
I.J. Information Engineering and Electronic Business, 2014, 6, 1-14
Published Online December 2014 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijieeb.2014.06.01

Copyright © 2014 MECS I.J. Information Engineering and Electronic Business, 2014, 6, 1-14

Diagnostic Path-Oriented Test Data Generation

by Hyper Cuboids

Shahram Moadab
Department of Electrical, IT and Computer Sciences, Science and Research Branch, Islamic Azad University, Qazvin,

Iran

Email: moadabsh@gmail.com

Mohsen Falah Rad
Department of Electrical, IT and Computer Sciences, Lahijan Branch, Islamic Azad University, Lahijan, Iran

Email: mfalahrad@liau.ac.ir

Abstract—One of the ways of test data generation is

using the path-oriented (path-wise) test data generator.

This generator takes the program code and test adequacy

criteria as input and generates the test data in order to

satisfy the adequacy criteria. One of the problems of this

generator in test data generation is the lack of attention to

generating the diagnostic test data. In this paper a new

approach has been proposed for path-oriented test data

generation and by utilizing it, test data is generated

automatically realizing the goal of discovering more

important errors in the least amount of time. Since that

some of the instructions of any programming language

are more error-prone, so the paths that contain these

instructions are selected for perform test data generation

process. Then, the input domains of these paths variables

are divided by a divide-and-conquer algorithm to the

subdomains. A set of different subdomains is called hyper

cuboids, and test data will be generated by these hyper

cuboids. We apply our method in some programs, and

compare it with some previous methods. Experimental

results show proposed approach outperforms same

previous approaches.

Index Terms—Diagnostics, Test Data Generation, Test

coverage of code, Error-Prone Path, Symbolic execution.

I. INTRODUCTION

Since the most important step of designing of a test

case is the test data generation [1], some references such

as [2, 3] have assumed it equivalent to the test data

generation. Test data generation, is done by the different

methods such as genetic algorithm [4, 5, 6], randomly [7,

8, 9], etc. The test data generators are divided into

categories of random generator, data specification

generator, and path-oriented generator [10, 11].

The most powerful test data generator is the path-

oriented one [12]. Generating of path-oriented test data

which is also known as the path testing, is one of the most

famous white-box testing techniques. This test is done in

three basic steps including the selection of some paths,

test data generation, and comparing the output which

obtained from generating test data with the expected

output. The purpose of the test data generation step is

finding inputs that lead to the traverse of the selected path.

Finding an exact solution set to complete solving a path

constraints is NP-hard [13, 14]. Hence, the test data

generation, is considered a major challenge in path testing.

Many previous works [15, 16, 17, 18] have tried to test

data generation tools in order to automate this process.

Dunwei Gong et al. [19] suggested an approach that has

concentrated on the problems related to test data

generation for many paths coverage, and has provided an

evolutionary method for generating test data for many

paths coverage that is based on grouping. Initially, target

paths based on their similarities are divided into several

groups, and each of these groups, converts a sub-

optimization problem into several simpler sub-

optimization problems; finally, the sub-optimization

problem are facilitated with the test data generation

process.

Lizhi Cai [20] proposed a business process test

scenario generation that is according to the combination

of test cases. In this method the test cases have been

modeled in the form of TCN (Test Cases Nets) and a

CPN (Colored Petri Nets). By combining of the existing

TCN, the BPSN (Business Process Scenario Net) is

created. Test scenario generation techniques were

discussed for basis path testing and for a business process

based on BPSN.

Arnaud Gotlieb and Matthieu Petit [21] by using a

divide-and-conquer algorithm have generated random and

uniform test data throughout the allowable area. In this

method, generating test data is based on two basic

concepts: constraint propagation and constraint refutation.

The constraint propagation process, will pruned the

domain of all constraints of a path from their inconsistent

values, and also the constraint refutation process removes

some part of the non-allowable area. Finally, test data are

generated from remained area.

Ruilian Zhao and Yuandong Huang [22] have proposed

a method in order to automatic path-oriented random test

data generation, which is based on double constraint

propagation. This approach reduces a path domain of

program by splitting an input variable domain. This

mailto:moadabsh@gmail.com

2 Diagnostic Path-Oriented Test Data Generation by Hyper Cuboids

Copyright © 2014 MECS I.J. Information Engineering and Electronic Business, 2014, 6, 1-14

removes a wide domain of non-allowable area. Therefore,

a few number of generated test data of this method will

be rejected.

By definition, the test data that led to the discovery of

the error is called the diagnostic test data. In other words,

the output of run a program under test by a diagnostic test

data was not like our expected output. None of the

mentioned works have considered the diagnostic of the

generated test data. On the other hand, many previous

works [23, 24, 25, 26] just have generated the test data

that only will lead to the traverse of the path. However,

the test data is successful when it leads to the discovery

of the error [2]. In this paper, a new approach has been

proposed to generate the test cases which lead to more

error detection. For doing this, first the error-prone paths

are identified and then the test data are generated from

them. Error detection probability by the generated test

data in an error-prone path is more than other paths.

Therefore, this approach generated test data, will detect

more errors from the program under test. In addition, in

this approach, remove of a large part of the non-allowable

area by creating hyper cuboids, reduces considerably the

test data generation time.

As a result, the proposed approach with the detection

of more errors in less time has taken an important step to

improve the testing process. Our approach was

implemented by Turbo C++ 4.5 using the random

function for random generation and was evaluated on

several C and C++ programs. These experiments show

that the error detection rate (EDR) and the error detection

speed (EDS) ranges from 7.2 to 2804 times and from 4.8

to 228 times respectively, more than the same previous

approaches.

In Section 2 we illustrate concepts and important terms

of test data generation. In Section 3 a new approach is

presented to generate path-oriented test data. Section 4

identify two criteria and contains the experimental results

obtained from our implementation. In Sections 5 and 6,

we respectively discuss the threats to validity and present

the conclusion and proposed cases for future works.

II. BASIC CONCEPTS

Path-oriented test data generation is based on

fundamental and important concepts that will be

described as follows.

2.1. Control Flow Graph

The Control Flow Graph (CFG) in a program is a

connected oriented graph which consists of a collection

of vertices, including edges that each of them indicative a

branch between two basic blocks and two distinct nodes,

that each node indicative a basic block; which e and s

represent the entry and exit nodes, respectively. Drawing

a CFG has its own rules. If we have the function Foo as

Fig. 1, then the CFG for this function can be depicted by

Fig. 2.

2.2. Test Adequacy Criteria

After CFG construction, some paths of it should be

selected for testing. Since the selection and traversing of

the all existing paths is not practically possible, the

selection of more appropriate path set is too important. If

the number of selected paths be more, it is clear that more

resources, effort, time, and costs will be required to

generate the test data; instead, more errors will be

discovered. Also, an important challenge in this step is

selection of the path that will lead to the detection of

more errors than the path that contains lower errors. In

this regard, researchers have introduced the following

Fig. 1. The Foo function

Fig. 2. CFG of function Foo

criteria to select more appropriate path that are known as

test adequacy criteria:

 Statement Coverage: In this criterion, that is the

weakest among the white-box Testing criteria [2],

each instruction is executed at least once. The

advantage of this criterion is the ability to identify

blocks of code that are not executed. The

disadvantage of this criterion is that it is not able to

detect many logical errors of the program.

