
I.J. Information Engineering and Electronic Business, 2015, 1, 37-42
Published Online January 2015 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijieeb.2015.01.05

Copyright © 2015 MECS I.J. Information Engineering and Electronic Business, 2015, 1, 37-42

Proposal of Enhanced Extreme Programming

Model

M. Rizwan Jameel Qureshi, Jacob S. Ikram
Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Kingdom of Saudi

Arabia

Email: anriz@hotmail.com, jacob.sayid@hotmail.com

Abstract—Extreme programming is one of the commonly

used agile methodologies in software development. It is

very responsive to changing requirements even in the late

phases of the project. However, quality activities in

extreme programming phases are implemented

sequentially along with the activities that work on the

functional requirements. This reduces the agility to

deliver increments continuously and makes an inverse

relationship between quality and agility. Due to this

relationship, extreme programming does not consume

enough time on making extensive documentation and

robust design. To overcome these issues, an enhanced

extreme programming model is proposed. Enhanced

extreme programming introduces parallelism in the

activities' execution through putting quality activities into

a separate execution line. In this way, the focus on

delivering increments quickly is achieved without

affecting the quality of the final output. In enhanced

extreme programming, the quality concept is extended to

include refinement of all phases of classical extreme

programming and creating architectural design based on

the refined design documents.

Index Terms—Software Engineering, Agile, Extreme

Programming, Pair Programming, Parallel.

I. INTRODUCTION

Agile software development methods are emerged in

2001 at the signing of Agile Manifesto [1]. There are two

models in systems development projects; predictive

model and adaptive model [2]. In predictive models, the

scope of the project is clearly defined which makes it

possible to anticipate the cost and time precisely. On the

other hand, the adaptive model has no clear scope and it

is mainly a mission driven. Agile methods adapt well

with such projects that have ambiguous and changing

requirements.

The agile manifesto has defined twelve principles for

agile. The principles are highly focused around customer

satisfaction and involvement, incremental delivery of

software and stakeholders' collaboration and cooperation.

These principles obviously help projects with changing

requirements to succeed. For this reason, the agile

methods are proper for adaptive model.

One of the broadly used agile methods is extreme

programming (XP). XP inherits all the previously

mentioned features of agile. In XP, programmers develop

the system in pairs. Code is extensively tested and

reviewed. Only the functional requirements are focused

on without any additional features that are not yet needed.

XP focuses on collaboration between all team members

including managers, customers and developers. XP

consists of 4 main phases: plan, design, code and test.

There are activities and practices performed in each phase.

For example, users' stories are written along with release

planning in planning phase. These stories are given size

and effort amount by estimation. The estimation process

in XP relies on a practice called planning poker technique.

This technique asks from each and everyone in the team

to attend a meeting where stories are presented briefly

and the attenders give estimation for each story. The

estimations are discussed and reasoned till all members

agree on a single estimation. Other interesting practice is

pair programming. Pair programming means that two

developers work on one machine for development. They

share ideas and work with collaboration to finish their

task. The pair programming leads to another practice in

XP called collective code ownership. This means that

anyone can edit the code anytime since the ownership of

the code is shared. In design phase, system metaphor

(abstract design) and CRC cards are created. The

simplicity of design is the key requirement in XP. As the

design is simplified, the time taken to finish it is less

compared to a complex design. To decide whether a

design is simple or not is a subjective task. One common

rule is that to work on something needed currently

without trying to work on something may be needed in

future but not asked for currently. Another way is that the

simplicity of design can be clear when the project is

progressed for a while. This makes the process easier and

leads to know that design in XP comes after coding for

refining purposes. In coding phase, the customer is

involved to help the team and be considered one of the

team members. The code is written based on previous

tests that are developed. In other words, XP follows test

driven development manner where the test is written

before code. Testing in XP includes unit testing, system

testing, integration testing on increments and the

acceptance testing which marks an increment to be

finished and approved. An increment in XP may take

38 Proposal of Enhanced Extreme Programming Model

Copyright © 2015 MECS I.J. Information Engineering and Electronic Business, 2015, 1, 37-42

single iteration to multiple iterations to finish. This

depends on the customer acceptance and the changes he

asks for the same increment.

Despite the benefits offered by XP, several drawbacks

are noted. For instance, XP suffers from weak

documentation and lack of overall design for the system.

