
I.J. Information Engineering and Electronic Business, 2015, 2, 38-50
Published Online March 2015 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijieeb.2015.02.06

Copyright © 2015 MECS I.J. Information Engineering and Electronic Business, 2015, 2, 38-50

A Dependency Graph Generation Process for Cli-

ent-side Web Applications

Tajkia R. Toma
Institute of Information Technology, University of Dhaka, Dhaka, Bangladesh

Email: tajkiatoma@gmail.com

Mohayeminul Islam, Mohammad Shoyaib and Md. Shariful Islam
Institute of Information Technology, University of Dhaka, Dhaka, Bangladesh

Email: mohayeminul.islam@gmail.com, shoyaib@du.ac.bd, shariful@univdhaka.edu

Abstract—The prolific growth of the Internet density has

replaced native applications with web based applications.

Current trend of web applications is moving towards fat

client architecture, which results in a large codebase of

the client side of web applications. Manual management

of this huge code is tedious and time consuming for de-

velopers. We present a technique to construct a depend-

ency graph to provide an overview of the code showing

the inter-dependency of the code elements. We conduct a

dynamic analysis to make the JavaScript call graph to

address the dynamic nature of JavaScript. We further

integrate HTML and CSS with the JavaScript call graph

to make a dependency graph. Because we can accurately

identify the HTML and CSS relations, the result of the

dependency graph depends on the JavaScript call graph.

Our evaluation of the JavaScript call graph on six web

applications demonstrates that the precision is high for

the large applications and relatively low for small appli-

cations. The recall is low for large applications and rela-

tively higher for small applications.

Index Terms—Web Application, Software Maintenance,

Client-side, Dynamic Analysis, Test case, Call Graph,

Dependency Graph.

I. INTRODUCTION

Mobility and platform independence has revolutionized

web applications in recent years. Many popular native

applications have been replaced by the web applications

that provide the similar services. Structurally, a web ap-

plication has two processing ends: server side for the data

management and business logics implementation, and

client side for the presentation of data and user interaction

through web browser. In client side, we form the structure

of a web page in the web browser through a markup lan-

guage, define an enchanting presentation by the style

sheets and employ a client-side scripting language to at-

tain dynamicity of the page.
The standard markup language used to render a web

page is known as Hypertext Markup Language (HTML).

HTML provides the basic structure of a web page. In

addition to HTML, a Cascading Style Sheet (CSS) is used

to provide more sophisticated look and feel. The web

page that is built with HTML and CSS is static because

we cannot implement logic with HTML and CSS. Differ-

ent scripting languages are added to them to change the

page dynamically and to respond to user interactions.

Among the scripting languages, JavaScript is the most

popular [1]. JavaScript is supported by most modern web

browsers without need of any additional plugin software.

In a web application, client’s needs are fulfilled by a

number of interactive features provided in client side.

When a good number of features implemented in client

being independent of server in server-client architecture

is called fat-client architecture. This makes the applica-

tion more responsive and the server more capacitive.

The interactive features in fat-client applications are

commonly handled by extensive use of the client side

scripting language, JavaScript, along with HTML and

CSS. The scripting language processes the user interface

(UI) events invoked by user interactions with the features

provided in a web page. Thus a fat client application

needs massive JavaScript implementation, which handles

massive user interactions. This makes a large codebase

for a fat-client web application and codebase often be-

come unstructured. The large unstructured codebase of

development phase makes it hard to maintain and contin-

ue supporting activities in the maintenance phase.

In the software maintenance phase, user’s requests for

changes in application are mostly based on specific fea-

ture [2]. Therefore, developers who are man-aging

change requests need the code that implements the specif-

ic features. Since the documentation of the application

does not provide the implementation detail of the applica-

tion, therefore, the developers manually browse source

code to locate the feature. The developers have to go

through several files which is tedious and time-

consuming. For a fat-client web application, the develop-

ers need to browse mostly the code of client-side imple-

mentation. The dynamic nature of JavaScript and the in-

terplay of three different languages in a web application

make the manual inspection more complicated. In cases

where a developer is new in the development team having

no previous knowledge about the system, faces more dif-

ficulties. In such situations, an intelligent technique that

provides overview of the HTML, CSS and JavaScript

implementation of a full application will help the devel

 A Dependency Graph Generation Process for Client-side Web Applications 39

Copyright © 2015 MECS I.J. Information Engineering and Electronic Business, 2015, 2, 38-50

opers.
The main goal of the work is to develop a dependency

graph of the HTML, CSS and JavaScript implementations

of the client side of a web application. In order to in-

crease efficiency, we distribute the work load in phases of

the Software Development Life Cycle (SDLC). This will

help developers finding the implementing code of a fea-

ture efficiently and change the code as per requirements,

which is the starting point of impact analysis [3].

The main contribution of this paper is divided into two

folds:

1) A call graph to structure all the JavaScript func-

tions and their relationships using dynamic analy-

sis, and

2) A dependency graph to present the dependency

relations among HTML, CSS and JavaScript im-

plementations of a web application.

The JavaScript call graph is an extension of the work

in [4]. We have modified the execution trace collection

method to overcome their limitations. We evaluate the

resultant call graph with the call graph made by manual

analysis. It is not possible for the developers to identify

all the function calls with manual analysis. The proposed

dynamic technique can identify those statically unpre-

dictable functions and their relations. The evaluation of

the technique shows that for the small projects the preci-

sion values are low but recalls are high. For the large pro-

jects the performance has been reversed.

We integrate HTML and CSS with the JavaScript call

graph and make a dependency graph to help developers in

locating feature of the full web application.

The remaining sections of this paper are organized as

follows: Section II provides an overview of the domain

with proper motivation of the work. Section III presents

the related works. Section IV and V describe the pro-

posed method in detail with application of the proposed

methods step by step on a small web application with

their result. Section VI presents the evaluation of the pro-

posed method. Section VII concludes the paper with an

overview and the future plan.

II. BACKGROUND

In this section we introduce the concepts and terminol-

ogies necessary to understand the feature location process

for a client side web application. First we will describe

the key terminologies. Then we will describe the motiva-

tion with example to make the challenging factors clear.

A. Client-side Web Application: Conceptual and Con-

structional Model

A web application consists of a number of web pages.

A web page has structure which has presentation and

behavior. Features of a web page are individually imple-

mented by structures of the web page. A page is provided

by the server and is rendered in the client browser. This

concept is illustrated in Fig. 1.

Fig. 1. The conceptual model of a client-side web application

Constructionally a web page is the point of integration

of three implementing languages: markup, style sheet and

scripts. The style sheet and scripts communicate with the

markup through the web page. The most commonly used

markup languages for web pages are HTML and Extensi-

ble HTML (XHTML). HTML uses tags to specify the

structure of the page. For styling a web page CSS is the

most used style sheet. It styles the web page using the

HTML or XHTML as its base. A web page consisting of

HTML and CSS gives control over the structure and

presentation but not the behavior. This type of pages is

known as static web page. To add dynamicity to a web

page we add dynamic code, scripts to the web application.

Among the client-side scripting languages, JavaScript is

used in 87.9% web applications in respect to other client-

side programming languages [1]. This constructional

model is illustrated in Fig. 2.