 Branch Coverage (Decision Coverage): In this

criterion, in addition that the test cases are executed

each instruction at least once, must execute all of its

outputs at least once, against any decision [2, 24, 27,

28]. However this criterion satisfies the statement

coverage criterion, but is not able to detect the errors

of conditions in the combined decisions.

void Foo(ush x, ush y){

 if (x > y){

 while (x ≥ 500)

 x--;

 cout << x;

 }

 else{

 while (x > y){

 …

 }

 }

}

 Diagnostic Path-Oriented Test Data Generation by Hyper Cuboids 3

Copyright © 2014 MECS I.J. Information Engineering and Electronic Business, 2014, 6, 1-14

 Condition Coverage: In this criterion, in addition to

each instruction is executed at least once, all

possible composition of the conditions in a decision

must also be executed [2, 24, 27]. The reason is that

a decision may be a combination of several

conditions. The advantage of this approach is the

discovery of conditions errors inside the decisions

and its disadvantage is the lack of attention to the

different combinations of these conditions.

 Decision/Condition Coverage: In this criterion, in

addition that each instruction is executed at least

once, every decision and all the conditions within it

are also executed at least once [2, 24]. The

advantage of this criterion is fixing two above

criteria disadvantages and its disadvantage is the

lack of considering all the different combinations of

conditions.

 Multiple Condition Coverage: This criterion in

addition to covering all of the above criteria, also

considers all the different combinations of a

decision conditions [2, 24]. The advantage of this

method is fixing all of the above criteria

disadvantages and its disadvantage is the lack of

covering all paths of the program.

 All Path Coverage: This criterion runs all possible

paths of the program at least once [24]. The

advantage of this method is the cover the whole

paths of program and its imperfections are

possibility of execution the paths in excessive

amounts and impossibility of traverse all program's

paths.

 Simple Path Coverage: This criterion has executed

all possible paths of the program at least once and

does not run any part of the program in excessive

amounts [24]. The advantage of this method is

covering the entire paths of program and its

disadvantage is that it is impractical; because

traversing all paths of a program is impossible.

These criteria are listed respectively from weak to

strong, and realization of a weaker criterion, is easier than

the stronger criterion.

2.3. The Infeasible Path

One of the major challenges is the possibility of

existence the infeasible path. The infeasible path is the

path that because of existence the contradictory

conditions in it, is not traversable with any test data. For

example, the path 1→2→5→6→5→8 of control flow

graph is shown in Fig. 2 is a non-traversable path.

Because the intersection of two contradictory conditions

x≤y and x>y in this path is null.

2.4. Allowable Area

The largest area that all generated test data in it, are

lead to satisfy all the constraints of a specific path, is

known as its allowable area. From the intersection of all

constraints in one path, the allowable area is achieved.

For example you can see the allowable area

corresponding with the constraint set of path

1→2→3→7→8 from the Fig. 2 in Fig. 3.

Fig. 3. A sample for displaying the allowable area

2.5. Hypercuboid

Each used variable in a program has a minimum and a

maximum value. From intersection of intervals between

the minimum and maximum values of the n variables in

an n-dimensional space, an n-dimensional hyper cuboid is

obtained. For example, consider the following variables

and their related intervals:

x: 〈 1 ..20 〉
y: 〈 1 ..10 〉
z: 〈 1 ..30 〉

The 3-dimensional hyper cuboid as has shown in Fig. 4

is obtained from intervals intersection of these three

variables. By selecting any arbitrary value from intervals

of the variables in a hyper cuboid, a point will be

obtained that certainly is inside the hyper cuboid.

Therefore test data generation throughout of a hyper

cuboid domain is easy because any of its points can be

randomly selected by choosing its coordinates

independently. For example, selecting any arbitrary value

from intervals of the variables x, y and z is lead to

generate a point that certainly will be inside the obtained

hypercuboid from these variables.

Fig. 4. A sample for displaying the hyper cuboid

4 Diagnostic Path-Oriented Test Data Generation by Hyper Cuboids

Copyright © 2014 MECS I.J. Information Engineering and Electronic Business, 2014, 6, 1-14

III. THE PROPOSED APPROACH

The goal of our proposed approach is to generate

diagnostic test data. Some of the test data are leading to

the discovery of the errors and some of them are just

traversing the desired path. Since a test is successful

when it is able to detect an undiscovered error [2] it is

essential to attend about generation of diagnostic test data

instead of non-diagnostic one; while many of previous

proposed approaches only have generated test data and

haven't noticed whether it is diagnostic or not.

3.1. The Proposed Approach Procedure

For the better understanding of the operation of the

proposed approach, its procedure is shown in Fig. 5. In

the figure, bubbles show the inputs and outputs of the

program, rectangles show the process phases, and

diamonds show the branches in the execution. The

proposed approach is done in seven steps including CFG

construction, labeling, path selection, symbolic execution

of selected path, constraint propagation, consistent hyper

cuboid extraction, and test data generation. Each one of

the above seven-pace stages will be described separately.

Fig. 5. The Proposed Approach Procedure

3.1.1. CFG Construction

In the first step of the proposed approach, after

traversing the program under test, the related CFG will be

drawn (According to descriptions mentioned in section

2.1).

3.1.2. Labeling

The error existence probability is not equal in different

kinds of the instructions of a program. For example, the

probability of error existence in power operation is far

more than of sum operation. In general, because the

output of exponent operation is larger than the plural

operation and the possibility of overflow error occurrence

is much more in it. Accordingly, all constructed CFG

nodes which are included error-prone instructions, will be

labeled. For doing the labeling operation a boolean

variable has been used. If a node had contained an error-

prone instruction, the true value will be assigned to its

labeling variable and otherwise the false value will be

assigned. For example, a pair braces in first while

instruction in the program Foo given in Fig.1 was missed.

Therefore, the nodes 4 and 7 in Fig. 2 will be labeled as

an error-prone node. It should be noted that if a node had

contained an error-prone instruction, it is not necessarily

contain errors, but the possibility of errors existence in

that is more than the other ordinary nodes.

Table 1 is used for detecting an error-prone instruction.

This table shows a list of the common errors in a C++

program [29]. In this table, the first column is the number

of error, the second column is the name of that error, the

third column is an example of a program with an error;

the fourth column is the correct program of example in

the third column, and the fifth and sixth columns,

respectively, shows the output of a program with an error

(third column) and the output of the correct program

(fourth column). Since this table is contain error-prone

instructions of C++ language but we can easily find the

error-prone instructions of other programming language,

and add to it. In this case, the other steps of proposed

algorithm will be executed without any change.

3.1.3. Path Selection

Path is a finite sequence of edge-connected node in the

CFG that starts from entry node. The number of selected

paths in this step is equal to the calculated Cyclomatic

complexity for the corresponding CFG. The number of

Cyclomatic complexity is obtained by one of the

following formula:

 The number of CFG areas

 E – N + 2

 d + 1

In which E is the number of edges, N is the number of

nodes and d is the number of predicate nodes in the CFG.

