𝑝𝑏𝑙𝑜𝑐𝑘

𝑆𝑖 = 𝑆𝑖
0�̅�𝑝𝑏𝑙𝑜𝑐𝑘 + (𝑆𝑖

0 ⊕ 𝑆𝑆̅̅
�̅�−1
0 )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅𝐶𝑝𝑏𝑙𝑜𝑐𝑘      𝑓𝑜𝑟 𝑖 > 1

      (4) 

 

Respectively. The hybrid carry array combines the bit 

produce and bit removable signals to calculate carry 

outputs 𝑐𝑖, which are XOR'd with the bit generate outputs 

in the operand modules to give the final sum bits. Fig. 4 

shows the hybrid carry array presented by [8]. The black 

circles are hybrid cells, which  

 



 A New Partial Product Reduction Algorithm using Modified Counter and Optimized Hybrid Network 7 

Copyright © 2015 MECS                                            I.J. Information Engineering and Electronic Business, 2015, 4, 1-8 

 

Fig.6. A detailed description of presented multiplier 

implement the expression pair. Two's complement 

arithmetic has a number of benefits over conventional 

arithmetic 

 

 Addition and subtraction operations may be done on 

two's complement and signs of inputs separated of 

one another 

 The static range is synchronous 

 Errors is simpler to detect 

 

However, wiring difficulties of two's complement have 

led to new modifications in array structures. Furthermore, 

dynamic CMOS implementation is required to design 

efficient structures, implying a three-stage compression 

process because the area reduction issue. The carry 

lookahaed adder easily conquers this problem so that 

two's complement arithmetic logic can obtain similar 

efficiency to conventional number systems. The first step 

in performing a two's complement addition is deciding 

whether left shifting or right shifting is performed by the 

signs of the input strings and the multiplication operation. 

A left shifting is performed if the two's complement of 

the operands are equal and right shifting is specified if 

the two's complement of the multiplicand are opposite. A 

minimum set of 16-bit strings was presented to detect all 

conditions in a 16-bit hybrid adder in which the 𝑝𝑖 output 

in the counter is generated by a network [9]. This was 

extracted to a set of 32-bit strings to analyze any carry 

skip adder. Another bit string was presented, using the 

24000 counter in [10] as the final adder, for a CMOS 

implementation, which generates a 3 ∗ (𝑀 + 1) bit string 

sequence to analyze an M-bit counter [11]. The operand 

pattern producer implementation for this method needs 

an M+1 bit string as providing the best overall 

computation for carry hybrid adders in general, it does 

not completely analyze all kinds of designs. For example, 

three output carry strings are not detected in the least 

significant bit of the counter for the VLSI 

implementation for the propagate signal as shown in Fig. 

4. One output is not produced in the carry production 

register and an inverter to form a final counter in 

connection with M XNOR gates and N XOR gates as 

presented in Fig. 3. This low power circuit is modified 

and the bit string sequence generated by this logic is 
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presented for M=16. Table 1 shows simulation results of 

32*32 bit two's complement multiplier. 

Table 1. Simulation results of 32*32 bit two’s complement multiplier 

Multiplier Avg. power 

(uW) 

Delay (ps) Number of 

transistors 

[6] 26.3 312 12500 

[11] 24.35 365 13600 

[3] 27.3 290 11750 

[9] 29.26 440 14440 

Presented 

multiplier 

23.6 265 11200 

 

VII.  CONCLUSIONS 

In this paper a new multiplier, using efficient 

components are implemented. It uses more effective 

adder cells, which reduces critical path and wiring in 

compare with conventional implementations. Presented 

adder uses fourteen transistors and has modified structure, 

which increases speed and reduces critical path. Partial 

product reduction step uses an advanced wiring technique, 

which reduces noise and decreases critical path. 

Presented tree uses less transistor and noise problem in 

compare with conventional partial product reduction 

methods. Final addition uses an improved carry network, 

which adds two final operands very efficiently and 

decreases power consumption. It combines ideas of 

different conventional adders to design a new hybrid 

adder. Proposed multiplier increases speed 11 percent in 

compare with previous algorithms, decreases transistor 

count 12 percent and has less noise problem in compare 

with conventional Wallace algorithms.  
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