Fig. 2. The constructional model of a client-side web application

A web page consisting of HTML and CSS gives con-

trol over the structure and presentation but not the behav-

ior. A web page that always serves the same contents to

every user unless the file is manually changed in server

side is called a static web page. While a dynamic web

page is where the server file is the same but it displays

different data depending on information such as the time

of day, the user who is logged in, the date, the search

term it has been given to look for [5]. To add dynamicity

to a web page we add dynamic code, scripts to the web

application. Scripts can be written for both server and

40 A Dependency Graph Generation Process for Client-side Web Applications

Copyright © 2015 MECS I.J. Information Engineering and Electronic Business, 2015, 2, 38-50

client side. A script that is embedded within an HTML

file is a client side script. A script is interpreted at

runtime.

Among the client-side scripting languages, JavaScript

is used in 87.9% web applications in respect to other cli-

ent-side programming languages [1]. There are also sup-

porting libraries/frameworks for the advance use of Ja-

vaScript. Five widely used JavaScript frameworks are:

jQuery [6], Modernizr [7], MooTools [8], Prototype [9]

and ASP .NET Ajax [10][11]. The Asynchronous JavaS-

cript and XML (Ajax) can send request to the web server

and receive data in different formats such as JSON, XML,

HTML and even text files without reloading the current

page in the browser [12].

B. Key Terminologies

Throughout this paper, we have used some domain

specific terminologies. We introduce the terminologies

and concepts related to our work in the following subsec-

tions.

Feature: According to IEEE [13] the term feature

means ―A distinguishing characteristic of a system item

(includes both functional and nonfunctional attributes

such as performance and reusability)‖. While according

to the program understanding community, a specific

functionality that is accessible by and visible to the de-

velopers as well as users, which is specified from a user

requirement, is called a feature [14][15][16]. The defini-

tion varies from context to context [14]. In this paper we

used the term from both the perspectives except that we

exclude the non-functional attributes from the definition

of IEEE in our feature list. We only considered the ob-

servable behaviors that can be triggered by users or de-

velopers.

Scenario: A scenario is a sequence of tasks or user in-

puts that invokes a feature of an application [17]. A sce-

nario describes a feature from an abstraction level [14].

Scenarios can be of two types: supported scenario and

avoided scenario. A supported scenario is a state of an

execution of a system that will be in the system, whereas

an avoided scenario should not exist in the system [18].

Test case: A test case is the documentation which spec-

ifies a combination of test inputs, execution conditions

and expected results [19][20], where the expected results

are worked out before testing the application for the given

test inputs and execution environment. A test case is used

to exercise a particular program path or to test the cor-

rectness of the behavior of a functionality or feature of an

application. The test input should satisfy the pre-

condition before the test execution starts and the expected

output should satisfy the post-condition after the end of

the execution. Test cases should also include the output

of unexpected inputs and error cases. Test cases cover the

complete code and combine features in many ways,

whereas, scenarios invoke all relevant features but as few

other features as possible [14].

Execution trace: Execution trace is a record of the se-

quence of instructions executed during the execution of a

computer program. It often takes the form of a list of

code labels encountered as the program executes [19].

According to [21], an execution trace is a sequence of

events that represent the important moments in the execu-

tion of the program. In our system a trace is a set of func-

tions executed sequentially and collected dynamically by

executing test cases.

Call graph: Call graph is a diagram that identifies the

functions of a computer program and shows which func-

tions call one another [19]. Generally a call graph is a

directed graph where the start node of an edge is the call-

er function and the end node is the callee function. Call

graphs can be dynamic or static. A dynamic call graph is

an exact record of an execution of the program. There-

fore, a dynamic call graph is usually exact. However, it

only describes one execution of the program. A static call

graph is a call graph that represents every possible execu-

tion of the program. Static call graph algorithms are usu-

ally over approximations because it is an undecidable

problem. That means static call graph may present some

relationships which may never occur in reality.

Dependency Graph: A dependency graph is a directed

graph where we present the relationship among the ele-

ments of a web application. The elements are represented

by the nodes of the graph and the edges of the graph pic-

ture the relationship among the nodes. An edge from a

parent node to a child node expresses the dependency of

the parent node on the child node.

C. Motivating Examples

A web application is the interplay of three different

types of languages: markup, style sheet and script. Sur-

veys influence us to select HTML as markup language,

CSS for style sheet and JavaScript for scripting [1]. The

combination and coordination of three different lan-

guages at a time makes it difficult to manage. The output

of HTML and CSS are more or less manually interpreta-

ble, but the execution flow of JavaScript is quite untrace-

able for its dynamic nature. Also there are very few tool

support for the traceability.

In JavaScript, there are several mechanisms whereby

executable code can be generated at runtime, (e.g., eval).

Static reasoning about dynamically generated code is

very difficult [22]. Members of an object can be modified

at runtime, even an object can be redefined at any stage

of a program’s execution.

Listing 3 in Appendix is the JavaScript implementation

of a web application which searches for documents

cashed in browser memory (DocSearch). In addition to

document search there is also a feature that provides sug-

gestion while typing in search box. The example demon-

strates some of the key properties of JavaScript. Here we

will explain these properties by code snippets from the

application.

JavaScript is a weakly typed object-oriented language

which uses prototype-based inheritance. The variables of

JavaScript are dynamically typed, i.e. can hold values of

different types over the course of program execution.

This makes the understanding of call checking and field

access in run-time. The dynamic typing property has been

demonstrated throughout the Listing 3 whenever a varia-

ble has been declared using var, e.g., Lines 4, 5 and 6.

 A Dependency Graph Generation Process for Client-side Web Applications 41

Copyright © 2015 MECS I.J. Information Engineering and Electronic Business, 2015, 2, 38-50

3 input = input.toLowerCase();
4 var matches = [];
5 for (var i in source) {
6 var src = source[i].toLowerCase();
7 if (matcher(src, input)) {

The functions of JavaScript are first class objects. This

means, functions are passed as arguments to other func-

tions, returning them as the values from other functions

and assigning them to variables [23]. In the following

code snippet, at Line 2 there is a function named find-

Matches and it takes three arguments. The third argument

is used at Line 7 as a function which matches a given

word in an array of string. While calling the function

from Line 24 and 59, they pass two functions with differ-

ent logics for matching in third argument. Also the func-

tion is assigned to a property of helper on Line 13. These

demonstrate the first-class object property of functions in

JavaScript.

1 (function (helper, undefined) {
2 function findMatches(source, input,
 matcher){
3 input = input.toLowerCase();
4 var matches = [];
5 for (var i in source) {
6 var src = source[i].toLowerCase();
7 if (matcher(src, input)) {
8 matches.push(src);
9 }
10 }
11 return matches;
12 }
13 helper.findMatches = findMatches;

24 var matches = helper.findMatches(
 getSuggestionsSet(), input,
25 function (src, inp) {
 return src.substring(0, inp.length)
26 === inp;
 });

59 var results = helper.findMatches(
 getParagraphsSet(), searchString,
 function (src, inp) {
60 return src.indexOf(inp) >= 0;
61 });

Objects in JavaScript do not have a fixed set of proper-

ties. Properties can be created simply by assigning values

at anywhere in the code and can even be deleted [24] [25].