Based on the McCabe’s proposed testing called basis path

testing, the linearly independent paths can be select in

this stage. A selected path will be linearly independent, if

at least one non-traversal edge by previous selected paths

existed in it. By definition, a set of linearly independent

paths that their numbers are equal to the Cyclomatic

complexity is called the basis path set. Since this basis

path set is not unique, it is important to make more

 Diagnostic Path-Oriented Test Data Generation by Hyper Cuboids 5

Copyright © 2014 MECS I.J. Information Engineering and Electronic Business, 2014, 6, 1-14

appropriate selection. Accordingly, at this stage, we will

try to select the paths that are consist at least one labeled

error-prone node. We called these paths the error-prone

paths. For example, the path 1→2→3→7→8 of control

flow graph is shown in Fig. 2 is an error-prone path. If

Table 1. Different Types Of Errors

Row Error name
An example

contains error
Correct program

1
Overflow or

Underflow

int x = 32767;

x++;

long int x = 32767;

x++;

2
Bitwise

Operations
int a = (1 << 15);

long int a = (1 <<

14);

a = a * 2;

3

Conditional

and Iteration

Instructions

without ―{}‖

int a = 1, b = 2;

if (a > b)

cout << a << endl;

cout << b;

int a = 1, b = 2;

if (a > b){

cout << a << endl;

cout << b;}

4

Type

mismatch

―%‖ in printf

float a = 0.5;

printf ("%d", a);

float a = 0.5;

printf ("%f", a);

5

Using ―&‖

instead of

―&&‖

int a = 1, b = 2, c = a

& b;

cout << c;

int a = 1, b = 2, c =

a && b;

cout << c;

6

Lack of

Insert the

Blank

between the

Numbers

Output

int a = 1, b = 2;

cout << a << b;

int a = 1, b = 2;

cout << a << " " <<

b;

7

Using ―=!‖

instead of

―!=‖

int a = 0;

if (a =! 0)

cout << 1;

int a = 0;

if (a != 0)

cout << 1;

8
Division by

Zero

int a = 1, b = 0;

cout << (a / b);

int a = 1, b = 0;

if (b! = 0)

cout << (a / b);

9

Using ―;‖ in

the end of

"for"

int a, b = 0;

for (a = 0; a < 100;

a++);

b++;

cout << b;

int a, b = 0;

for (a = 0; a < 100,

a++)

b++;

cout << b;

10

Using ―=‖

instead of

―==‖

int a = 0;

if (a = 0)

cout << "a" ;

int a = 0;

if (a = = 0)

cout << "a" ;

11
No

Initialization

int a;

cout << a;

int a = 0;

cout << a;

there is not any unselected error-prone path, the other

paths within CFG will be selected. The paths are selected

with respect to the Cyclomatic complexity number that

subsumes the branch and statement coverage [30]. For

instance, assuming that complex allowable areas are more

error-prone, Cyclomatic complexity can be calculated,

and the most complex areas can be tested more efficiently

[31].

3.1.4. Symbolic Execution of Selected Path

To obtain the constraints of a path, the symbolic

execution usually is used. In the symbolic execution,

variables values are obtained without actual execution of

the program and are based on the input variables and the

constant values. It has been created a path constraint Φp

for each execution path p, for example, a sequence of

statements were executed by the program which

indicating the input assignments that program executes

along p. At this step, constraint set of the selected path, is

obtained by symbolic execution of the previous step and

is given as input to the next step.

3.1.5. Constraint Propagation

In this step, constraint values are applied on all other

constraints. This action is performed on all the constraints

existing in constraint set. With doing this at each step, a

part of these constraints intervals are pruned. This work

continues as long as more pruning cannot be done. The

output of the constraint propagation process is the

smallest hyper cuboid that contains all constraints of the

constraint set. For example, suppose the minimum and

maximum range of the variables x and y, are 0 ≤ x ≤ 400

and 100 ≤ y ≤ 300, respectively. Considering the

constraint x ≥ y, the minimum y (i.e. 100), prunes the

minimum value of x to 100. However, the maximum

value of x (i.e. 400) cannot prune y to 400, because it is

bigger than the maximum value of y (i.e. 300).

Consequently, the minimum and maximum ranges for the

variables x and y will be 100 ≤ x ≤ 400 and 100 ≤ y ≤ 300,

respectively. During the pruning operation, if a variable

range be empty, also the constraints intersection will be

empty. This means that the path is non-traversable with

any test data and so called an infeasible path [21]. In this

case, algorithm returns to the path selection stage for

selecting another path.

3.1.6. The Consistent Hypercuboid Extraction

Each hyper cuboid by dividing each one of its

subdomain to the two subdomains and Cartesian product

of this subdomains, can be divided into the

subhypercuboids. For example, consider the hyper cuboid

shown in Fig. 4. If the domain of each one of its variables

be divided into two parts, the following subdomains will

be achieved.

x: 〈1 ..10〉, 〈11 ..20〉
y: 〈1 ..5〉, 〈6 ..10〉
z: 〈1 ..15〉, 〈16 ..30〉

With the Cartesian product of these subdomains eight

hyper cuboids D1= (x ϵ 1..10, y ϵ 1..5, z ϵ 1..15), D2= (x

ϵ 1..10, y ϵ 1..5, z ϵ 16..30), D3= (x ϵ 1..10, y ϵ 6..10, z ϵ

1..15), D4= (x ϵ 1..10, y ϵ 6..10, z ϵ 16..30), D5= (x ϵ

11..20, y ϵ 1..5, z ϵ 1..15), D6= (x ϵ 11..20, y ϵ 1..5, z ϵ

16..30), D7= (x ϵ 11..20, y ϵ 6..10, z ϵ 1..15), D8= (x ϵ

11..20, y ϵ 6..10, z ϵ 16..30) will be achieved, which you

can see in Fig. 6. Each of the obtained subhypercuboids,

also are a hyper cuboid. At this step, after the generation

of subhypercuboids at each time, the inconsistent

subhypercuboids will be eliminated by the consistency

check algorithm. The remainder consistent

subhypercuboids also are divided into 2n subhypercuboid

that n is equal to the number of variables. Eliminating of

the inconsistent subhypercuboids apply on the obtained

subhypercuboid again.

This process continues until dividing the domain of

each variable to the k subdomains. Value k is determined

by the tester and based on the time constraints. Whatever

the value of k is greater, more non-allowable area will be

6 Diagnostic Path-Oriented Test Data Generation by Hyper Cuboids

Copyright © 2014 MECS I.J. Information Engineering and Electronic Business, 2014, 6, 1-14

removed by eliminating the inconsistent subhypercuboids;

instead, more time will be spent for subhypercuboids

generation. Achievement the optimal value of k is

difficult and is obtained experimentally. The reason of

gradual division of domains instead of suddenly division

is that with the gradual division in each step, a greater

volume of the allowable area will be removed with the

less number of using the consistency check algorithm. In

many previous works such as [21], this value cannot be

exceeded of a small amount (usually 4). Because due to

using of the time consuming consistency check algorithm,

with increase the amount of k, the running time of

algorithm will be increased extremely. Our proposed

consistency check algorithm fixes the above problem

greatly. The method of this algorithm is that it checks all

corners of a hyper cuboid. If none of these corners were

able to satisfy the constraints of the constraint set, detects

it as a possibly inconsistent hyper cuboid. The reason that

we used the word "possibly" is that all corners of a hyper

cuboid may be outside of the allowed area, but a part of

hyper cuboid is within this area. The hyper cuboid D2 in

Fig. 7 is like this. However this problem does not happen

in most programs, and if occurrence will be included only

a few of hyper cuboids. To improve this problem, we also

generate a few random test data of possibly inconsistent

hyper cuboid. If none of these generated random test data

can satisfy the constraints, the proposed consistency

check algorithm, eliminates the hyper cuboid. The

number of generated random test data, is dependent on

the time constraints of the project.

