
I.J. Information Engineering and Electronic Business, 2015, 2, 20-26
Published Online March 2015 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijieeb.2015.02.04

Copyright © 2015 MECS I.J. Information Engineering and Electronic Business, 2015, 2, 20-26

An Analysis of RDF Storage Models and Query

Optimization Techniques

Asim Sinan Yuksel and Ibrahim Arda Cankaya
Suleyman Demirel University Computer Engineering Department, E9 Building, West Campus, Isparta, 32200, Turkey

Email: {asimyuksel, ardacankaya}@sdu.edu.tr

Mehmet Erkan Yuksel
Istanbul University Computer Engineering Department, Avcilar, Istanbul, 34320, Turkey

Email: eyuksel@istanbul.edu.tr

Abstract—The Web provides access to substantial

amount of information. Metadata that means data about

data enables the discovery of such information. When the

metadata is effectively used, it increases the usefulness of

the original data/resource and facilitates the resource

discovery. Resource Description Framework (RDF) is a

basis for handling these metadata and is a graph-based,

self-describing data format that represents information

about web-based resources. It is necessary to store the

data persistently for many Semantic Web applications

that were developed on RDF to perform effective queries.

Because of the difficulty of storing and querying RDF

data, several storage techniques have been proposed for

these tasks. In this paper, we present the motivations for

using the RDF data model. Several storage techniques are

discussed along with the methods for optimizing the

queries for RDF datasets. We present the differences

between the Relational Database and the XML

technology. Additionally, we specify some of the use

cases for RDF. Our findings will shed light on the current

achievements in RDF research by comparing the different

methodologies for storage and optimization proposed so

far, thus identifying further research areas.

Index Terms—Resource Description Framework, RDF

Storage Models, RDF Query Languages, RDF Use Cases,

Query Optimization Techniques, Semantic Web.

I. INTRODUCTION

Resource Description Framework (RDF) is a World

Wide Web Consortium (W3C) standard that represents

information about resources on the web [1]. RDF

employs the idea of using web identifiers and

descriptions of resources in terms of simple attributes and

their values [2]. Originally designed as a metadata model,

that represented metadata about web resources such as

the title, author, copyright and licensing information,

RDF has evolved into a more expansive concept with the

generalization of the concept of “web resources”. It is

used to identify the resources on the web rather than just

retrieve it [3]. This equips RDF to represent the

information that can be processed by the applications and

not just be displayed on search. By providing a common

framework, it provides exchange of information between

the applications without loss of meaning. RDF is a key to

the implementation of „Semantic Web‟ activity proposed

by the W3C, the next evolutionary stage of the internet

activity enhancement where the automated programs can

store, exchange and make use of the machine-readable

information located throughout the Web, making the

information handling activities on the Web more efficient

[3]. RDF was first published as a data model with the

XML syntax as a W3C Recommendation in 1999 [1] and

the newer, improved version of RDF was later published

in 2004. Since then, there has been a growing interest in

exploiting the benefits proposed by the RDF model and

our paper sets the roadmap of the different contributions

to the RDF data model proposed so far. We organize the

paper as follows. In Section II, we first present a review

of the RDF data model. In Section III, IV, its comparison

to XML and Relational Database are covered. In Section

V, some of the popular use cases are presented. In

Section VI, we discuss the need for efficient storage

models and describe some of the models that have been

proposed so far. In Section VII, the evolution of the

different query languages is presented with the emphasis

on SPARQL. In Section VIII, we investigate the

considerations for optimizing queries on these storage

models and present SPARQL. Additionally, we

investigate different optimization techniques, and finally

in Section IX and X, we present our findings and

conclude with an overview of possible future research

directions.

II. RDF DATA FORMAT

The RDF data model draws from the concepts of

Relational DBMS (RDBMS) and uses a conceptual

modeling approach similar to the Entity-Relationship [4].

It makes use of the subject-predicate-object format of

expressions to describe Web resources. These statements

are called „triples‟ in RDF terminology. The RDF

statement has a Uniform Resource Identifier (URI) as its

subject. A predicate is a URI implying a relationship and

the object may be a URI or Unicode string literal [4]. The

abstract models of RDF have several serialization or file

formats and the triples can be encoded in one of several

 An Analysis of RDF Storage Models and Query Optimization Techniques 21

Copyright © 2015 MECS I.J. Information Engineering and Electronic Business, 2015, 2, 20-26

of these formats. The most common serialization format

is by using the XML syntax to write and exchange RDF

graphs, referred to as RDF/XML implementations. Other

serialization formats include the Notation 3 or N3, a non-

XML implementation that is purported to be easier to

follow and written by hand [4]. It is based on the tabular

notation that makes the triples easier to recognize. N3 is

similar to the Turtle and N-Triples formats [4]. RDF also

supports the SPARQL Protocol and the RDF Query

Language (SPARQL) for RDF graphs. The language was

published as a W3C recommendation in January 2008

compared to other query languages like RDQL, Versa,

RQL and XUL [2].