The dynamic property creation for an object is shown at

Lines 13 and 51-53 in the above code snippet.

In JavaScript, a function can be defined inside another

function. The scope of the inside function is only its par-

ent function. Thus we say the function as a function of

local scope. In Lines 2 of the above code snippet and 56

of the code snippet below, functions in local scope have

been defined which are not reachable from outside of

their parent function.

50 }
51 suggestion.showSuggestion = showSuggestion;
52 suggestion.setSuggestion = setSuggestion;
53 suggestion.setSuggestionsVisible =
 setSuggestionsVisible;
54 }(window.suggestion = window.suggestion ||

 {}));
55 (function(search){
56 function showSearchResult() {
57 var searchString = $(‘#search-box’)
 .val();

All the dynamic properties of JavaScript make it diffi-

cult to understand the full execution path and executed

functions of a full application from the source code

browsing. The properties of JavaScript hamper the for-

mulation of call graph by manual inspection of a devel-

oper. That is why JavaScript is considered separately for

the generation of dependency graph.

Our goal is to prepare a call graph using dynamic anal-

ysis to have all the execution paths of JavaScript imple-

mentation and integrate HTML and CSS with it to make a

dependency graph which can be further used for locating

a feature in the code. The state of the art on JavaScript

analysis provides ideas and solutions for different goals.

In the next section we discuss some state of the arts, their

solution processes in detail with their advantages and

disadvantages.

III. RELATED WORK

Analysis on JavaScript call graph for maintenance

phase is a newly evolving field. Recently, Toma et al. [4]

proposed a dynamic analysis based JavaScript call graph

generation technique for a client side web application.

Test cases of testing phase are their source to have the

full execution path of a web application. They trace the

execution flow running the test cases and from the col-

lected traces they made and update the call graph itera-

tively. The problem of the work is that the process cannot

detect the functions of local scope.

Feldthaus et al. [26] proposed a call graph generation

mechanism for JavaScript, based on a scalable field based

flow analysis. The contribution of the work is for the

support of sophisticated development tools for the devel-

opment phase. The call graph is generated for the IDE

services for developers. The goal of the work demands it

to be based on static analysis. The analysis only tracks the

flow of function values from a flow graph. For the identi-

fication of object flow a field-based approach is em-

ployed where the properties of objects are modeled as a

global property. The analysis goes further and simply

ignores all dynamic property accesses. To make the flow

graph they considered two types of flows: Intra-

procedural flow and Inter-procedural flow. The authors

presented two contrasting approaches for handling inter-

procedural flow analysis: pessimistic and optimistic. Both

the approaches are scalable and achieve very high recall.

The precision value is better for the pessimistic approach

than the optimistic approach.

The proposed method in [26] has its own limitations.

The static analysis based technique track only the func-

tion values and ignores dynamic characteristics of JavaS-

cript. As the analysis is field-based, it cannot distinguish

different properties having same name of different objects

and considered as one global property.

42 A Dependency Graph Generation Process for Client-side Web Applications

Copyright © 2015 MECS I.J. Information Engineering and Electronic Business, 2015, 2, 38-50

A points-to analysis or static analysis of JavaScript

with the correlation tracking, a novel approach is pro-

posed in [27]. They identify the correlated dynamic prop-

erty accesses as a common code pattern. A code extrac-

tion has been done to analyses on the relevant code. They

enhance the Andersens analysis proposed in [28]. The

authors of [28] did an implementation of a field-sensitive

Andersen-style analysis. The work is not able to complete

analysis within a reasonable amount of time and produces

very imprecise results. Thus the authors of [27] proposed

a correlation tracking technique on top of the Andersens

analysis. In a correlation tracking, a dynamic property

read r and a property write w are said to be correlated if

w writes the value read at r, and both w and r must refer

to the same property name. The embedded correlation

tracking improves both analysis performance and preci-

sion of [28], though the work has some remaining scala-

bility challenges.

Wei et al. [22] proposed an analysis of JavaScript of an

application using static analysis. To refine the static anal-

ysis a dynamic calling structure collected at runtime. The

dynamic analyzer is used for blended points-to analysis to

instrument function calls, object allocations and dynami-

cally generated/loaded source code. The dynamic analyz-

er is designed in a lightweight manner. The authors ana-

lyzed multiple executions of a JavaScript code with good

program coverage, in order to obtain analysis results for

the entire program. The dynamic analyzer optimized by

the selection of a cover set from among the executions

observed. The author developed a JavaScript engine

characterizing the dynamic behavior of JavaScript pro-

grams. This builds a graph representation of a JavaScript

program. The dynamic analyzer further refines the static

analysis using additional information collected by the

dynamic analysis.

Maras et al. [17] were first to analyze feature location

for client-side web applications in which a dependency

graph was made including JavaScript, HTML, CSS and

resources used in the application. Their approach has two

main phases: Interpretation and Graph marking. The in-

terpretation phase takes web application code, an event

trace of the scenario to invoke a feature and a set of UI

control selectors as input. For interpretation they used

their own interpreter. They interpret the JavaScript code

using dynamic slicing and code traversal. For making the

dependency graph they store the feature manifestation

point where either a structural change occurs or a server-

client communication establishes.

In [17], the JavaScript interpretation was made using

scenarios where the quality of the result may hamper de-

pending on the provided scenario. The scenario is set up

by manual effort. Thus it is depended on the user’s under-

standability about the behavior of the system. The process

only works for the functional requirements that can re-

sponse with a user interaction. Also there is need of large

human interaction for the identification of feature mani-

festation point.

To address the limitations in the state of the art, we

propose a mechanism based on dynamic analysis using

the test cases of a web application. The dynamic analysis

includes all the execution statements and the test cases

cover the entire execution path in the application. Also it

needs no human knowledge involvement for the making

of dependency graph.

IV. PROPOSED CALL GRAPH GENERATION PROCESS

According to SDLC, the testing phase comes before

the maintenance phase. In the testing phase the tester ex-

ecutes test cases to check for the fulfillment of the user

requirements. Even the result of execution providing un-

expected input from a user should be included in the test

cases. Thus the testing is supposed to cover all the execu-

tion paths in the system at least once. While running test

cases the tester also needs to trace the execution flow of

functions which we call execution trace. A call graph is

then made from the execution trace. The call graph can be

updated continuously whenever we have an execution

trace generated from a test case. A graphical view of the

process is shown in Fig. 3.

Fig. 3. JavaScript Call graph generation process

In the following sections we will describe each of the

steps in detail. The output of the steps is also shown using

a sample web application. We will also describe our con-

tribution over the existing process of execution trace col-

lection.

A. Test Execution

Execution of test cases is a part of system testing in the

entire testing process and is the only testing process that

we are concerned here. A test case consists of a pre-

condition, a set of execution conditions and a post-

condition. While executing test cases, a tester first tests if

the pre-condition is satisfied before execution of the case.