3.1.7. Test Data Generation

Fig. 6. Demonstration of extracting subhypercuboid

Fig. 7. A demonstration of the consistency checking algorithm problem

At this stage, initially, the portion of each consistent

hyper cuboid is computed in the test data generation, then

the test data is generated at randomly and equal to the

calculated number of these hyper cuboids. It is possible

that the generated test data from a hyper cuboid can not

be able to satisfy the relevant path constraints, which in

this case, will be deleted as a rejected test data. This case

happens in consistent hyper cuboids that are not

completely within the allowable area. After generating

test data for the selected path, if the path selection

operations is done equal to the number of Cyclomatic

complexity, the algorithm terminates. Otherwise,

algorithm goes to the path selection stage and selects the

next path.

3.2. Diagnostic Path-oriented Random Testing (DPRT)

Proposed Algorithm

The proposed approach has been implemented by the

DPRT algorithm this is shown in Algorithm 1.

Algorithm 1. The DPRT proposed algorithm

This algorithm has been implemented with divide-and-

conquer technique. DPRT algorithm takes the following

parameters as input:

 V[VarCnt]: Is a one-dimensional dynamic array

with length VarCnt that keeps the names of

variables in path's conditions. Variable VarCnt also

contains the variables count of these conditions.

 CHCs[CHC][2][VarCnt]: Is a 3-dimensional

dynamic array that keeps the consistent

hypercuboids. Variable CHC is equal to the number

of consistent hypercuboids at any time. This

variable is defined as global. Since the first obtained

hypercuboid from the constraint propagation

process is certainly consistent, the initial value of

CHC is considered equal to one. For storage a

hypercuboid, it is enough that the minimum and

maximum values of all the involved variables to be

stored in it. Therefore the second dimension of this

array is considered equal to 2 (one for minimum

value and another for maximum value). Since the

number of hypercuboids variables of a path is

DPRT(V[VarCnt], CHCs[CHC][2][VarCnt], PC[m], N, K){

 Label up all error-prone nodes and edges.

 for (int i = 0; i < k; i++){

 HCs[CHC * pow(2, VarCnt)][2][VarCnt] =

Cartesian(V[VarCnt], CHCs[CHC][2][VarCnt]);

 CHCs[CHC][2][VarCnt] = Cansistent(HCs[CHC * pow(2,

VarCnt)][2][VarCnt], PC[m]);

 } /*End of while*/

 PN = The portion of each hypercuboid in test data generation.

 while (PN > 0){

 Pick up uniformaly t at random from CHC[i][2][VarCnt];

 if (PC is satisfied by t){

 add t to T;

 PN = PN – 1;

 } /*End of if*/

 } /*End of while*/

 return T;

}

 Diagnostic Path-Oriented Test Data Generation by Hyper Cuboids 7

Copyright © 2014 MECS I.J. Information Engineering and Electronic Business, 2014, 6, 1-14

always constant the second and third dimensions of

this array are considered as constant. Also, because

the number of consistent hypercuboids are

continuously changing, the first dimension of this

array is dynamically defined.

 PC[m]: The dynamic array contains conditions of

the relevant path that is obtained from the symbolic

execution process.

 N: This variable keeps the number of requested test

data. DPRT algorithm will eventually generate N

test data.

The other parameters are also used locally in this

algorithm that the most important of them are as follows:

 HCS[CHC * pow(2,VarCnt)][2][VarCnt]: Is a 3-

dimensional dynamic array that keeps the generated

hyper cuboids obtained from the Cartesian product

of the consistent hyper cuboids subdomains within.

As mentioned, the number of obtained hyper

cuboids from the CHC consistent hyper cuboids will

be equal to CHC × 2VarCnt. Therefore the first

dimension of this array is changed dynamically and

at this amount every time. The second and third

dimensions of this array are defined like the CHC

array.

 PN: This variable at any time, first keeps the portion

of selected hyper cuboid in test data generation.

After generating each test data, the PN is decreased

one.

It should be noted that the mentioned parameters and

variables, have been also used with the same name in the

next annotated functions.

The method of DPRT algorithm is in this way that first,

it performs the labeling operation of error-prone nodes

based on the mentioned explanations. At the following,

with help of two functions Cartesian and Consistent, the

consistent hyper cuboids are extracted. Extracting the

consistent hyper cuboids by these two functions is

repeated k times. The process initially is so that by the

Cartesian function all of the consistent hyper cuboids in

the CHCs array are divided to the subhypercuboids and

the result is stored in the array HCs. Then, with using of

the consistency checking function ―Consistent‖, the

consistent hyper cuboids of HCs array is extracted and

again is stored in the CHCs array. The algorithms and the

detailed operations of these functions will be described

later. After extracting the consistent hyper cuboids, the

portion of each one is calculated in test data generation

and is stored in the variable PN. Finally after selecting the

first hyper cuboid, test data will be generated by random

function in Turbo C + + and randomly from it. If the

generated test data, be able to satisfy all the conditions in

array PC[m], it has been accepted as an acceptable test

data and one value is decreased from value PN. When PN

= 0, means that the test data is generated to the desired

number from the selected hyper cuboid. In this case, the

next hyper cuboid is selected and test data generation

process from it will be resumed. This process is repeated

until the selection of the last hyper cuboid and its test data

generation (i.e. CHC times). The set of generated test

data is returned by the variable T.

As mentioned, DPRT algorithm uses two Cartesian

and Consistent functions for extracting consistent

hypercuboids. In the following we describe the operation

of these functions. You can see the Cartesian function

algorithm in Algorithm 2.

Algorithm 2. The Cartesian function

In this algorithm first, the memory is allocated to the

array HCs. CHC × 2VarCnt elements are allocated to the

first dimension of the array that is equal to the number of

the hyper cuboids which is supposed to be generated. The

number of next loops iterations has also been set by this

value. If the minimum and maximum domain of each

variable be divided into two subdomains, a hyper cuboid

is obtained from the Cartesian product in one of the two

subdomains of all variables. Namely from the first

variable, one of the first or second subdomain, from the

second variable also one of its subdomains, and similarly

from the variable VarCnt also one of its subdomains are

selected. Selected set gives a new hyper cuboid. This

issue that which subdomain of a variable should be

selected at any time is determined by variable ZorO. If

the value of this variable be equal to zero, the result of 1-

ZorO will be equal to one. In this case the first

subdomain will be selected. Also, if the variable ZorO

value be equal to one, the 1-ZorO result will be equal to

zero, in which case the second subdomain will be

selected. Finally, the generated hyper cuboids are

returned as output by the array HCs. You can see the

second used function algorithm namely the Consistent

function in Algorithm 3.

Consistent algorithm initially allocates memory to the

CHCs array. The count of first dimension of array

elements will also be considered equal to HCs array;

because it is possible that all hyper cuboids of array HCs

be consistent. Because in this function, the extracting

process of consistent hyper cuboids will be resumed,

variable CHC is initialized with 0. Also the number of

consistent and external hyper cuboids will be equal to

2VarCnt. It should be mentioned that the variable EHC at

any time is equal to the number of external hyper cuboids.