III. RDF VS. RELATIONAL DATABASE

It may be seen that RDF is also a relational database,

however the idea behind it is not the same as the idea

behind the relational model. RDF statements consist of

the subject, predicate, object that is called triples. The

most important aspect of RDF is that the triples are

identified with URIs. This means that they play the role

of key fields such as the primary keys or IDs in the local

storage. Compared to the relational database, the Web

can be seen as a huge single database. In the relational

model, a row represents a single data item in a table. A

SELECT query is a filter that selects data from a database.

A relational database is a storage system that represents

the information in tables, rows and columns. A

significant difference between the relational databases

and the RDF is that a relation is true when there is a

matching row in the table or it is false when there is no

value returned. However, in RDF, if the values are not in

the “row”, it is not false but it is an unknown value.

IV. RDF VS. XML

RDF and XML are two existing standards for

representing the data on the Web. In the case of XML, it

basically addresses the document structure, while in the

case of RDF, it provides a “data model that can be

extended to address sophisticated ontology representation

techniques” [6]. There are several reasons for using RDF

rather than XML.

Firstly, processing XML requires that the closing

element tag be reached for the processing to be complete.

For instance, if an XML document is parsed into

elements in the memory, the end of the same element

should be processed before transferring all the elements

and nested parts into another persisted form of data. Thus,

all the elements that contain other elements are fetched

into memory until their data members are processed. This

increases the memory usage, especially with the large

XML documents. However, RDF allows the processing

of the first element quickly because the data is stored in

another element in the same document. It becomes easy

for an application to reconstruct the original data since

the same URI establishes the relationship between these

two elements.

Another benefit of RDF is that querying the data

requires only knowledge of the triple structure. In XML,

the user needs to provide the entire structure of all of the

elements, that is the full path, in order to retrieve the

proper value. The entire document has to be traversed to

answer this query, making it very cumbersome and hard

to work with. Additionally, with RDF, it is possible to

join the data from two different sources even if there are

structural differences between them. This feature plays an

important role in the business world where there is a need

to share and combine the data from different sources.

V. RDF USE CASES

Currently, RDF is used in the offline knowledge

management applications. Other popular applications of

RDF include Really Simple Syndication (RSS), Friend of

a Friend (FOAF) [18] that describes people with common

interests and interconnections, Haystack client [19], a

semantic web browser developed by MIT and

MusicBrainz [20] that publishes the information about

music albums. In addition, there are several other

applications of RDF that rely on its flexibility in sharing

vocabularies.

Chandler [21] is a personal information management

application, which is an open source technology and

includes RDF and its specifications. RDF Gateway [22] is

an integrated web server and database that uses

RDF/XML. Siderean Seamark [23] is a versatile

application, which provides resources for intelligent site

querying and navigation. Adobe, a major player in the

graphics industry, is one of these companies. Its RDF

strategy is known as XMP [24]. XMP focuses on

providing a metadata label that can be embedded directly

into the applications, files, and databases, including

binary data.

VI. STORAGE MODELS

Various storage schemes have been proposed for RDF

Data Storage. They can be classified into three main

categories: File system, RDF storage using RDBMS and

RDF storage using OODBMS.

A. File System

Currently, applications on the web make use of XML

notations to store metadata about web pages. This type of

storage model typically requires an XML parser that can

extract the different elements from the XML file in order

to obtain the information regarding RDF triples namely

subjects, predicates or objects.

B. RDF Storage Using RDBMS

RDF data consists of triples - a subject, a predicate and

an associated object. Consequently, most studies have

focused on this property of the RDF data model to

propose different ways to store RDF data. Typically,

different storage methods that make use of RDBMS have

concentrated on using the relational model to efficiently

22 An Analysis of RDF Storage Models and Query Optimization Techniques

Copyright © 2015 MECS I.J. Information Engineering and Electronic Business, 2015, 2, 20-26

store and query different RDF data as described below.