The tester proceeds only when the pre-condition is satis-

fied. Next the tester follows the steps mentioned in the

execution conditions. Often there is an expected output

for the intermediate steps before we get the final output

of the test case. The output of the last step in the execu-

tion conditions implies the post-condition of the case. If

the output satisfies the clause of the post-condition then

the test status is passed for this case, otherwise it has

failed. Our concern is not dependent on the status of the

 A Dependency Graph Generation Process for Client-side Web Applications 43

Copyright © 2015 MECS I.J. Information Engineering and Electronic Business, 2015, 2, 38-50

test case, rather, we emphasis only on covering the execu-

tion paths.

Example: We use an example application, DocSearch

(Appendix), for the examples of the steps of our tech-

nique. The implementation code of the DocSearch is add-

ed in the Appendix. The application provides two basic

features: suggestions while typing in search box, and

search. Two test cases for testing the major paths of the

two features are shown in Table 1. The first row describes

the execution steps that invoke the suggestion feature and

second row describes the execution steps that invoke the

search feature. The first row is the test case for testing the

suggestion functionality. The tester first check whether

the JavaScript file is loaded as mentioned in the pre-

condition. In the next steps, the first condition is to navi-

gate to the search page where a text box with a search

button will appear. Next the tester types a letter, ―a‖ ac-

cording to the test case, in the search box and thus the set

of execution conditions ends. After the execution of the

last condition the post-condition is matched with the out-

put of the last condition which states the status of the test

case, either pass or fail.

Table 1. Two test cases for the two features of DocSearch (Sugges-

tion and Search Respectively)

Pre-condition: JavaScript file is loaded

1. Navigate to search page: A text box with a ‖Search‖ button

should appear

2. Type ―a‖ in the text box

Post-condition: A list of matching words should be shown below

in the suggestion box

Pre-condition: The text box is filled with text

1. Click the search button

Post-condition: Result should be shown in result panel

As the method proposed in this work is a contribution

to the maintenance phase, therefore we assume that we

already have all the test cases from the testing phase and

the source code from the development phase.

B. Trace Collection

The trace collection process starts with the execution

of a test case. The process is done as an additional task in

the testing phase. A trace collector runs in the back-

ground while test cases are in execution. Method is the

granularity level for the execution trace. In the previous

work we could not identify the functions of local scope.

Therefore, we modified the trace collection process to

overcome the problem.

We maintain a set of all functions that are already exe-

cuted in the system. We monitor each of the functions of

all namespace in execution while running a test case.

When the control flow enters into a function, the caller

function’s trace is updated with the current function’s

information. Also the set of executed functions is updated

with the current function.

We monitor whenever a function of a namespace exe-

cutes and collect trace following the steps in Algorithm 1.

We store necessary information of the functions, the path

of the function, the name of the function and we make an

id of the function to identify it uniquely. We also store

the name of the HTML elements that it manipulates. This

influences the making of the dependency graph in Section

V.

We include the monitored function f in a set of already

executed functions (Line 8). Next we search for the par-

ent of f in the set of executed functions (Line 9). If the

parent exists then we add the current function into the set

of called functions of the parent (Line 11). If the parent

does not exist then it is called directly from the applica-

tion which is the parent of all called functions in that exe-

cution period. Thus the function needs not to be added to

any other functions reference. The functions accessed

from a namespace are of public scope. The local func-

tions are not included in namespaces. Thus we cannot

trace them only tracking the namespaces. To identify a

function of local scope, whenever we trace a function we

check the existence of the parent in the global name set.

If the parent is not null, but also not exists in the global

name set, then the parent is a function of local scope and

we add it in the set and mark it as a function of local

scope (Line 14). We continue to find the parent of a par-

ent (Line 17) until we find that the parent function is in-

cluded in the set (Line 13).

Algorithm 1 Execution Trace collection

1: function COLLECTTRACE(nameSpace)

2: for all function f functions in execution

 and f nameSpace do

3: f.filePath getfilePath(f)

4: f.lineNo getLineNo(f)

5: f.name getName(f)

6: f.id makeId(f)

7: f.modifyingDomElements

 getModifyingDomElements(f)

8: push f in functions

9: fParent parentOf(f)

10: if fParent not NULL then

11: push f in fParent.calledFunctions

12: end if

13: while fParent not NULL & fParent functions

 do

14: push fParent in functions

15: push f in fParent.calledFunctions

16: f fParent

17: fParent parentOf(fParent)

18: end while

19: end for

20: end function

Complexity: The algorithm iterates a single loop with

each function executing in the application. The existence

checking of a function in a function list will execute in

constant time as we will use hash set as collections. Also

there is a while loop inside the for loop. Therefore com-

plexity of the algorithm is O(f2) where f is the number of

executed functions.

Example: We made two test cases for our DocSearch

application. Executing the two test cases we get two sepa-

rate execution traces of the JavaScript part. The first one

is listed in Listing 1. The execution trace contains the list

of executed functions with the information of a specific

function: id, name, location made of filePath and lineNo,

and calledFunctions. id is the qualified name of the func

44 A Dependency Graph Generation Process for Client-side Web Applications

Copyright © 2015 MECS I.J. Information Engineering and Electronic Business, 2015, 2, 38-50

tion to identify a function uniquely by its id and name is

the name of the function. Location is made of filePath
and lineNo where the function starts in the file. The

calledFunctions property contains the name of the func-

tions that are called by the current function. The JSON

file of the execution trace is listed in Listing 1.

Listing 1: JSON of the execution trace (executing
test case for suggestion feature)

1. {"onfocus@CallGraph/docSearch.html:1": {
2. "id": "onfo-

cus@CallGraph/docSearch.html:1",
3. "name": "onfocus",
4. "location": "CallGraph/docSearch.html:1",
5. "calledFunctions": [
6. "win-

dow.suggestion.setSuggestionsVisible"
7.]
8. }, "win-

dow.suggestion.setSuggestionsVisible": {
9. "id": "window.suggestion.

 setSuggestionsVisible",
10. "name": "setSuggestionsVisible",
11. "location": "CallGraph/docSearch.js:49"
12. "calledFunctions": [
13. "jQuery.fn.toggle"
14.]
15. }, "onclick@CallGraph/docSearch.html:1": {
16. "id": "on-

click@CallGraph/docSearch.html:1",
17. "name": "onclick",
18. "location": "CallGraph/docSearch.html:1",
19. "calledFunctions": [
20. "window.suggestion.setSuggestion",
21. "window.bodyClicked"
22.]
23. }, "window.suggestion.setSuggestion": {
24. "id": "window.suggestion.setSuggestion",
25. "name": "setSuggestion",
26. "location": "CallGraph/docSearch.js:34"
27. "calledFunctions": [
28. "jQuery.fn.val",
29. "win-

dow.suggestion.setSuggestionsVisible"
30.]
31. }, "window.bodyClicked": {
32. "id": "window.bodyClicked",
33. "name": "bodyClicked",
34. "location": "CallGraph/docSearch.html:38"
35. "calledFunctions": [
36. "win-

dow.suggestion.setSuggestionsVisible"
37.]
38. }, "onkeyup@CallGraph/docSearch.html:1": {
39. "id":