This variable is not essential and only is used to control

the algorithm operation correctness. Because the total

sum of variables CHC and EHC always will be an

Cartesian(V[VarCnt], CHCs[CHC][2][VarCnt]){

 Momory Allocation for HCs;

 for (i = 0; i < CHC; i++)

 for (k = 0; k < VarCnt; k++)

 for (j = 0; j < pow(2, VarCnt); j++){

 ZorO = (j / pow(2, VarCnt - k - 1) % 2;

 HCs[j + (i * pow(2, VarCnt))][0][k] = a[i][0][k] + ZorO *

ceil((a[i][1][k] – a[i][0][k]) / 2);

 HCs[j + (i * pow(2, VarCnt))][1][k] = a[i][0][k] - (1-

ZorO) * (floor((a[i][1][k] – a[i][0][k]) / 2)+1);

 } /*End of for j*/

 return HCs;

}

8 Diagnostic Path-Oriented Test Data Generation by Hyper Cuboids

Copyright © 2014 MECS I.J. Information Engineering and Electronic Business, 2014, 6, 1-14

exponential of two. The algorithm process continuation is

designed in this way that if the corner of a hyper cuboids

cannot able to satisfy all of the path conditions, the

variable external will be incremented. Otherwise, the

variable internal will be decremented. It is clear that if

variable external == 2VarCnt it means that all points of

selected hypercuboid are external. In this case the

variable EHC will be incremented. Otherwise the

hypercuboid will be stored as a consistent hypercuboid in

the array CHCs. Similarly in this case the variable CHC

will be incremented. After extracting all the consistent

hypercuboids and store those in array CHCs, this array

will be returned as output.

Algorithm 3. The Consistent function

IV. RESULTS

In this section, we measure the performance of

proposed approach based on two criteria. To do this, we

perform experiments on four programs. The first program

being tested is Foo function which contains a mutant

error. The second program is Triangle which has been

proposed by Myers [2]. This program contains arithmetic

overflow errors. The next program being tested is an

aircraft collision avoidance system called Tcas. This

program has been selected from the Siemens test suite

[32]. The Siemens programs were assembled by Tom

Ostrand and some coworker’s at Siemens Corporate

Research for the purpose of studying the fault detection

capabilities of control-flow and data-flow coverage

criteria. Tcas is made up of 173 lines of C code and has a

41 error version which can be downloaded from

Software-artifact Infrastructure Repository [33]. Different

versions of Tcas contain variable errors that have been

seeded there by expertise. The last program also being

tested is Totinfo which has been selected from the

Siemens test suite. Totinfo reads a large number of

numeric data tables as input and computes the given

statistical input data. It also computes statistics for each

table as well as across all tables. This program is made up

of 406 lines of C code and has a 23 error version which

also can be downloaded from Software-artifact

Infrastructure Repository. Finally, an experiment will

perform on abilities of DPRT than other approaches to

discover the faulty versions.

To evaluate the proposed approach more precisely, the

experiments have been done on both the Random Testing

(RT) and Path-oriented Random Testing (PRT) [21]

methods as well as the DPRT method. Random Testing

(RT) attempts to generate test data at random according

to a uniform probability distribution over the input

variables domain. The PRT method aims at uniformly

generating of random test data that execute a single path

within a program. The main goal of PRT is minimize the

amount of rejected test data. In order to get better results,

the parameter k in the DPRT and PRT methods for

function Foo is considered the value 6. This parameter for

the Triangle, Tcas and Totinfo is 5, 2 and 3 values,

respectively.

To be fair, the same situations have been applied for

the implementation of all these methods. All of these

algorithms will be implemented by Turbo C++ 4.5

language on a Pentium IV personal computer with 1.6

GHz CPU and 288 MB RAM (a 256 MB RAM with a 32

MB RAM). Also the random function in this

programming language is used for random generation.

All programs take variables name, their ranges, the path

conditions, the number of requested test data and splitting

parameter k as input and generate test data to the

requested number. It should be noted that the best

division parameter value will be considered for PRT.

4.1. Evaluation Criteria

In many previous methods [34, 35], the sum of the

rejected test data has been considered as one of the

evaluation criteria. Though, it is a good criterion, it is not

enough. For example, if the number of rejected test data,

be equal to zero in an ideal limit but the generation test

data, not be lead to the discovery of error, a wasted work

is almost done. As mentioned before, software testing

that doesn’t lead to error detection can’t be a suitable test.

However, this criterion has been introduced because it is

effective especially in the running time of the algorithm.

In other words, whatever the number of rejected test data

be larger, more time also will be spent for generating test

data at the requested amount. Therefore, we present an

error detection rate (EDR) criterion based on the

following equation:

This criterion defines the error detection probability of

a test data. In this criterion, the number of rejected test

data has also been considered automatically. Because the

total number of rejected test data and the number of

acceptable test data, give the total number of generated

test data; and since this parameter is in the denominator,

Consistent(HCs[CHC * pow(2, VarCnt)][2][VarCnt], PC[m]){

 Momory Allocation for CHCs;

 CHC = 0;

 for (i = 0; i < brows; i++){

 for (r = 0; r < pow(2, VarCnt); r++){

 expr1 = (PC[0] && PC[1] && … && PC[m – 1]);

 if (! expr1)

 external++;

 else

 internal++;

 } /*End of for r*/

 if (external == pow(2, VarCnt))

 EHC++;

 else{

 for (j = 0; j < cols; j++)

 for (k = 0; k < pow(2, VarCnt); k++){

 CHCs[CHC][j][k] = HCs[i][j][k];

 CHC++;

 } /*End of for k*/

 } /*End of if*/

 } /*End of for i*/

 return CHCs;

}

 Diagnostic Path-Oriented Test Data Generation by Hyper Cuboids 9

Copyright © 2014 MECS I.J. Information Engineering and Electronic Business, 2014, 6, 1-14

its increase is caused to reduce diagnostic rate and its

reduction is caused to increase this rate. Thus, according

to this criterion, try to reduce the number of rejected test

data. On the other hand, the number of diagnostic test

data has a direct relationship with error detection rate. So

should be tried to increase the number of diagnostic test

data. The next criterion, called error detection speed

(EDS), is defined according to the following equation:

The number of rejected test data and consistency

checking algorithm run time are two effective run time

factors. It is clear that if the number of using the

consistency checking algorithm increases, assuming the

constant number of rejected test data, algorithm running

time will also be increased. Whereas measuring the run

time of the consistency checking algorithm needs a real

execution and is not assessable by mathematical

equations, we will measure this parameter with a real

execution in this section. Memory usage criterion is also

considered a criterion which is not very important that

due to its low importance we are not considering it in this

field.

The abbreviation N represents the total number of the

acceptable test data generation, E shows the number of

diagnostic test data, T represents running time that

measured in second, R represents the number of rejected

test data, EDR represents the error detection rate and

EDS shows the error detection speed. Remember that the

values of these variables is equal to EDR = E/(N+R) and

EDS = E/T.

4.2. Experiments Results on Function Foo

One of the common mistakes of programming is lack

of using the symbol "{}" in conditional and iteration

loops structures containing more than one instruction

(row 3 of Table 1). The shown Foo function shows this

mistake in the Fig. 1. In this function, sequential

instructions x-- and cout<<x should be placed within "{}".

Table 2 reports on the results of RT, PRT and DPRT

methods obtained for the paths 1→2→3→7→8 and

1→2→3→4→3→7→8 in the Foo program by regularly

increasing the desired length of the random test suite.

These results have been collected by running the

algorithm for N=100 to N= 1000 with a step interval of

100.

Fig. 8 and Fig. 9 show the error detection rate of the

aforementioned methods and their error detection speed

based on the total number of acceptable test data,

respectively.

Observing the results of these experimental methods on

function Foo, the conclusion can be made that the error

detection rate of the DPRT method is about 97 times

more than the RT method and about 21 times more than

the PRT method. It is also observed that the error

detection speed of the DPRT method is about 66 times

more than the RT method and 13 times more than the

PRT method.

4.3. Experiments Results on Program Triangle

Arithmetic overflow error is another common error in

programming (row 1 of Table 1). The Triangle program

that was written by Myers contains these kinds of errors.