Moreover, extreme tests and refactoring activities are

done sequentially during an iteration which reduces the

agility and increases response time. The previous

drawbacks make XP not suitable for medium and large

size projects. There are other limitations in XP that make

it not suitable in some scenarios. For instance, XP is not

suitable with outsourced team. This is because the XP

needs highly competent members in team. These

members need to collaborate, trust, respect and be self-

organized. Such skills are hard to find in outsourced team

members who work just for the project that is assign to

them. Another limitation is that XP doesn't work with

distributed development environment. The reason is that

the practices and activities of XP require high

collaboration, involvement, face-face meeting and

customer to be with the team. Due to the high agility of

XP and simplicity of its design, the system is developed

very quickly without taking reusability of newly added

components into account. This means that XP doesn't

take the advantage of component based development into

account.

Several studies are proposed to extend the XP so that it

adapts to custom requirements in some types of projects.

However, most of these studies are not focused to directly

solve the drawbacks of XP. Instead, they embed new

phases and activities in XP to achieve a specific purpose

such as security of application [3]. As a consequence,

there is a need to implement XP with a customized model

that can overcome its drawbacks. This paper proposes a

customized model of XP that increases the agility and

improves quality, documentation and overall design.

The rest of the paper is organized as follows: Section II

is about related work. Section III describes the research

problem. Section IV covers the details of the proposed

solution. Last section presents conclusion and future

work.

II. RELATED WORK

There are several papers proposed to improve or

extend XP model so that it adapts to the needs of various

projects. Bala et al. [3] presented improved XP

framework that takes into account the security controls

and tighten them. It includes both the development team

and business representatives at initial stages to identify

and deal with all security concerns. The framework

introduces security checks in almost all phases of XP.

However, the continuous security checks in XP iterations

can affect the agility of XP negatively.

Luigi et al. [4] used the analytic hierarchy process

(AHP) to determine the prioritization of CRC cards

efficiently and effectively. Using of AHP presents the

simplicity and agility in the process of prioritizing.

Responsibility, collaboration and stability are the criteria

used in CRC prioritization. AHP is implemented to

structure 3-lv hierarchy where the top level has

Prioritization CRC, the second LV includes the criteria of

CRC, and the last LV includes alternative CRCs.

However, the proposed solution needs to be evaluated in

real test cases. Moreover, the shown experiment lacks

covering all teams' results. Team members were still

learning some skills to be able to evaluate the proposed

solution.

Elmuntasir et al. [5] proposed a solution to adapt XP

for development of large-scale distributed projects. The

suggested practices are daily standup meetings, adaptive

planning, code control, contentious Integration, visual

Indicators, XP project management and Code Gallery.

These practices are implemented in Sudan Automated

Traffic Violations Project as a case study. However, the

authors didn't address the issues that arise when

collaboration is missed in this type of projects.

Feng et al. [6] made comparison of two software

development methodologies based on three months

project data with 4 developers at most. These

methodologies are XP and Waterfall. The same project is

developed repeatedly for five years by fifty teams. The

result showed that the completed features and lines of

code were almost the same before and after transition to

extreme programming method. Therefore, the authors

concluded that it doesn't matter what method is used

when the project is with previously mentioned criteria.

However, the collected data needs diversity in terms of

source and characteristics.

Stephen et al. [7] addressed post-adoption performance

and the role of teams in engineering methods which are

neglected in previous studies. The solution through

studies found that client and team foci are the critical

active ingredient of XP.

Irina et al. [8] conducted observational studies on two

different industrial projects in terms of size and time.

These studies have shown that there are different types of

interactions between team members such as collaborative

and cooperative backup behavior. This distinction leads

to appropriate use of pair programming and also can

explain why there are contradictions in the results of

observing pair programming benefits. However, the

observational studies conducted by the authors are limited

to only two different projects data. The data collected

needs to be more than what is available so that the result

is going to be more precise.

Nick [9] divided introductory java course students into

two 65 teams. One uses solo programming while the

other uses VPP in the last four-assignments where

metrics like LOC, defects per 1000 LOCs, quality and

productivity are recorded for both teams. The comparison

results show that VPP team was more productive, has

fewer defects in their code (50% less) and their

deliverables are of higher quality.