"onkeyup@CallGraph/docSearch.html:1",
40. "name": "onkeyup",
41. "location": "CallGraph/docSearch.html:1",
42. "calledFunctions": [
43. "window.suggestion.showSuggestion"
44.]
45. }, "window.suggestion.showSuggestion": {
46. "id": "window.suggestion.showSuggestion",
47. "name": "showSuggestion",
48. "location": "CallGraph/docSearch.js:18"
49. "calledFunctions": [
50. "jQuery.fn.val",
51. "window.getSuggestionsSet",
52. "window.helper.findMatches",
53. "jQuery.fn.html",
54. "buildSuggestionsContent",

55. "win-
dow.suggestion.setSuggestionsVisible"

56.]
57. }, "window.getSuggestionsSet": {
58. "id": "window.getSuggestionsSet",
59. "name": "getSuggestionsSet",
60. "calledFunctions": []
61. }, "window.helper.findMatches": {
62. "id": "window.helper.findMatches",
63. "name": "findMatches",
64. "calledFunctions": [
65. "String.toLowerCase"
66.]
67. },"buildSuggestionsContent@CallGraph/

 docSearch.js:40": {
68. "id": "buildSuggestionsContent@CallGraph/

 docSearch.js:40",
69. "name": "buildSuggestionsContent",
70. "location": "CallGraph/docSearch.js:40",
71. "calledFunctions": [
72. "jQuery.fn.attr",
73. "jQuery.fn.text",
74. "jQuery.fn.append"
75.]
76. }}

C. Call Graph Generation

The caller-callee relation in an execution trace is repre-

sented with a call graph. The caller function and the

callee function nodes are connected by a directed edge

from the caller node to the callee node. The call graph

can be updated each time an execution trace is gathered

or make the graph with all the execution traces together.

All the execution traces together make the call graph of

the full system.

Algorithm 2 Call Graph Generation
1: function UPDATECALLGRAPH(callGraph, functions)

2: for all f functions do

 3: fNode makeGraphNode(f, callGraph)

4: for all child f.calledFunctions do

5: cNode makeGraphNode(child, callGraph)

6: if edge(fNode, cNode) does not exist then

 7: createEdge(fNode, cNode)

8: end if

9: end for

10: end for

11: end function

12: function MAKEGRAPHNODE(f, callGraph)

 13: fNode createNode(f)

14: if fNode callGraph then

 15: fNode getGraphNode(fNode)

16: else

17: addNode(fNode)

18: end if

19: return fNode

20: end function

The functions set processed in Algorithm 1 is passed to

Algorithm 2 to make the call graph. To update the call

graph with the current trace collection first we make a

node of a function of the functions set (Line 13). If the

function already exists from a previous execution trace

then we get the node from the graph (Line 15), else we

make a new node (Line 17). Following this process we

 A Dependency Graph Generation Process for Client-side Web Applications 45

Copyright © 2015 MECS I.J. Information Engineering and Electronic Business, 2015, 2, 38-50

also make nodes for the children functions of the function

and we get the children from the calledFunctions set of a

function (Line 4 and 5). We update the relation of the

nodes creating edges from parent node to children nodes

(Line 7). We repeat the steps for all the functions in the

functions set. Thus running the total process for all the

functions of all the execution traces we get the full call

graph for the full application. The resultant call graph

will have multiple components as the fired functions are

not fired from a common function.

Complexity: There is one loop (Line 4) inside of anoth-

er loop (Line 2) in Algorithm 2. We use hash map for

storing call graph. Therefore retrieving a node from the

graph with the nodes' id can be done in constant time.

Thus the complexity of the algorithm is O(f2) where f is

the total number of function in the application.

Example: The call graph made from the JSON file of

the execution trace of the suggestion test case (Listing 1)

is shown in Fig. 4. We make the call graph evaluating the

calledFunctions set of a function. The function from

which the functions of calledFunctions are invoked is

the parent and the called functions are the children in the

graph.

Fig. 4. Call graph after executing trace of suggestion feature

In the next section we elaborate our next contribution,

dependency graph generation with detail description. The

steps of the process are explained with examples.

V. PROPOSED DEPENDENCY GRAPH GENERATION PRO-

CESS

A dependency graph of a web application represents

the relations among the HTML elements, CSS properties

and bound JavaScript event listeners to an HTML ele-

ment. Therefore, we introduce two new type of nodes:

HTML node and CSS node to represent the HTML and

CSS information and relations. Thus we define three dif-

ferent types of structures for the graph to differentiate the

three types of nodes. The structure of the nodes is includ-

ed in Fig. 5.

Fig. 5. Dependency graph of the example application

Algorithm 3 includes the steps for making a dependen-

cy graph. HTML is inherently a language where the ele-

ment’s implementation maintains a tree structure. Thus

we get an HTML tree structure traversing the code and

make html node for each node of the tree (Line 1 - 2).

Next we traverse through the included style sheets in the

document. From the style sheets we traverse through the

CSS rules and make CSS node with the relevant infor-

mation (Line 5). The selector’s value of a CSS node gives

the information about the HTML node to which the rules

are to apply. We create an edge from the selector HTML

node, to the CSS node (Line 8).

Algorithm 3 Dependency Graph Generation

1: htmlTree getHtmlTree()

2: htmlNodes createNodes(htmlTree)

3: for all styleSheet includedStyleSheets do

4: for all c cssRules of styleSheet do

5: n createCssNode(c) Gives a structure of a

 node and return that

6: selectedHtmlNodes

 getSelectedHtmlNodes(htmlNodes, selector of n).

 Get matching HTML

 nodes with the selector

7: for all h selectedHtmlNodes do

8: createEdge(h, n) . From h to n

9: end for

10: end for

11: end for

12: for all h htmlNodes do

13: eventListeners getBoundEventListeners(h)

14: for all e eventListeners do

15: jsNode getNode(callGraph, e).

 Find e in callGraph and

 return graph node

16: createEdge(h, e) From h to e

17: for all d DOM Elements of e do

18: d getHtmlNode(d)

19: createEdge(e, d) From e to d

20: end for

21: end for

22: end for

Now we integrate the JavaScript nodes with the De-

pendency graph. We traverse through all the HTML

46 A Dependency Graph Generation Process for Client-side Web Applications

Copyright © 2015 MECS I.J. Information Engineering and Electronic Business, 2015, 2, 38-50

nodes and get the bound event listeners with each HTML

nodes (Line 12 - 13). We use the call graph to have the

relations among the JavaScript nodes. We search to the

call graph for the JavaScript node (Line 15) and create an

edge from the HTML node to the JavaScript node (Line

16). Also we stored the information about the HTML

elements that a JavaScript function modifies. Therefore,

we create an edge from the JavaScript node to the HTML

node (Line 19).

Complexity: We traverse through all the defined CSS

rules inside each of the included style sheets which need

a loop inside another loop. Inside the inner loop we trav-

erse through all the matching html nodes that are the se-

lector of the CSS rule. Thus the complexity of the algo-

rithm is O(n3).

Example: Fig. 5 is the dependency graph of the

DocSearch application. The graph includes all the HTML

and CSS nodes of the application. For the JavaScript

nodes, we only added the call graph of the suggestion

feature. The ―.‖ notation of the HTML nodes represents

the class attribute of the node and the ―#‖ notation repre-

sents the id attribute of the node.