B.A Triplestore

This is a simple three-column table in RDBMS where

three columns have the attributes as subject, property and

object [5]. Fig. 1 shows the triple storage example.

Generally these tables are very huge. This type of storage

is efficient when a large amount of data is retrieved from

the table, however it is not appropriate when retrieving

very small amounts of data. This is because in the latter

case, large amounts of data will have to be scanned in

order to retrieve a small portion of it. Another interesting

feature of storing data as triples is that it just requires

self-joins in order to answer queries, since all data is

stored in a single table in the former.

Fig. 1 Triple store example.

B.B Clustered Property Table

By applying the clustering property table technique,

RDF tables are de-normalized by storing them in a

flattened, wider representation that is similar to the

traditional relational schemas [5]. Fig. 2 illustrates the

clustered property table example. Flattening operation is

done by finding the sets of properties that are grouped

together. This table requires less number of joins to

access because it eliminates the self-joins on the subject.

Fig. 2. Clustered property table example.

B.C Property Class Table

The property-class table clusters similar groups of

subjects by using the type of subjects. Additionally,

properties may exist in multiple property-class tables as

shown in Fig. 3. In Jena2 [6], the property-class tables are

used to store the reified statements. Oracle also adopted a

data structure similar to the property class table that is

called “subject-property matrix” to increase the speed of

RDF queries. The property table approach has advantages

over the triple-store since it reduces joins of the tables.

An example table is shown in Fig. 3.

Fig. 3. Property class table example.

B.D Vertical Partitioning

Vertical partitioning [5] can be defined as creating two

column tables based on the unique properties, with one

column representing subjects and the second column

referring to the objects as shown in Fig. 4. Advantages of

the vertical partitioning approach over the previous

approach are:

 Support for Attributes with Multiple Values:
When a particular property has more than one value

for a subject, every unique value for that particular

property is listed in a row of the table.

 Heterogeneous Record Support: Subjects that are

defined without a particular property are skipped

from the table for that property. Therefore, this

avoids the explicit storage of NULL data. When the

data is not well defined, this feature becomes useful.

 Fewer Unions and Fast Joins: The property table

approach reduces the need for union clauses in the

queries since whole data is present in the same table.

Moreover, in the vertical partitioning approach,

there are more joins than the property table

approach. However, the properties are joined using

simple, fast join algorithms that make the vertical

partitioning approach more preferable than the

property table approach.

 An Analysis of RDF Storage Models and Query Optimization Techniques 23

Copyright © 2015 MECS I.J. Information Engineering and Electronic Business, 2015, 2, 20-26

Fig. 4. Vertical partitioning example.

B.E Path Based Storage

Ref. [7] proposes a path based relational RDF storage.

This storage scheme parses the RDF data and generates

its own RDF graph. This RDF graph is decomposed into

sub graphs that are then stored in the distinct relational

tables by applying specific techniques. The

decomposition into sub-graphs is based on the type of the

predicate. These sub-graphs are based on Class

Inheritance, Property Inheritance, Type information,

Domain-range and the remaining data fall into Generic

graphs. Based on the sub-graphs, [7] designed their

relational schema that includes the relations class,

property, resource, triple, path and type as shown in Fig.

5. Since this storage scheme retains the schema

information and the path expression for each data source,

it makes it possible to process the path based queries

efficiently.

Fig. 5. Path based storage example.

B.F RDF Storage Using OODBMS

RDF data can also be stored as a graph in an object

oriented database [7] or semi-structured database. RDF

storage system maps RDF graph structure onto its storage

structure to support RQL. In these systems, data is stored

as triples in RDB. The graph is built from triples to

evaluate RQL queries on those triples.

In the graph model, RDF statements are represented as

nodes and edges where nodes are either resources or

values. This graph design simplifies the storage concept

and has several advantages:

 It is possible to store the graph without reorganizing

it. Therefore, storage design becomes simpler.

 Graph can be interpreted directly as it is already in

the storage. No external mapping is required.

VII. EVOLUTION OF RDF QUERY LANGUAGES

Fig. 6 shows the evolution of the different query

languages proposed for the RDF data model. During the

past decade, there have been several proposals made for

an efficient query language for RDF data. However, none

of them could satisfy sufficient criteria to be widely

accepted. Table 1 illustrates the different desirable

features of a query language and some examples of

earlier proposed query languages.

Fig. 6. From [9] Chronological overview of RDF query languages.