Gert et al. [10] addressed the role of customer by

assisting the release plan in XP. The author has

developed an optimization model that generates release

plan which is based on story size, business value,

 Proposal of Enhanced Extreme Programming Model 39

Copyright © 2015 MECS I.J. Information Engineering and Electronic Business, 2015, 1, 37-42

precedence relations and themes. The solution through

studies found that client and team foci are the critical

active ingredient of XP. However, the optimization tool

consumes a lot of time to gather precise data from

different dimensions to produce accurate output. This can

affect responding speed in XP which is one of the main

advantages in agile methodologies.

Table 1. Summary of the Related Work

Title Summary

Service Agile Development Using XP [13]  Despite the proposed solution gives very detailed guidelines and practices on how to

combine both XP and SOA; it lacks the real life evaluation and case studies.

 Adapting XP with SOA in the way described can affect the overall agility negatively.

Comparing Extreme Programming and
waterfall Project Results [6]

 The proposed comparison is limited to only one project data.

 The data collected needs diversity in terms of source and characteristics.

Successful extreme programming: Fidelity to
the methodology or good team working? [7]

 The performance measure in the proposed solution is based on assessments that rely on
subjective interpretations.

Quantitative release planning in extreme

programming [10]
 The optimization model consumes a lot of time to gather precise data from different
dimensions to produce accurate output. This can affect responding speed in XP which is one

of the main advantages in agile methodologies.

Cooperation, collaboration and pair-
programming: Field studies on backup

behavior [8]

 The observational studies conducted by the author are limited to only two different
projects data.

 The proposed solution gives good inspiration on how to make the pair programming more
effective in the future work.

Measuring the Effects of Virtual Pair

Programming in an Introductory
Programming Java Course [9]

 The results are better to stand on bigger sample space. For example, 4-6 classes recordings

need to be collected over 3-4 semesters.

Pair Programming and Software Defects A

Large, Industrial Case Study [11]
 The number of defects to be reduced by practicing PP should be increased.

 The results should be implemented on projects where programmers' are of different levels
of experience

The impact of Absorptive Capacity on the
Ex-Post Adoption of Agile Methods: The

Case of Extreme Programming Model [12]

 Only one site is used to study the collected data which is not enough to generalize the
insights and results to other projects

Agile Software Engineering as Creative Work

[14]
 Creativity perspective needs to be evaluated through proposing well explained ways to

improve XP and then making case studies on proposals

Research on Requirement for High-quality
Model of Extreme Programming [15]

 The effectiveness of the proposed solution needs to be evaluated in real projects

Extreme programming applied in a large-
scale distributed system [5]

 The proposed solution has been implemented on only one project which is not enough to
prove the feasibility of adapting XP as a software development methodology in large-scale

projects.

 The proposed solution hasn't addressed the issues that arise when collaboration is missed

in this type of projects.

Improved Extreme Programming
Methodology with Inbuilt Security [3]

 The proposed solution needs to be applied in real business projects that need security to
decide its applicability and effectiveness.

 The continuous security checks in XP iterations can affect the agility of XP negatively.

Prioritizing CRC Cards as a Simple Design
Tool in

Extreme Programming [4]

 The proposed solution needs to be evaluated in real test cases.

 The shown experiment lacks covering all teams' results.

 Team members were still learning some skills to able to evaluate the proposed solution.

Application of Agile Method in the Enterprise

Website Backstage Management System [17]
 The author advices and practices were generally said without mentioning examples of any
previous experience. Most of the advices and practices were not clear enough.

Agile software development methodology for

medium and large projects [16]
 The size of the sample space is not enough to validate the proposal statistically.

 The proposed solution lacks for detailed description on how XP model can be adapted for
parallel development.

Enrico et al. [11] had done a case study that is based on

14-months dataset collected from a team of professional

developers working in an IT department of a large Italian

manufacturing company. The results of the study are

carefully collected and validated internally/externally.

The analysis results show that as PP practiced, new

defects are decreased.

Bahli et al. [12] studied two information system

development projects in a Canadian organization which is

switching from Waterfall to XP model. TAM (technology

acceptance model) is extended by the author to include

absorptive capacity. The collected results from ex-post

adoption to XP switch showed that IS developers asserted

that they are capable to apply XP even in future projects

which is a clear realization to the high absorptive capacity

they have. However, only one site is used to study the

collected data which is not enough to generalize the

insights and results to other projects.

Felipe et al. [13] proposed guidelines and best practices

that employ XP and SOA concepts for service

development. Their proposed solution focuses on the

seven principles of SOA and how they are supported by

XP. The guides show how different types of metaphor

should be designed for different principles. It also shows

which stakeholders should be aware of which metaphor

in each principle of SOA. Despite the proposed solution

gives very detailed guidelines and practices on how to

combine both XP and SOA; the authors didn't address the

negative effect of the proposed solution on the overall

agility.