Though the JavaScript call graph had multiple compo-

nents in the graph, the dependency graph will have no

component. One single root, an HTML node with html

tag, will tie all the other HTML, CSS and JavaScript

nodes.

VI. EVALUATION

Among the three types of nodes in the dependency

graph, we can accurately find the HTML and CSS nodes.

However, dynamic nature of JavaScript reduces the accu-

racy of the JavaScript call graph. Therefore, the result of

the dependency graph generation process is dependent

only on the result of JavaScript call graph generation pro-

cess. Thus our focus will be on the evaluation of the gen-

erated JavaScript call graph.

Dataset: We applied our implementation on six appli-

cations. The dataset has been collected from [17] and is

located in [29]. The dataset includes only the client-side

implementation of the applications. Therefore we exclud-

ed the part of the features that needs server-side response

from client-side. We also made JavaScript call graph by

manual inspection to compare the resultant call graph of

our technique with the manual call graph.

In our evaluation we assumed that we already have test

cases from the testing phase which covers all system exe-

cution paths. However, applications having all test cases

are hard to find compared to having only the source code

of an application. The dataset we selected includes auto-

mated test cases for some selected features they located

from the applications. Therefore we prepared test cases to

have all the paths to be executed except the execution

paths that need server-side communication from client-

side. The test cases have been automated using Mozilla

Firefox’s plugin Selenium IDE version 2.4.0. A Software

Engineer having three years of experience of working in

JavaScript helped us in making the call graph manually.

A Senior Quality Assurance Engineer having three and

half years of experience in testing verified the test cases

we made.

We set the granularity of the manual analysis to func-

tion level. We considered only the custom functions and

plugins written for the behavior of the applications to be

evaluated and excluded the library function’s calling hi-

erarchy. Though our technique can identify the relations

of the library functions, we did not consider the library

output to compare with the manual result as the making

of call graph of library functions by manual inspection is

a huge work to keep track within the limited time.

Experimental Setup: We implemented the algorithms

in JavaScript for a browser environment. The JavaScript

implementation and the browser environment give good

access to the elements of a web page. We used Mozilla

Firefox version 28.0 to run the applications and the im-

plemented algorithms.

We have implemented the execution trace collection

and call graph modification algorithms and applied them

to the six applications. We evaluated our implementation

in respect of two terms: No of functions and No of edges.

We compare the relation resulted by our mechanism in

comparison with the actual relation identified by manual

analysis.

We evaluated our technique of generating JavaScript

call graph by calculating precision and recall. The preci-

sion (P) and the recall (R) have been calculated with the

following formula:

 P
True Positive

True Positive False Positive
 (1)

R
True Positive

True Positive False Negative
 (2)

In our case, true positive means true identification,

functions those are correctly identified by our method.

False positive means false identification, functions identi-

fied by our method which actually does not actually exe-

cute. False negative means Unidentification, functions

those actually executed but our method failed to identify.

Result analysis: The result of the experiment of the

proposed techniques, and the precision and the recall after

calculating the (1) and (2) respectively are enlisted in

Table 2 and 3. In Table 2 the evaluation in respect to the

total number of functions in the six applications are listed

and arranged in descending order. In 6th and 7th column

of the table the result of our technique is shown in term of

precision and recall. In Table 3 the evaluation in respect

to the total number of edges in the six applications are

listed and arranged in descending order. In 6th and 7th

column of the table the result of our technique is shown

in term of precision and recall.

The result of the JavaScript call graph generation pro-

cess shows that the precision value for both the functions’

identification and edges’ identification is high for the

large projects (Fig. 6 and 8). With the increase of the

number of functions the value decreases. Again the recall

is lower for large projects and higher for the small pro-

jects (Fig. 7 and 9). For small projects, we can identify all

the functions and edges of the application. The result also

 A Dependency Graph Generation Process for Client-side Web Applications 47

Copyright © 2015 MECS I.J. Information Engineering and Electronic Business, 2015, 2, 38-50

includes some functions and edges that do not exist in the

system according to our manual inspection of the applica-

tion. The unidentified functions for large projects are

mostly either a function of a local scope or a JavaScript

native object. We could not identify the functions of local

scope as they have not called any function that is a mem-

ber function of a namespace. The type of functions that

we could not identify is the browser functions, JavaScript

Table 2. Result with respect to number of functions

Projects

No of

Functions

True

Identified

Functions

False

Identified

Functions

Unidentified

Functions Precision Recall

Dynamically

Identified

mailboxing.com 122 85 0 37 100% 70% 17

makalumedia.com/aerospace 52 47 4 5 92% 90% 6

sipp.cc 35 32 1 3 97% 91% 0

fourandthree.com 14 12 0 2 100% 86% 0

instagalleryapp.com 12 10 3 2 77% 83% 0

idt.mdh.se/pride 10 10 3 0 77% 100% 0

Table 3. Result with respect to number of edges

Projects No of Edges

True

Identified

Edges

False

Identified

Edges

Unidentified

Edges Precision Recall

mailboxing.com 206 136 9 70 94% 66%

makalumedia.com/aerospace 71 62 6 9 91% 87%

sipp.cc 38 35 9 3 80% 92%

fourandthree.com 11 9 2 2 82% 82%

instagalleryapp.com 10 9 2 1 82% 90%

idt.mdh.se/pride 7 7 2 0 78% 100%

Fig. 6. Precision of the JavaScript call graph generation process in term

of functions

Fig. 7. Recall of the JavaScript call graph generation process in term of

functions

Fig. 8. Precision of the JavaScript call graph generation process in term

of edges

Fig. 9. Recall of the JavaScript call graph generation process in term of

edges

48 A Dependency Graph Generation Process for Client-side Web Applications

Copyright © 2015 MECS I.J. Information Engineering and Electronic Business, 2015, 2, 38-50

native objects. Identifying the native objects is not in our

scope.

We claimed in the Section I that some functions are

untraceable by manual analysis while making a JavaS-

cript call graph manually and claimed that we can trace

them by dynamic analysis. We justified our claim for

some applications. These functions are not considered as

a false-positive value for the result of our technique.

Discussion: we have performed the evaluation in the

web page’s environment. We have directly injected the

code of our feature location implementation into a web

page. Web page environment has some limitations like

locating exact line number of a function, CSS rule etc.

These could be solved by working from browser’s native

environment, i.e., developing a browser plugin.

We have conducted dynamic analysis which is not

supposed to produce false positive result. However, we

failed to get trace of some function calls. Although those

functions were called, as we cannot claim it from the ex-

periment, we have added them to false positive result.

This has affected overall evaluation of the system.

VII. CONCLUSION

We have presented a dependency graph generation

process for web applications which involves HTML, CSS

and JavaScript implementation of the web application.

We have also presented a dynamic analysis based JavaS-

cript call graph generation technique and used it further

for dependency graph generation. We demonstrated that a

call graph can be generated for a highly dynamic lan-

guage like JavaScript using information gathered in early

phases of SDLC.

While evaluating the result of the dependency graph

we could accurately find the HTML and CSS nodes.

However, dynamic nature of JavaScript reduces the ac-

curacy of the JavaScript call graph. Therefore, we focus

on the evaluation of the generated JavaScript call graph.