This program checks the possibility of constructing a

triangle by three received input numbers. Consider the

experiment results of the related methods on this program

in Table 3. These results have been collected by running

the algorithm for N=100 to N= 1000 with a step interval

of 100.

The error detection rate of the before mentioned

methods and their error detection speed based on the

total number of acceptable test data is illustrated in Fig.

10 and Fig. 11, respectively.

Table 2. Experiments results of function Foo

N 100 200 300 400 500 600 700 800 900 1000

RT

E 3 7 11 12 13 17 20 24 26 31

R 664 1449 2124 2809 3617 4321 4977 5814 6319 7114

Ts 1.47 3.61 5.19 7.1 9.39 11.01 12.79 14.21 16.46 17.81

EDR 0.004 0.004 0.005 0.004 0.003 0.003 0.004 0.004 0.004 0.004

EDS 2.04 1.94 2.12 1.69 1.38 1.54 1.56 1.69 1.58 1.74

PRT

E 3 8 10 13 14 16 21 23 27 32

R 69 153 239 294 373 497 527 632 687 755

Ts 0.33 0.77 1.07 1.43 1.87 2.19 2.59 2.91 3.3 3.62

EDR 0.018 0.023 0.019 0.019 0.016 0.015 0.017 0.016 0.017 0.018

EDS 9.09 10.39 9.35 9.09 7.49 7.31 8.11 7.9 8.18 8.84

DPRT

E 65 138 195 242 291 366 417 482 571 636

R 54 146 180 263 329 408 493 553 575 654

Ts 0.51 1.08 1.69 2.22 2.88 3.37 3.87 4.36 5.02 5.59

EDR 0.422 0.399 0.406 0.365 0.351 0.363 0.35 0.356 0.387 0.385

EDS 127.45 127.78 115.38 109.01 101.04 108.61 107.75 110.55 113.75 113.77

10 Diagnostic Path-Oriented Test Data Generation by Hyper Cuboids

Copyright © 2014 MECS I.J. Information Engineering and Electronic Business, 2014, 6, 1-14

Fig. 8. Error detection rate chart of function Foo

Fig. 9. Error detection speed chart of function Foo

Table 3. Experiments results of program Triangle

N 100 200 300 400 500 600 700 800 900 1000

RT

E 53 107 162 233 261 336 382 46 503 537

R 1511 3131 4915 6133 7837 9361 11719 12734 14247 15871

Ts 3.12 7.35 10.91 15.34 18.82 23.31 26.67 30.14 33.25 36.7

EDR 0.033 0.032 0.031 0.036 0.031 0.034 0.031 0.034 0.033 0.032

EDS 16.99 14.56 14.85 15.19 13.87 14.41 14.32 15.3 15.13 14.63

PRT

E 52 109 164 229 271 340 389 445 494 559

R 101 197 300 355 472 583 641 758 778 930

Ts 0.33 0.71 1.05 1.48 1.92 2.25 2.52 2.92 3.3 3.68

EDR 0.259 0.275 0.273 0.303 0.279 0.287 0.29 0.286 0.294 0.29

EDS 157.58 153.52 156.19 154.73 141.15 151.11 154.37 152.4 149.7 151.9

DPRT

E 88 162 251 327 415 515 601 675 789 873

R 45 78 113 163 221 235 256 303 339 387

Ts 0.82 1.29 1.59 1.98 2.36 2.75 3.13 3.46 3.78 4.17

EDR 0.607 0.583 0.608 0.581 0.576 0.617 0.629 0.612 0.637 0.629

EDS 107.32 125.58 157.86 165.15 175.85 187.27 192.01 195.09 208.73 209.35

Fig. 10. Error detection rate chart of program Triangle

Fig. 11. Error detection speed chart of program Triangle

With the experiments results of these methods about

the program Triangle, a conclusion can be made that error

detection rate of the DPRT method is about 19 times

more than the RT method and about 2 times more than

the PRT method. It is also observed that error detection

speed of the DPRT method is about 12 times more than

the RT method and 1.1 times more than the PRT method.

Moreover, error detection speed of the DPRT method

increases more with a greater amount of test data rather

than the other two methods.

4.4. Experiments Results on Program Tcas

Tcas program is constructed of 9 functions and 14

global integer variables. The alt-sep-test function has

been selected to perform the testing. This function will

call 4 more after getting called, from which 2 functions of

those 4 call functions will call another 6 functions. You

consider the experimental results on this function in

Table 4. Due to time consuming experiments regarding

this function, the results have been recorded for N=100 to

N=1000 with a step interval of 100.

Fig. 12 and Fig. 13 show the error detection rate of the

aforementioned methods and their error detection speed

based on the total number of acceptable test data,

respectively.

 Diagnostic Path-Oriented Test Data Generation by Hyper Cuboids 11

Copyright © 2014 MECS I.J. Information Engineering and Electronic Business, 2014, 6, 1-14

With the experiments results of these methods about

the program Tcas, a conclusion can be made that the error

detection rate of the DPRT method is about 7400 times

more than the RT method and about 3.4 times more than

the PRT method. It is also observed that error detection

speed of the DPRT method is about 417 times more than

the RT method and 2.4 times more than the PRT method.

Moreover, error detection speed of the DPRT method

increases more with a greater amount of test data rather

than the other two methods.

4.4. Experiments Results on Program Totinfo

The Totinfo program has been constructed of 7

functions, 2 arrays and 2 global variables. The InfoTbl

function has been selected to perform the testing. This

function contains nested loops and also conditional

statements. You consider the experimental results on this

function in Table 5. Due to time consuming experiments

regarding this function, the results have been recorded for

N=100 to N=1000 with a step interval of 100.

The error detection rate of the aforementioned methods

with the total number of acceptable test data has been

shown in the Fig. 14. In This experiment, the error

detection speed of the total number of acceptable test data

has been shown in the Fig. 15.

Table 4. Experiments results of program Tcas

N 100 200 300 400 500 600 700 800 900 1000

RT

E 33 62 91 117 162 184 219 247 281 316

R 1721637 3470225 5399979 6737013 8731610 10473727 11587160 13562658 15297654 17101046

Ts 591.4 1205.7 1574.0 2470.9 2858.8 3486.3 3642.5 4015.6 4266.9 5080.6

EDR 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

EDS 0.06 0.05 0.06 0.05 0.06 0.05 0.06 0.06 0.07 0.06

PRT

E 31 65 93 121 157 185 223 256 273 318

R 734 1385 2091 2919 3417 4458 4711 5539 6230 7164

Ts 3.8 6.9 7.8 12.9 16.7 17.5 20.2 21.6 25.3 31.2

EDR 0.037 0.041 0.039 0.036 0.04 0.037 0.041 0.04 0.038 0.039

EDS 8.16 9.42 11.92 9.38 9.4 10.57 11.04 11.85 10.79 10.19

DPRT

E 81 175 235 319 407 531 582 671 793 864

R 654 1012 1671 2125 2317 3192 3850 4191 4704 5428

Ts 4.7 7.8 9.2 13.4 18.3 20.7 24.0 26.3 28.7 31.5

EDR 0.107 0.144 0.119 0.126 0.144 0.14 0.128 0.134 0.142 0.134

EDS 17.23 22.44 25.54 23.81 22.24 25.65 24.25 25.51 27.63 27.43

Fig. 12. Error detection rate chart of program Tcas

Fig. 13. Error detection speed chart of program Tcas

With the experiments results of these methods about

the program Totinfo, a conclusion can be made that the

error detection rate of the DPRT method is about 3700

times more than the RT method and about 2.4 times more

than the PRT method. It is also observed that error

detection speed of the DPRT method is about 415 times

more than the RT method and 2.5 times more than the

PRT method. Moreover, error detection speed of the

DPRT method increases more with a greater amount of

test data rather than the other two methods. Nonetheless,

outcomes from experiments on larger benchmarks need to

be verified.