Among these proposals, SPARQL was the main focus

of many researchers in order to enhance its

expressiveness in treating RDF data such that it finally

became a W3C standard in 2008. Hence, current research

mostly focuses on developing query optimization

techniques using SPARQL.

Table 1. Comparison between different query languages proposed
before SPARQL

24 An Analysis of RDF Storage Models and Query Optimization Techniques

Copyright © 2015 MECS I.J. Information Engineering and Electronic Business, 2015, 2, 20-26

VIII. QUERY EVALUATION AND OPTIMIZATION

TECHNIQUES

From the past thirty years, DBMS has undergone

several changes and still research is being carried out in

the area of optimization. This elevates the importance of

query optimization in increasing the performance of the

queries. The basic idea behind the query optimization is

to find the optimal plan for query execution. There are

several ways that optimization can be done. These

include the use of indices, consideration for the semantics

of the RDF data, estimation of the selectivity of triple and

join patterns and finally the conversion of SPARQL

queries into the SQL queries.

A. Use of the Indices

Use of the indices have been successfully proposed and

implemented in the relational model. To achieve similar

performance, several indices are proposed based on the

way the RDF data is stored. For instance, [10] proposed

the use of B-tree index when the data is stored in two

tables, one of which stores all the triples, and the other

table stores only the corresponding URIs. The B-tree

index is built on either the subject or the predicate.

Ref. [11] used B-tree indices when four tables (class,

sub-class, property and sub-property) are used to store the

RDF data. In this case, B-tree indices are built on subject,

predicate and object.

Ref. [12] employed B+ tree index on a single triple

table, by considering all six combinations of triples as

well as any frequently used projections, making the index

compressed that reduces the amount of space utilization.

This method works well when the RDF data is stored in

triple table.

Furthermore, [13] combined three indexes to propose

the mixed index structure that consists of a B+ tree, Path

index, and Context index, which was found to work well

for both RDF graphs as well as RDF tables, and which

increased the performance of long path queries.

Ref. [14] proposed the GRIN index, which is a

balanced tree data structure optimized for RDF graph

storage model. This was found to increase the

performance of graph based queries.

Ref. [15] proposed the Triple-T index, which consists

of B+ tree index built on all combinations of triples. This

was found to be very efficient for RDF data stored in one

single triple table.

B. Considerations for the Semantics of Data

In the relational database, the schema holds the

information regarding the relationships among the data,

primary and foreign key that can be used to optimize the

queries. However, the RDF schema does not provide such

facilities, making it necessary to explicitly state any

constraints. In case the relational data is desired for the

semantic web, it should be mapped to RDF without

losing any of these constraints.

According to [16], the consideration of primary key

and foreign key is important since it leads to the semantic

optimization by restricting the number of valid states in

the graph. Therefore, [16] suggested that any SPARQL

query can be rewritten for the optimization by following

the sequence of operations such as replacing the operators,

eliminating the redundant joins if possible and reordering

the remaining joins. This technique considerably

increased the performance of queries for the RDF data

stored in memory.

C. By Selectivity Estimation

Using selectivity estimation, SPARQL queries are

optimized based on the selectivity of basic graph patterns

(BGP). Consider the case where the data is stored in

memory [17]. We can achieve join order optimization by

knowing the selectivity of the triple pattern and join the

triple patterns from the statistics of the dataset that we are

considering. Consider the two triple patterns shown in Fig.

7. If we have sufficient statistics, we can state that second

triple pattern should be executed first because its result

set is considerably small when compared to the second

triple pattern. By reordering the queries, we can therefore

rewrite the SPARQL queries that increase the

performance. If the queries have joins, we need to

estimate the selectivity of join triple patterns along with

the above.

Fig. 7. Triple pattern.

D. By Converting SPARQL into Relational Algebra

Relational Algebra is an intermediate language for the

expression and the analysis of the queries that is widely

used in the DBMS. A query represented in the relational

algebra helps the query engine to perform better.

Similarly, considering RDF data stored in tables, the

SPARQL query can be represented in the relational

algebra. [18] proposed a relational algebra for SPARQL

that explains all the operations performed on the RDF

relations. They also explain how the SPARQL query can

be represented in the relational algebra that is shown in

Fig. 8.

Fig. 8. Representation of SPARQL query in relational algebra.