The result of the JavaScript call graph generation process

shows that for the small projects we can identify all the

functions and edges of the applications including some

functions and edges which do not exist in the system ac-

cording to our manual inspection of the application. In

the increase of the number of functions and edges the

number of unidentified functions and edges increases and

the false identification decreases. We left some functions

as untraceable by manual analysis while making a JavaS-

cript call graph manually and claimed that we can trace

them by dynamic analysis. We justified our claim for

some applications.

The unique contribution of the work is the pre-

processed dependency graph in the testing phase for fu-

ture maintenance, which avoids the need of reverse engi-

neering.

Our current implementation is specific to Firefox

browser. We will implement the technique in such a way

to be browser independent. The current implementation

works directly in webpage environment. A browser

plugin would be more suitable and would solve some

inherent limitation of webpage environment. We also

plan to provide a probable location of a feature in the web

application. We will add probability for each node of a

dependency graph to measure the degree of relevance of

a node to a feature. The result will be a ranked list of

nodes. We look forward to developing the feature loca-

tion plugin for major browsers.

APPENDIX

Listing 2. html file of example web application

(DocSearch)

1. <html>
2. <head>
3. <title>Search</title>
4. <script type="text/javascript"
 src="jquery-
 2.1.0.js"></script>

5. <script type="text/javascript"

 src="..\repository.js"></script>

6. <script type="text/javascript"

 src="docSearch.js"></script>

7.
8. <style type="text/css">
9. #suggestions
10. {
11. background-color: White;
12. position: absolute;
13. border: 1px solid black;
14. }
15. body
16. {
17. height: 100%;
18. }
19. .suggestion-item
20. {
21. border-top: 1px solid black;
22. }
23. </style>
24. </head>
25. <body onclick="bodyClicked(event)">
26. <input type="text" id="search-box"
 placeholder="enter text"

 onkeyup="suggestion.showSuggestion()"
 onfocus="suggestion.
 setSuggestionsVisi-
ble(true)" />

27. <input type="button" id="search-button"
 value="Search"
 onclick="search.showSearchResult()"
/>

28. <div id="suggestions"> </div>
29. <div id="search-result"> </div>
30. <script type="text/javascript">
31. function bodyClicked(event) {
32. if ($("#search-box")[0]!=event.target){
33. suggestion.setSuggestionsVisible(false);
34. }
35. }
36. </script>
37. </body>
38. </html>

Listing 3. JavaScript implementation of DocSearch
1. (function (helper, undefined) {
2. function findMatches(source, input, matcher)

{
3. input = input.toLowerCase();
4. var matches = [];
5. for (var i in source) {

 A Dependency Graph Generation Process for Client-side Web Applications 49

Copyright © 2015 MECS I.J. Information Engineering and Electronic Business, 2015, 2, 38-50

6. var src = source[i].toLowerCase();
7. if (matcher(src, input)) {
8. matches.push(src);
9. }
10. }
11. return matches;
12. }
13. helper.findMatches = findMatches;
14. } (window.helper = window.helper || {}));
15.
16. (function (suggestion, undefined){
17. var lastInput = undefined;
18. function showSuggestion() {
19. var input = $("#search-box").val();
20. if (input == lastInput) { return; }
21. var suggestionContent;
22. if (!input || input.length == 0) {
23. suggestionContent = "";
24. } else {
25. var matches = helper.findMatches(
 getSuggestionsSet(),input,
 function (src, inp) {
 return src.substring(0, inp.length)
 === inp;

26. });
27. suggestionContent =
 buildSuggestionsContent(matches);

28. }
29. setSuggestionsVisible(true);
30. $('#suggestions')
 .html(suggestionContent);

31. lastInput = input;
32. }
33. function setSuggestion(sug) {
34. $('#search-box').val(sug);
35. setSuggestionsVisible(false);
36. }
37. function buildSuggestionsContent(matches) {
38. var $content = $("<div>");
39. for (var i in matches) {
40. var $item = $("").attr("onclick",
 'suggestion.setSuggestion("' +
 matches[i] + '")').text(matches[i]);

41. $content.append($item).append("</br>");
42. }
43. if (!matches.length) {
44. $content.append("no matches");
45. }
46. return $content;
47. }
48. function setSuggestionsVisible(visible) {
49. $('#suggestions').toggle(visible);
50. }
51. suggestion.showSuggestion = showSuggestion;
52. suggestion.setSuggestion = setSuggestion;
53. suggestion.setSuggestionsVisible =
 setSuggestionsVisible;

54. }(window.suggestion = window.suggestion || {}));
55.
56. (function(search){
57. function showSearchResult() {
58. var searchString = $('#search-box').val();
59. if (!searchString || !searchString.trim())

{
60. return;
61. }
62. var results = helper.findMatches(
 getParagraphsSet(), searchString,
 function (src, inp) {

63. return src.indexOf(inp) >= 0;
64. });
65. var content =
 buildSearchResultCon-
tent(results);

66. $('#search-result').html(content);
67. }
68. function buildSearchResultContent(results) {
69. var content = "<p>" + results.length +
 " matches found" + "</p>";

70. for (var i in results) {
71. var item = "<div class='suggestion-

item'>"
 + results[i] +
"</div>";

72. content += item;
73. }
74. return content;
75. }
76. search.showSearchResult = showSearchResult;
77. }(window.search = window.search || {}));

ACKNOWLEDGMENT

This research is funded by fellowship of ICT Division,

Ministry of Posts, Telecommunications and Information

Technology. This research is conducted in collaboration

with IIT DU Optimization Group

(https://sites.google.com/site/iitduoptimization/people),

our sincere thanks to the group coordinator Mr. Shah

Mostafa Khaled, Assistant Professor, Institute of Infor-

mation Technology, University of Dhaka for his guidance

and resources. We also want to thank the software engi-

neers and quality assurance engineer who helped in the

evaluation process.

REFERENCES

[1] W3Techs, ―Usage of Client-side Programming Languages

for Websites.‖

http://w3techs.com/technologies/overview/client side lan-

guage/all, 2014. [Online; accessed 28-February-2014].

[2] V. Rajlich and N. Wilde, ―The Role of Concepts in Pro-

gram Comprehension,‖ in Program Comprehension, 2002.

Proceedings. 10th International Workshop on, pp. 271–

278, 2002.

[3] V. Rajlich and P. Gosavi, ―Incremental Change in Object-

Oriented Programming,‖ Software, IEEE, vol. 21, pp. 62–

69, July 2004.

[4] T. R. Toma and M. S. Islam, ―An Efficient Mechanism of

Generating Call Graph for JavaScript Using Dynamic

Analysis in Web Application,‖ in 3rd International Con-

ference on Electronics, Informatics & Vision, 2014.

[5] W3C, ―How Does the Internet Work.‖

http://www.w3.org/wiki/ How does the Internet

work#Static vs. Dynamic Web Sites [Online; accessed 21-

April-2014].

[6] ―jQuery.‖ http://jquery.com. [Online; accessed 21-April-

2014].

[7] ―Modernizr.‖ http://modernizr.com/ [Online; accessed 21-

April-2014].

