
I.J. Information Engineering and Electronic Business, 2014, 5, 10-15
Published Online October 2014 in MECS (http://www.mecs-press.org/)
DOI: 10.5815/ijieeb.2014.05.02

Copyright © 2014 MECS I.J. Information Engineering and Electronic Business, 2014, 5, 10-15

CSRFDtool: Automated Detection and
Prevention of a Reflected Cross-Site Request

Forgery

Omar A. Batarfi, Aisha M. Alshiky, Alaa A. Almarzuki, Nora A. Farraj
King AbdulAziz University/Faculty of Computing and Information Technology Jeddah, 21542, Saudi Arabia

Email: { obatarfi, amalshiky}@kau.edu.sa, {aalmarzuki0001, nfaraj0003}@stu.kau.edu.sa

Abstract—

The number of Internet users is dramatically
increased every year. Most of these users are exposed to
the dangers of attackers in one way or another. The
reason for this lies in the presence of many weaknesses
that are not known for ordinary users. In addition, the
lack of user awareness is considered as the main reason
for falling into the attackers’ snares. Cross Site Request
Forgery (CSRF) has placed in the list of the most
dangerous threats to security in OWASP Top Ten for
2013. CSRF is an attack that forces the user’s browser to
send or perform unwanted request or action without user
awareness by exploiting a valid session between the
browser and the server. When CSRF attack success, it
leads to many bad consequences. An attacker may reach
private and personal information and modify it. This
paper aims to detect and prevent a specific type of CSRF,
called reflected CSRF. In a reflected CSRF, a malicious
code could be injected by the attackers. This paper
explores how CSRF Detection Extension prevents the
reflected CSRF by checking browser specific information.
Our evaluation shows that the proposed solution is
successful in preventing this type of attack.

Index Terms—

OWASP, CSRF, HTTP, CSRF Detection
Extension, reflected CSRF, Chrome extension.

I. INTRODUCTION

As known, the security must be considered to satisfy
web users. One of the threats that may occur during using
the web is Cross Site Request Forgery (CSRF) [1]. This
attack has placed in the list of the most dangerous threats
to security in OWASP Top Ten for 2013 [1]. Also, it is
one of the top ten attacks that HTML5 new features can
increase its threat [2]. It is considered as an active,
application layer attack [3]. Although the Internet
security is improving at super speed by adopting new
technologies, however attackers still find vulnerabilities
in websites and exploit them to carry out their attacks
against servers and clients. One of the most dangerous
attacks is accessing the confidential data that associated
with user accounts (e.g., e-mail accounts, social
networking accounts, and bank accounts which are
considered the most sensitive information [4,5].

Penetration of these accounts will cause great harm to the
Internet users where he/she may lose money and the
attacker may use these data to perform unwanted and
malicious operations. When the user initiates an action
online such as submitting a form or doing registration on
website, his/her data can be sent using two methods either
"POST" or "GET" of HTTP protocol. Then the browsers
will send the request depending on user cookies [5,6,7].
The cookies (session identification) define how the
website (server) identify who you are and store your
privileges in the your browser. The attacker gets the
benefit of active session and sends a malicious link to the
user, and then the user click on the link that is may tend
to CSRF occurrence [8]. Therefore, the problem is how to
protect the active sessions in order to prevent the attacker
from stealing user's secret information, and using this
information to initiate an unwanted action.

During the last five years, many efforts have been
made by researchers to confront at this attack. Many
researches have been published and many solutions have
been proposed and developed. However, being one of the
top ten threats in OWASP is a strong indicator that these
solutions have limitations because the attackers are still
capable of enforcing CSRF. Although these solutions
seem to be efficient in stopping this attack, but clients and
developers do not use them in their browsers and
websites respectively [9]. This is probably because of the
overhead introduced by the proposed solutions in terms
of time and space.

This paper proposes a Google Chrome Extension that
is able to eliminate a specific type of this attack which is
Reflected CSRF. Google Chrome Extension gets the
required information of web browser (tab ID, browser
window ID and IP address) that is used by the user to
login to a website, and then it concatenates this
information with an active session to prevent any attack
from different sources such as different taps in the same
window.

This paper sections arranged as follows: section 2 is an
overview of CSRF attack. Then section 3 discusses
different solutions were proposed for detecting and
preventing this attack. Section 4 states the problem and
the hypotheses. The solution methodology and their test
are discussed in section 5 and 6 respectively. Authors’
simulator is presented in section 7. Then section 8

 CSRFDtool: Automated Detection and Prevention of a Reflected Cross-Site Request Forgery 11

Copyright © 2014 MECS I.J. Information Engineering and Electronic Business, 2014, 5, 10-15

discusses the results. Finally, section 9 concludes this
paper and suggests future work.