Different operators like selection, projection and

rename; inner-join and left outer-join and union of

relational algebra can be mapped to the operations of

SPARQL that can be further mapped to SQL. By doing

 An Analysis of RDF Storage Models and Query Optimization Techniques 25

Copyright © 2015 MECS I.J. Information Engineering and Electronic Business, 2015, 2, 20-26

this, we can extend all the optimization techniques of

SQL to SPARQL. During optimization, we may come

across some mismatches during this conversion. In

relational algebra, the missing variable is represented as

NULL. However, in SPARQL, it is represented as

UNBOUND variable. Relational algebra rejects the tuple

combination when there is a NULL value in the join

attribute. However, in RDF relational algebra, the tuple

combination is rejected only when an attribute is bound

on both sides with two different values. Operators such as

OPTIONAL and FILTER cannot be represented in the

relational algebra.

IX. RESULTS

In this study, we have identified that triple table

storage is simple to construct; however it requires a lot of

self joins to retrieve data. Vertical partitioning works well

when there are less number of properties involved. On the

other hand, this requires more space. Property table

approach works well with structured data and reduces the

number of self-joins when compared to triple table

storage. When dealing with unstructured data, this

approach requires insertion of null values into a table that

is not desirable. Path-based storage performs better for

schema based queries. Nevertheless, the overhead with

this approach is the creation of tables. Fig. 9 compares

the benefits and drawbacks of the different storage

models encountered.

By further analysis, we see that triple table storage

works well for all kinds of queries and also supports the

Triple-T, B+ tree indexes. However, this storage model

does not support null values and the model does not work

well for queries that require more number of joins.

Fig. 9. Comparison of the benefits and drawbacks of different storage

models.

Considering vertical partitioning, the instance queries

are best supported. Furthermore, null values are not

supported by the vertical partitioning and it does not scale

well for queries with the * operator. The indexes built on

the predicate are well supported. Although the property

table supports null values, and provides good support for

the index structures built upon subject and predicate, it

does not perform well for queries with the “?” operator.

The path-based storage is appropriate for schema queries,

however it does not work well with any other query types,

and does not support null values. For the path-based

storage, the indexes built upon path are best supported.

Fig. 10 summarizes our findings.

Fig. 10. Comparison of storage models.

X. CONCLUSION

RDF is a data format that is claimed to be very

attractive for achieving interoperability over the Web.

However, the challenge remains to build scalable systems

that provide efficient storage and query of the RDF data

over a widely distributed network such as the Web. From

our study, we clearly see that research in RDF is highly

fragmented addressing different scenarios. We relate this

problem to the lack of real world cases available that

implement RDF on a large scale, and thus studies are

mostly using hypothetical data.

We have also observed that different strategies for

storing and querying the RDF data have been proposed,

each with their own benefits and drawbacks. Although,

benchmarks exist to compare the results, there is no

consensus among researchers to compare their results on

a common ground. We find this a serious limitation and

suggest further investigation in that area. When compared

to the relational model, we believe that RDF is still a very

fertile area of research, especially when it comes to the

best way to store and query the data that needs to be

shared across different systems.

REFERENCES

[1] RDF Primer, http://www.w3.org/TR/rdf-primer/, Last

Acces: 27.10.2014.

[2] Powers, S., Practical RDF, O'Reilly Media, 2003.

[3] Guha, R., McCool, R., Fikes, R., “Contexts for the

Semantic Web”, The 3rd International Semantic Web

Conference, Hiroshima, Japan, pp. 32-46, 2004. doi:

10.1007/978-3-540-30475-3_4.

[4] Abadi, D. J., Marcus, A., Madden, S. R., Hollenbach, K.,

“Scalable Semantic Web Data Management Using

Vertical Partitioning”, The 33rd International Conference

on Very Large Databases, Vienna, Austria, pp. 411-422,

2007.

[5] Wilkinson, K., Sayers, C., Kuno, H., Reynolds, D.,

“Efficient RDF Storage and Retrieval in Jena2”, The 1st

International Workshop on Semantic Web and Databases,

Berlin, Germany, pp. 131-150, 2003.

[6] Matono, A., Amagasa, T., Yoshikawa, M., Uemura, S., “A

Path-based Relational RDF Database”, The 6th

Australasian Database Conference, Newcastle, Australia,

pp. 95-103, 2005.

[7] Boenstroem, V., Hinze, A., Schweppe, H., “Storing RDF

as a Graph”, The 1st Latin American Web Congress,

Santiago, Chile, pp. 27-36, 2003.