40 Proposal of Enhanced Extreme Programming Model

Copyright © 2015 MECS I.J. Information Engineering and Electronic Business, 2015, 1, 37-42

Broderick et al. [14] fixes the relevance between

creativity and knowledge management which are both

essential for software engineering. To address this

important relationship, they compare phases and roles of

XP with phases and roles in creativity process. Based on

the comparison, creativity of XP can be improved.

Despite the authors have provided good basis and

realization for future researches on improving XP based

on creativity perspective, this basis needs to be evaluated

through proposing well explained ways to improve XP

and then making case studies on proposals.

Zhai et al. [15] established XP high quality analysis

model getting the benefit of the quality feature in Kano

model. The established model has improved customer

awareness and reduced misunderstanding of requirements.

Rizwan [16] has proposed an extended XP model to fit

medium and large projects with better documentation,

stronger architectural design. Extension is done through

modifying the phases of XP process model so that it

includes the following phases: Project Planning, Analysis

& Risk Management, Design & Development and testing.

The first phase defines the project scope and focuses on

major milestones. The second phase provides proper

documentation and risk management. The third phase is

combination of design and code phases of previous model

to increase speed. It relies on demos to verify

requirements and develop incrementally. The last phase is

all about testing as in the previous model. Despite the

proposed solution proved its success in the case studies

mentioned, it lacks for detailed description on how XP

model can be adapted for parallel development. The

summary of the literature review regarding this paper is

shown in Table 1.

Fig. 1. The proposed Enhanced XP Model

III. PROBLEM DEFINITION

Extreme Programming is an agile development

methodology that is intended for adaptive projects where

requirements are vague and not clear. One of the key

features of XP is the fast responsiveness to changing

customer requirements. Several papers are proposed to

adapt XP to different project sizes [16], with additional

features [3]. Other papers are focused to improve the

activities of XP [4] or to offer implementation guidelines

[5] and case studies for different types of projects [17].

However, these proposed solutions lack to offer an

implementation model that can, at the same time, increase

the agility and solve common problems in XP such as bad

documentation and architectural design. The question

arises is:

How to design a customized model for XP that

improves documentation, architectural design and the

agility at the same time?

IV. THE PROPOSED ENHANCED XP MODEL

The enhanced XP methodology (EXP) is expected to

deliver a high quality software system in terms of

documents, code and design. Therefore, it can be

implemented on projects of different sizes unlike the

classical XP that is focused to be highly responsive to

customer requirements without having robust

documentation and architectural design. Because the

classical XP activities of quality and functionality are

implemented in a sequential manner, there is going to be

an inverse relationship between agility and quality. On

the other hand, EXP takes parallelism into account to

avoid the inverse relationship between quality and agility.

Rizwan described that his extended model is suitable to

be implemented incrementally or in parallel [16].

However, detailed description of parallel development is

not presented.

EXP mostly keeps the main phases of classical XP

intact without radical changes. It only takes out activities

that serve non-functional requirements from these phases

into a parallel refinement phase. For this reason, EXP

offers high level of backward compatibility with other

extended models. For instance, Bala et al. [3] extended

XP by introducing inbuilt security as an activity that

needs to be embedded in all XP phases. Securing the

system can be achieved in the same way described in

EXP with taking all additional steps embedded in

classical XP phases and including them in refine iteration

phases.

In EXP, Iteration through main phases is classified into

four categories: initial, incremental, final and quality

iteration. To achieve a milestone, we need an initial

iteration, n-incremental iterations and a final iteration.

The fourth iteration starts in parallel with the first

incremental iteration and keeps iterating through its

refining phases till everything is checked and refined. The

proposed EXP model is shown in fig.1. A detailed

explanation of how to implement EXP on these iterations

is as follows:

A. Initial Iteration

In this iteration, the four main phases of XP are

implemented normally as in classical XP. The only

difference is in coding phase. During coding, a member

of code refactoring team which will work in parallel

starting from the next iteration will join the pair

programmers. The task of this member is to understand

and monitor what is being coded by the pair programmers.