12 Diagnostic Path-Oriented Test Data Generation by Hyper Cuboids

Copyright © 2014 MECS I.J. Information Engineering and Electronic Business, 2014, 6, 1-14

Table 5. Experiments results of program Totinfo

N 100 200 300 400 500 600 700 800 900 1000

RT

E 25 55 74 98 125 157 183 199 230 242

R 756560 1558513 2118368 3250584 3809768 4577188 5273223 6060045 6740949 7452172

Ts 265.2 542.6 782.6 1113.4 1307.9 1629.5 1840.2 2135.2 2347.1 2585.9

EDR 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

EDS 0.09 0.10 0.09 0.09 0.10 0.10 0.10 0.09 0.10 0.09

PRT

E 24 56 77 98 127 149 176 202 222 247

R 360 711 1152 1548 1767 2124 2664 2916 3168 3509

Ts 1.6 3.3 4.9 6.1 8.1 9.4 11.3 12.6 14.5 16.5

EDR 0.052 0.061 0.053 0.050 0.056 0.055 0.052 0.054 0.055 0.055

EDS 15.00 16.97 15.71 16.07 15.68 15.85 15.58 16.03 15.31 14.97

DPRT

E 59 128 173 229 270 326 385 473 534 652

R 393 724 1073 1359 1670 1909 2172 2712 2956 3342

Ts 1.8 3.5 4.4 6.2 7.1 8.2 10.0 11.3 12.4 13.9

EDR 0.120 0.139 0.126 0.130 0.124 0.130 0.134 0.135 0.138 0.150

EDS 32.78 36.57 39.32 36.94 38.03 39.76 38.50 41.86 43.06 46.91

Fig. 14. Error detection rate chart of program Totinfo

4.6. Experiments on the Rate of Faulty Versions

Detection

The programs Tcas and Totinfo contain 41 and 23

faulty versions, respectively. Only one seeded error exist

in majority of these versions. The ability of different

approaches to discover the faulty versions is one criterion

for the comparison. Fig. 16 and Fig. 17 show the number

of Tcas and Totinfo faulty versions that are detected

against the different numbers of test cases generated

using the RT, PRT and DPRT methods. These results

have been collected by running the algorithms for N=100

to N= 1000 with the step interval of 100.

The result show the number of faulty versions detected

by DPRT method is higher than the PRT and RT methods.

Furthermore, the detection rate has higher grown at the

first and this rate is decreased when the number of

generated test cases is increased in these experiments. In

the experiments on Totinfo, this observation is more

heighted. Therefore, it can be concluded the number of

versions that have been discovered in the early of

generating test cases is higher than the last ones. Further

experiments in this direction could be to give more

accurate results.

V. THREATS TO VALIDITY

In our studies this section is dedicated to threat to

validity, including external and internal validity. We use

Turbo C++ 4.5 to implement our tools for test data

generation. Threats to internal validity concern with

possible errors in our implementations that could affect

our finding. Nevertheless, we carefully checked most of

our outcomes for decreasing these threats considerably.

Fig. 15. Error detection speed chart of program Totinfo

Fig. 16. Number of faults detected in the program Tcas

 Diagnostic Path-Oriented Test Data Generation by Hyper Cuboids 13

Copyright © 2014 MECS I.J. Information Engineering and Electronic Business, 2014, 6, 1-14

Fig. 17. Number of faults detected in the program Totinfo

Our experiments are restricted to only five small or

medium-sized programs which is the main threat to

external validity. More experiments on larger programs

may further strengthen the external validity of our

findings. Further investigations of other programs in

different programming languages would help generalize

our results. Moreover, these programs were originally

written in C, object-oriented features such as inheritance,

polymorphism and associations did not used. Therefore,

the results may not generalize our finding. Additionally,

there is exactly one seeded fault in every Siemens

program; in practice, programs contain much more

complex error patterns.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper, a new approach has been proposed for

path-oriented test data generation. The main goal of the

proposed approach was generating test data that lead to

error detection in the least amount of time. In different

programming languages, some of the instructions are

more error-prone. Therefore, to generate test data, as

much as possible the paths that contain these instructions

were selected. After generating hyper cuboids from the

allowable area, the relevant test data were generated by

them. After explaining the proposed algorithm, it was

evaluated and compared to other related works based on

new and important criteria. To evaluate the interest rate

of different methods to the error detection, two criteria,

error detection rate and error detection speed are defined.

In the following, to evaluate the mentioned criteria more

exactly, some experiments were done on both the four

functions. On average, according to these experiments,

error detection rate of the DPRT method obtained is

about 2804 times more than the RT method and about 7.2

times more than the PRT method. The error detection

speed of this method is obtained about 228 times more

than the RT method, on average, and 4.8 times more than

the PRT method. Therefore according to the values

obtained of the completed experiments, the important

goals such as discovering more errors in less time,

decreasing test costs, reducing wasted resources,

increasing the error detection speed and on time or even

in time delivery of the product to the customer was a

success.

For future works, extending the proposed approach so

that having the support capability of the error-prone

instructions of all programming languages will be

proposed. Presenting a solution to solve the undesirable

elimination of some hyper cuboids by the proposed

consistency checking algorithm also will help the quality

of the test process.

REFERENCES

[1] J. Zhang and X Wang, "A Constraint Solver and its

Application to Path Feasibility Analysis," International

Journal of Software Engineering Knowledge Engineering,

2001 Apr; 11 (2): 139-56.

[2] G. J. Myers, The Art of Software Testing, 2rd ed., New

Jersey: John Wiley and Sons; 2004.

[3] J. Peleska, E. Vorobev, and F. Lapschies, "Automated

Test Case Generation with SMT-Solving and Abstract

Interpretation," In: Bobaru M, Havelund K, Holzmann GJ,

Joshi R, editors. Nasa Formal Methods. Third

International Symposium: NFM; 2011 Apr; Pasadena, CA.

USA: Springer; 2011. p. 298-312.

[4] N. K. Gupta and M.K. Rohil, "Using Genetic Algorithm

for Unit Testing of Object Oriented Software," In:

Proceedings of the 1st International Conference on

Emerging Trends in Engineering and Technology

(ICETET ’08); 2008 Jul 16-18; Nagpur, Maharashtra.

India: IEEE; 2008. p. 308-13.

[5] M. Prasanna and K.R. Chandran, "Automatic Test Case

Generation for UML Object diagrams using Genetic

Algorithm," Int J Advance Soft Comput Appl. 2009 Jul; 1

(1): 19-32.

[6] M. C. F. P. Emer and S.R. Vergilio, "Selection and

Evaluation of Test Data Based on Genetic Programming,"

Software Quality Journal. 2003 Jun; 11 (2): 167-86.

[7] J. H. Andrews, C. H. Li. Felix, and T. Menzies,

"Nighthawk: a two-level genetic-random unit test data

generator," In: Stirewalt REK, Egyed A, Fischer B,

editors. 22th IEEE/ACM International Conference on

Automated Software Engineering (ASE); 2007 Nov 5-9;

Atlanta, Georgia. USA: ACM; 2007. p. 144-53.