26 An Analysis of RDF Storage Models and Query Optimization Techniques

Copyright © 2015 MECS I.J. Information Engineering and Electronic Business, 2015, 2, 20-26

[8] Reasoning web: second international summer school 2006,

Lisbon, Portugal, September 4-8, 2006: tutorial lecture.

[9] Chong, E. I., Das, S., Eadon, G., Srinivasan, J., “An

efficient SQL-based RDF Querying Scheme”, The 31st

International Conference on Very Large Data Bases,

Trondheim, Norway, pp. 1216-1227, 2005.

[10] Alexaki, S., Christophides, V., Karvounarakis, G.,

Plexousakis, D., Tolle, K., “The ICS-FORTH RDFSuite:

Managing Voluminous RDF Description Bases”, The 2nd

International Workshop on The Semantic Web, Hongkong,

China, pp. 1-13, 2001.

[11] Thomas Neumann, Gerhard Weikum. RDF-3x: A RISC-

style Engine for RDF. doi:10.14778/1453856.1453927

[12] Baolin, L. and Bo, H. Hprd: A high performance rdf

database. In NPC, 2007. doi: 10.1007/978-3-540-74784-

0_37.

[13] Octavian Udrea, Andrea Pugliese V.S. Subrahmanian.

GRIN: A Graph Based RDF index.

[14] George H. L. Fletcher and Peter W. Beck, A role-free

approach to indexing large RDF data sets in secondary

memory for efficient SPARQL evaluation.

[15] Lausen, G., Meier, M., Schmidt, M., “SPARQLing

Constraints for RDF”, The 11th International Conference

on Extending Database Technology, pp. 499-509, Nantes,

France, 2008. doi:10.1145/1353343.1353404.

[16] Harth, A., Decker, S., “Optimized Index Structures for

Querying RDF from the Web”, The 3rd Latin American

Web Congress, Buenos Aires, Argentina, pp. 71-80, 2005.

doi:10.1109/LAWEB.2005.25.

[17] Cyganiak, R., “A Relational Algebra for SPARQL”, 2005,

http://www.hpl.hp.com/techreports/2005/HPL-2005-

170.pdf, Last Access: 27.10.2014.

[18] Foaf Project, http://www.foaf-project.org, Last Access:

27.10.2014.

[19] Haystack, http://haystack.csail.mit.edu, Last Access:

27.10.2014.

[20] MusicBrainz, https://musicbrainz.org, Last Access:

27.10.2014.

[21] Chandler, http://blog.chandlerproject.org, Last Access:

27.10.2014.

[22] RDF Gateway, http://www.intellidimension.com, Last

Access: 27.10.2014.

[23] Siderean Seamark, http://www.siderean.com, Last Access:

27.10.2014.

[24] XMP, http://www.adobe.com/products/xmp.html, Last

Access: 27.10.2014.

Authors’ Profiles

Asim S. Yuksel obtained his B.S.

degree in computer engineering from

Ege University, Izmir, Turkey in 2006.

He completed his Masters degree in

computer science from Indiana

University School of Informatics and

Computing, Indiana, USA in 2010. He

is currently a Ph.D. candidate in

Istanbul University Department of

Computer Engineering. He has been

working as a research assistant in Suleyman Demirel University

Department of Computer Engineering since 2012. His research

interests include mobile security and privacy, social network

security and privacy, object oriented programming and object

oriented analysis and design.

Ibrahim A. Cankaya received his B.S.

degree in 2012 from Suleyman Demirel

University Computer Engineering

Department, Isparta, Turkey. He

continues his Master education at

Suleyman Demirel University Computer

Engineering Department, Isparta, Turkey.

He has been working as a Research

Assistant in Suleyman Demirel

University Computer Engineering Department since 2012. His

research interest includes algorithm and programming, database

management, mobile programming.

Mehmet E. Yuksel obtained his B.S.

degree in computer engineering from

Firat University, Elazig, Turkey in 2005.

He completed his Masters degree in

computer engineering in 2010, his Ph.D.

degree in 2014 from Istanbul University

Computer Engineering Department,

Istanbul. He worked as a research

assistant in Istanbul University

Computer Engineering Department between 2008 and 2012. His

research interests include wireless sensor networks, cognitive

networks, software defined networks, rfid and social networks.

How to cite this paper: Asim Sinan Yuksel, Ibrahim Arda Cankaya, Mehmet Erkan Yuksel,"An Analysis of RDF

Storage Models and Query Optimization Techniques", IJIEEB, vol.7, no.2, pp.20-26, 2015. DOI:

10.5815/ijieeb.2015.02.04