[8] ―MooTools.‖ http://mootools.net. [Online; accessed 21-

April-2014].

[9] ―prototype.js.‖ http://prototypejs.org. [Online; accessed

21-April-2014].

[10] ―ASP.NET Ajax.‖ http://www.asp.net/ajax [Online; ac-

cessed 21-April-2014].

[11] W3Techs, ―Usage of JavaScript Libraries for Web-

sites.‖http://

w3techs.com/technologies/overview/javascript library/all

[Online; accessed 21-April-2014].

50 A Dependency Graph Generation Process for Client-side Web Applications

Copyright © 2015 MECS I.J. Information Engineering and Electronic Business, 2015, 2, 38-50

[12] Mozilla Developer Network, ―AJAX; Getting Started.‖

https:// developer.mozilla.org/en-US/docs/AJAX/Getting

Started. [Online; accessed 21-April-2014].

[13] ―IEEE Standard for Software and System Test Documen-

tation,‖ IEEE Std 829-2008, July 18, 2008.

[14] T. Eisenbarth, R. Koschke, and D. Simon, ―Locating Fea-

tures in Source Code,‖ Software Engineering, IEEE

Transactions on, vol. 29, pp. 210–224, March 2003.

[15] D. Poshyvanyk, Y.-G. Gueheneuc, A. Marcus, G. Antoni-

ol, and V. Rajlich, ―Feature Location Using Probabilistic

Ranking of Methods Based on Execution Scenarios and

Information Retrieval,‖ Software Engineering, IEEE

Transactions on, vol. 33, pp. 420–432, June 2007.

[16] B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk, ―Fea-

ture Location in Source Code: a Taxonomy and Survey,‖

Journal of Software: Evolution and Process, vol. 25, no. 1,

pp. 53–95, 2013.

[17] J. Maras, M. Stula, J. Carlson, and I. Crnkovic, ―Identify-

ing Code of Individual Features in Client-side Web Ap-

plications,‖ Software Engineering, IEEE Transactions on,

vol. 39, pp. 1680–1697, Dec 2013.

[18] S. Some, ―Use Cases Based Requirements Validation with
Scenarios,‖ in Requirements Engineering, 2005. Proceed-

ings. 13th IEEE International Conference on, pp. 465–466,

Aug 2005.

[19] ―IEEE Standard Glossary of Software Engineering Ter-

minology,‖ vol. 121990, no. 1, p. 1, 1990.

[20] ―IEEE Standard for Software Test Documentation,‖ IEEE
Std 829-1983.

[21] I. Andjelkovic and C. Artho, ―Trace Server: A Tool for

Storing, Querying and Analyzing Execution Traces,‖ in

JPF Workshop, Lawrence, USA, 2011.

[22] S. Wei and B. G. Ryder, ―A Practical Blended Analysis

for Dynamic Features in JavaScript,‖ Technical Report

TR-12-11, Computer Science, Virginia Tech, 2012.

[23] H. Abelson and G. J. Sussman. ―Structure and Interpreta-

tion of Computer Programs,‖ 1996.

[24] G. Richards, S. Lebresne, B. Burg, and J. Vitek, ―An
Analysis of the Dynamic Behavior of JavaScript Pro-

grams,‖ in Proceedings of the 2010 ACM SIGPLAN Con-

ference on Programming Language Design and Imple-

mentation, PLDI ’10, (New York, NY, USA), pp. 1–12,

ACM, 2010.

[25] S. Jensen, A. Mller, and P. Thiemann, ―Type Analysis for

JavaScript,‖ in Static Analysis (J. Palsberg and Z. Su,

eds.), vol. 5673 of Lecture Notes in Computer Science, pp.

238–255, Springer Berlin Heidelberg, 2009.

[26] A. Feldthaus, M. Schafer, M. Sridharan, J. Dolby, and F.

Tip, ―Efficient Construction of Approximate Call Graphs

for JavaScript IDE Services,‖ in Software Engineering

(ICSE), 2013 35th International Conference on, pp. 752–

761, May 2013.

[27] M. Sridharan, J. Dolby, S. Chandra, M. Schfer, and F. Tip,

―Correlation Tracking for Points-to Analysis of JavaS-

cript,‖ in ECOOP 2012 Object-Oriented Programming (J.

Noble, ed.), vol. 7313 of Lecture Notes in Computer Sci-

ence, pp. 435–458, Springer Berlin Heidelberg, 2012.

[28] ―T. J. Watson Libraries for Analysis (WALA).‖

http://wala.sf.net. [Online; accessed 21-April-2014].

[29] ―Index of Josip Maras.‖ http://marjan.fesb.hr/ joma-

ras/download/ FIdEvaluation2.zip, 2010. [Online; ac-

cessed 20-April-2014].

Authors’ Profiles

Tajkia R. Toma completed her M.Sc. in

Software Engineering from Institute of

Information Technology, University of

Dhaka, Bangladesh in 2014. She received

her Bachelor’s degree in Information

Technology (Major in Software Engineer-

ing) from the same institute in 2012. Cur-

rently she is working as a Software Engi-

neer at Jantrik Technologies Ltd. Bangla-

desh. Her research interest includes code analysis for web ap-

plications and software design optimization. She received fel-

lowship from the Ministry of Post, Telecommunications and

Information Technology, Bangladesh for her M.Sc. thesis.

Mohayeminul Islam completed M.Sc. in

Software Engineering from Institute of

Information Technology with thesis "De-

sign Migration from Procedural to Object

Oriented Program by Clustering Data

Call Graph". He received his Bachelor's

degree in Information Technology (Ma-

jor in Software Engineering) from the

same institute. Currently he is working as

software engineer at Jantrik Technologies Ltd. Bangladesh. His

current research interest is in Software Design Optimization. He

received fellowship from the Ministry of Post, Telecommunica-

tions and Information Technology, Bangladesh for her M.Sc.

thesis.

Mohammad Shoyaib received his M.Sc.

degree in computer science from the Uni-

versity of Dhaka, Bangladesh, in 2000

and in 2012 he has completed his PhD

degree from the department of the com-

puter Engineering, Kyung Hee University,

South Korea. Currently he is a faculty

member of Institute of Information Tech-

nology, University of Dhaka, Bangladesh.

His research interests include pattern recognition and machine

learning in different areas of computer vision and image pro-

cessing. He has also interest in software engineering and bioin-

formatics.

Md. Shariful Islam received his B.Sc.

and M.Sc. degree in Computer Science

from the University of Dhaka, Bangla-

desh, in the year 2000 and 2002, respec-

tively. He completed his M.S degree in

Information Technology from the Royal

Institute of Technology (KTH), Sweden,

in 2005. He obtained his Ph.D degree in

Computer Engineering from Kyung Hee

University, South Korea in February, 2011. He is now working

as an Associate Professor in the Institute of Information Tech-

nology (IIT), University of Dhaka, Bangladesh. His current

research interests include the design of routing protocols, met-

rics and MAC protocols for wireless mesh networks. He also

worked on security issues related to Wireless AdHoc and Mesh

Networks. He has published a good number of research papers

in international conferences and journals. He is a member of

IEEE and KICS.