He may discuss with them code issues and help them if

needed. Later in the next iteration, this member will give

assistant for code refactoring team when they face any

difficulties to understand the written code. Moreover, the

 Proposal of Enhanced Extreme Programming Model 41

Copyright © 2015 MECS I.J. Information Engineering and Electronic Business, 2015, 1, 37-42

member has to join all pair programming sessions

throughout the system or subsystem development. The

best role that can be assigned for this task is a technical

team leader who will be able to assist both teams: the pair

programming team to code quickly overcoming all

obstacles, and the refactoring team to find the issues and

to check quality.

B. Incremental Iteration

The incremental iteration follows the first iteration and

keeps iterating n-times until it reaches a point where the

subsystem or system is iteration away from a milestone.

In incremental iteration, all deliverables of previous

iteration are given to the team of quality iteration that

works in parallel. The main team members who work in

incremental iteration don't bother themselves in refining

previous design, code and tests. Instead, they only take

the new requirement and implement it. While in classical

XP, refining and refactoring activities are included in the

four phases. It is necessary to denote the quality iteration

in this section as it starts in parallel with the first

incremental iteration. In quality iteration, the previous

design, code, tests and documents are iteratively refined

and double checked via a separate team. This team works

in parallel. Firstly, the design is refined which gives

coders hints on how to refactor the code and make it

structured, understandable and easy to be modified.

Moreover, refining design includes working on the

architectural design incrementally through studying all

previous design documents. Secondly, code refactoring is

done according to the refined design and by the help of

the technical team leader who was monitoring the

previously written code in the previous iteration. The

code refactoring team will work in a different fork of the

system/subsystem that is to be implemented to avoid any

conflicts. Additional functionality will be grabbed to the

forked system for refactoring, whereas changes in the

previous code will be implemented again in the

refactored code without grabbing them as is. Thirdly and

after code refinement, tests are refined by applying more

comprehensive tests on the code. Found bugs will be

solved directly without waiting for the next incremental

iteration. Finally, Documents refining team starts refining

all poorly written documents as well as they document

extensively anything that is missing.

C. Final iteration

The final iteration directly precedes a milestone in

system development. A milestone is met by the end of

finishing requirements of this iteration. The phases in this

iteration are dealt with in the same way as in incremental

iterations. Once the final iteration is done, it means that a

milestone in project is met. Because meeting milestones

make the vague project requirements clear enough for

designers, it is possible to deliver a first release of the

architectural design for the system so that the subsequent

requirements and big view of the system will be expected

and clear for all stakeholders. As a result, progressing in

the project becomes faster and in confident steps.

If the project is very large and there is no high

dependency level between subsystems of the whole

project, it is possible to start separate iterations with each

of these subsystems so that parallelism is presented again

in a different level. However, integrating all subsystems

is needed in the final phase of the project as a new

requirement. The final requirement is dealt with in the

same way using EXP.

V. CONCLUSION AND FUTURE WORK

Extreme programming is an agile methodology for

software development that performs very well with

changing requirements. XP is one of the most commonly

used methods among other agile methods. However, it is

implemented sequentially on all activities including those

which are not functional. Therefore, the agility is reduced.

Moreover, classical XP suffers from weak documentation

and architectural design. Therefore, there is a need for

extended model that can overcome these problems.

Several papers are proposed to adapt XP to different

project sizes with additional features. Other papers are

focused to improve the activities of XP or to offer

implementation guidelines and case studies for different

types of projects. However, these proposed solutions lack

to offer an extended model that can solve the common

problems in XP without affecting the agility negatively.

In this paper, an extended model of XP is proposed which

is called Enhanced Extreme Programming (EXP) to

address the problem mentioned. Higher agility can be

achieved when non-functional activities are done in

parallel in a separate iteration. To have better

documentation in XP along with good architectural

design, the concept of monitoring and refinement needs

to be applied on design, documentation and testing. This

paper gives clear steps on how to implement EXP model.

Although EXP offers all these features, it is considered

very costly as it requires more staff to work, monitor and

refine each deliverable of XP phases.

REFERENCES

[1] K. Roebuck, Agile Software Development: High-impact

Strategies - What You Need to Know, Emereo Pty Limited,

2011.

[2] K. Schwalbe, Information Technology Project

Management, Cengage Learning, 2004.

[3] S. Musa, N. Norwawi, M. Selamat and K. Sharif,

"Improved Extreme Programming Methodology with

Inbuilt Security," in Computers & Informatics (ISCI),

Kuala Lumpur , 2011.