[8] C. Csallner and Y. Smaragdakis, "JCrasher: an automatic

robustness tester for Java," Software Practice and

Experience. 2004 Sep; 34 (11): 1025–50.

[9] T. Y. Chen, F. C. Kuo, and H. Liu, "Distributing test cases

more evenly in adaptive random testing," Journal of

Systems and Software. 2008 Dec; 81 (12): 2146-62.

[10] H. I. Bulbul and T. Bakir, "XML-Based Automatic Test

Data Generation," Computing and Informatics. 2008 Jan;

27 (4): 660-80.

[11] P. Nirpal and K. Kale, "Comparison of Software Test

Data for Automatic Path Coverage Using Genetic

Algorithm," International Journal of Computer Science

and Engineering Technology. 2011 Feb; 2 (2): 42-8.

[12] J. Edvardsson, "A Survey on Automatic Test Data

Generation," In: Proceedings of the Second Conference on

Computer Science and Engineering in Linkoping; 1999. p.

21-28.

[13] N. T. Sy and Y. Deville, "Consistency Techniques for

interprocedural Test Data Generation," Proceedings of the

Joint 9th European Software Engineering Conference and

11th ACM SIGSOFT Symposium on the Foundation of

Software Engineering (ESEC/FSE03); 2003 Sep 1-5;

Helsinki, Finland. Finland: ACM; 2003.

[14] P. Hentenryck, V. Saraswat, and Y. Deville, "Design,

implementation, and evaluation of the constraint language

cc(fd)," Journal of Logic Programming. 1998 Oct 1; 37

(1-3): 139–64.

[15] F. Zareie and S. Parsa, "A Non-Parametric Statistical

Debugging Technique with the Aid of Program Slicing

14 Diagnostic Path-Oriented Test Data Generation by Hyper Cuboids

Copyright © 2014 MECS I.J. Information Engineering and Electronic Business, 2014, 6, 1-14

(NPSS)", IJIEEB, vol.5, no.2, pp.8-14, 2013. DOI:

10.5815/ijieeb.2013.02.02.

[16] I. Alsmadi and S. Alda, "Test Cases Reduction and

Selection Optimization in Testing Web Services", IJIEEB,

vol.4, no.5, pp.1-8, 2012.

[17] S. Tanwer and D. Kumar, "Automatic Test Case

Generation of C Program Using CFG," International

Journal of Computer Science. 2010 Jul; 7 (8): 27-31.

[18] R. Blanco, J. Tuya, and B. A. Diaz, "Automated Test Data

Generation Using a Scatter Search Approach,"

Information and Software Technology. 2009 April; 51 (4):

708-20.

[19] D. Gong, W. Zhang, and X. Yao, "Evolutionary

generation of test data for many paths coverage based on

grouping," Journal of Systems and Software. 2011 Dec;

84 (12): 2222-33.

[20] L. Cai, "A Business Process Testing Sequence Generation

Approach Based on Test Cases Composition," First

ACIS/JNU International Conference on Computers,

Networks, Systems and Industrial Engineering (CNSI);

2011 May 23-25; Jeju, Island. Korea: IEEE; 2011. p. 178-

85.

[21] A. Gotlieb and M. Petit, "A Uniform Random Test Data

Generator for Path Testing," Journal of Systems and

Software. 2010 Dec; 83 (12): 2618-26.

[22] R. Zhao and Y. Huang, "A Path-oriented automatic

random testing based on double constraint propagation,"

International Journal of Software Engineering &

Applications. 2012 Mar; 3 (2): 1-11.

[23] M. Alzabidi, A. Kumar, and A. D. Shaligram, "Automatic

Software Structural Testing by Using Evolutionary

Algorithms for Test Data Generations," International

Journal of Computer Science and Network Security. 2009

Apr; 9 (4): 390-5.

[24] J. N. Swathi, T. I. Sumaiya, and S. Sangeetha, "Minimal

Test Case Generation for Effective Program Test using

Control Structure Methods and Test Effectiveness Ratio,"

International Journal of Computer Applications. 2011 Mar;

17 (3): 48-53.

[25] M. Catelani, L. Ciani, V. L. Scarano, and A. Bacioccola,

"Software automated testing: A solution to maximize the

test plan coverage and to increase software reliability and

quality in use," Computer Standards & Interfaces. 2011

Feb; 33 (2): 152-8.

[26] P. N. Boghdady, N. L. Badr, M. Hashem, and M. F. Tolba,

"A Proposed Test Case Generation Technique Based on

Activity Diagrams," International Journal of Engineering

& Technology. 2011 Jun 10; 11 (3): 37-57.

[27] M. Ehmer-Khan, "Different Approaches to White Box

Testing Technique for Finding Errors," International

Journal of Software Engineering and Its Applications.

2011 Jul; 5 (3): 1-14.

[28] N. Mansour and M. Salame, "Data generation for path

testing," Journal of Software Quality. 2004 Jun 1; 12 (2):

121-36.

[29] S. Oualline, How Not to Program in C++, ISBN

10:1886411956. U.S.: No Starch Press; 2003.

[30] H. Zhu, P. A. V. Hall, and J. H. R. May, "Software Unit

Test Coverage and Adequacy," ACM Computing Surveys.

1997 Dec; 29 (4): 366-427.

[31] F. Elberzhager, S. Kremer, and J. Munch, and D.

Assmann, "Focusing Testing by Using Inspection and

Product Metrics," International Journal of Software

Engineering and Knowledge Engineering. 2013; 23 (04):

433-462.

[32] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand,

"Experiments on the effectiveness of dataflow- and

control flow-based test adequacy criteria," In: Proceedings

of the 16th International Conference on Software

Engineering; 1994. p. 191-200.

[33] M. B. Dwyer, S. Elbaum, J. Hatcliff, G. Rothermel, H. Do,

and A. Kinneer, "Software-artifact infrastructure

repository," Available at

http://sir.unl.edu/portal/index.php, Last visited:Dec 2012.

[34] M. N. Ngo and H. B. K. Tan, "Heuristics-based infeasible

path detection for dynamic test data generation," Original

Research Article Information and Software Technology.

2008 Jun 25; 50 (7-8): 641-55.

[35] R. S. Landu, "Analysis of Rejected Defects in First and

Second Half Builds of Software Testing Phase," Journal

of Computing Technologies. 2012 Aug 31; 1 (4): 45-51.

Authors’ Profiles

Shahram Moadab is a Lecturer of

Computer Engineering at the University

of Guilan, Iran. He received his B.Sc.

degree in Computer Engineering in

2003 from Azad University, Lahijan

Branch, Iran. He also earned from Azad

University, Qazvin Branch, Iran, his

M.Sc. degree in Computer Engineering

in 2012. His experience in teaching

extends to 12 years. He has published several papers in

internationals conferences and Journals. His research interests

include Software Testing and Algorithm Design.

Mohsen falh rad was born in 1982. He

received the BSc. Degree in software

engineering from Islamic Azad

University, lahijan Branch, Iran, in 2004,

and the M.Sc. degree in Computer

software engineering from Islamic Azad

University, Tehran South Branch, in

2007. He is a PhD Student in Computer

software engineering at Islamic Azad

University, Rasht Branch, Iran.

In 2008, he joined the faculty in Computer Engineering at

Islamic Azad University, lahijan Branch, Iran (liau.ac.ir). He

has published several papers at journals and conferences. In

addition, He has written a book (Network operating system).

His main research interests are optimization algorithms and

their application at software testing methods.