[4] S. Alshehri and L. Benedicenti, "Prioritizing CRC cards as

a simple design tool in extreme programming," in

Electrical and Computer Engineering (CCECE), Regina,

SK, 2013.

[5] E. Abdullah and E.-T. Abdelsatir, "Extreme programming

applied in a large-scale distributed system," in Computing,

Electrical and Electronics Engineering (ICCEEE),

Khartoum, 2013.

[6] F. Ji and T. Sedano, "Comparing extreme programming

and Waterfall project results," in Software Engineering

42 Proposal of Enhanced Extreme Programming Model

Copyright © 2015 MECS I.J. Information Engineering and Electronic Business, 2015, 1, 37-42

Education and Training (CSEE&T), Honolulu, HI, 2011.

[7] S. Wood, G. Michaelides and C. Thomson, "Successful

extreme programming: Fidelity to the methodology or

good teamworking?" Information and Software

Technology, vol. 55, no. 4, p. 660–672, 2013.

[8] I. D. Coman, P. N. Robillard, A. Sillitti and G. Succi,

"Cooperation, collaboration and pair-programming: Field

studies on backup behavior," Journal of Systems and

Software, vol. 91, p. 124–134, 2014.

[9] N. Zacharis, "Measuring the Effects of Virtual Pair

Programming in an Introductory Programming Java

Course," IEEE Transactions on Education, vol. 54, no. 1,

pp. 168 - 170, 2011.

[10] G. v. Valkenhoef, T. Tervonen, B. d. Brock and D.

Postmus, "Quantitative release planning in extreme

programming," Information and Software Technology, vol.

53, no. 11, p. 1227–1235, 2011.

[11] E. di Bella, I. Fronza, N. Phaphoom, A. Sillitti, G. Succi

and J. Vlasenko, "Pair Programming and Software

Defects--A Large, Industrial Case Study," IEEE

Transactions on Software Engineering, vol. 39, no. 7, pp.

930 - 953 , 2013.

[12] B. Bahli, Y. Benslimanne and Z. Yang, "The impact of

absorptive capacity on the ex-post adoption of agile

methods: The case of Extreme Programming model," in

Industrial Engineering and Engineering Management

(IEEM), Singapore, 2011.

[13] F. Carvalho and L. Azevedo, "Service Agile Development

Using XP," in Service Oriented System Engineering

(SOSE), Redwood City, 2013.

[14] B. Crawford, C. de la Barra, R. Soto and E. Monfroy,

"Agile software engineering as creative work," in

Cooperative and Human Aspects of Software Engineering

(CHASE), Zurich, 2012.

[15] Z. Li-li, H. Lian-feng and S. Qin-ying, "Research on

Requirement for High-quality Model of Extreme

Programming," in Information Management, Innovation

Management and Industrial Engineering (ICIII),

Shenzhen, 2011.

[16] M. Rizwan Jameel Qureshi, "Agile software development

methodology for medium and large projects," IET

Software, vol. 6, no. 4, pp. 358 - 363, 2012.

[17] L. Liu and Y. Lu, "Application of agile method in the

enterprise website backstage management system:

Practices for extreme programming," in Consumer

Electronics, Communications and Networks (CECNet),

Yichang, 2012.

Authors’ Profiles

Dr. M. Rizwan Jameel Qureshi received

his Ph.D. Computer Sciences degree from

National College of Business

Administration & Economics, Pakistan

2009. He is currently working as an

associate professor in the Department of

Information Technology, Faculty of

Computing & Information Technology,

King Abdulaziz University. He is the best researcher awardees

of King Abdul-Aziz University Saudi Arabia in 2013 and

Department of Computer Science, COMSATS Institute of

Information Technology Pakistan in 2008.

Yaqoob S. Ikram was born in 1989 and

received the bachelor’s degree in

information technology from the King Abdul

Aziz University, Jeddah, Kingdom of Saudi

Arabia, in 2013. He is currently working

toward the master’s degree at the King

Abdul Aziz University. His current research

interests include agile methodologies,

improved agile models and risk management. Yaqoob worked

as a developer in different governmental projects of medium-

large size.

How to cite this paper: M. Rizwan Jameel Qureshi, Jacob S. Ikram,"Proposal of Enhanced Extreme Programming

Model", IJIEEB, vol.7, no.1, pp.37-42, 2015. DOI: 10.5815/ijieeb.2015.01.05