II. OVERVIEW OF CROSS SITE REQUEST FORGERY

CSRF also may be abbreviated as XSRF. This attack
also known as one-click attack or session riding. In the
beginning of 2001 the first CSRF attack was registered.
CSRF is an attack that forces the user’s browser to
perform unwanted request or action without user
awareness by exploiting the valid session between the
browser and the server [5]. Fig. 1 illustrates this attack.

Fig 1. CSRF attack mechanism.

Consider the following scenario: a user login to a bank
website using an individual username and password.
Bank web server verifies user authorization for requested
service and initiates a valid session with client. Attacker
uses illegal strategies to deceive the novice user or even
the experts to send unintended money transfer request by
attract them to a trap (fake link) which is hosted on
untrusted third party server. When the user clicks that
link, the CSRF attack started [10].

Here is an example of an attack that aims to transfer an
amount of money without the user's consent:
 Let us say that the next link is the link for

transferring money from account to another:
http://hackedbank.com/transfer.php?account=sender
&amount=amount&for=reciever

 The harmful link will be hidden behind image tag as:
<imgsrc=''http://hackedbank.com/transfer.php?accout
=sender&amount=amount&for=reciever">

Despite this attack appears easy, it requires a hacker to
know many things to be able to implement the attack
successfully. For example:
 Attacker must find a bank website that does not

validate the referrer header.
 Then Attacker must be aware of the form submission

that used for money transaction and the attacker
should be able to write the values correctly.

 Finally, the attacker must find a smart and perfect
way to attract the user to the harmful link, then to
lure her/him to click the element that start the attack
and trigger the malicious code of CSRF attack [5].

The actual steps followed by attacker are:
 First: Attacker has to study the target website in

order to understand its functionality. For example, it
is so helpful to know the structure of the form used
for money transaction on bank website.

 Second: Understanding the functionality is still not
enough where attacker has to identify the weakness
and vulnerabilities of the target website. He can
expose the old cookies or exploits the weak
protection.

 Finally: Attacker has to test the malicious code to
ensure it works as desired.

There are two types of CSRF attack (reflected and
stored) [11].

A. Reflected Cross-Site Request Forgery

This type of CSRF attack is the main subject of this
paper. In reflected CSRF, the malicious code could be
injected in a fake website by the attacker which emulates
the target one. Then, it can expose the valid session
between the user and the genuine website [8]. Attacker
has to trick user to click the malicious link that will
trigger the malicious code. Reflected CSRF is well
illustrated by using data flow diagrams in [2, 5]. Fig. 2
depicts this attack.

Fig 2. DFD model of reflected CSRF attacks

B. Stored Cross-Site Request Forgery

In stored CSRF attack, the malicious code already
exists in the genuine webpage. It can be downloaded
from a trusted web server. Stored CSRF can be found in
blogs and forums [8].

For both types of CSRF, the malicious code may be
hidden under several HTML tags (e.g. IMG, SCRIPT,
IFRAME or Image Object) [5].

The difference between both is very clear, it is in the
way by which the malicious code is being delivered. First
type is triggered from third party domain (untrusted
domain), while the second is executed in the same
domain (targeted domain). The common factor between
them is “both require knowing the target website’s
functionality” [12].

III. LITERATURE REVIEW

In the last five years, there have been a lot of proposed
and developed solutions in order to protect users against
CSRF attack. These solutions adopt different techniques.
This section discusses three different solutions, that are
seems similar to the proposed solution in this paper and
similarities and differences between them are explained.

In 2009, Masaru proposed different schemes in order to
solve three different problems [13]. The concerned
schema is proposed to protect the browser against CSRF

http://mybank.com/transfer.php?account=sender&amount=amount&for=reciever�
http://mybank.com/transfer.php?account=sender&amount=amount&for=reciever�

12 CSRFDtool: Automated Detection and Prevention of a Reflected Cross-Site Request Forgery

Copyright © 2014 MECS I.J. Information Engineering and Electronic Business, 2014, 5, 10-15

that has ability to hide the violation of the same origin. It
was the major property that the author had to overcome.
In this schema each request has 2 checksums, the first is
generated by the browser, and the second is generated by
the server. The first is generated from applying hash
function of two values (browser secret key and URL of
the server) where the second one is generated from
applying hash function of two values (incoming
checksum and server secret key). Next, the browser is
responsible for comparing each new second checksum
that coming from server as a reply for each request. By
doing this, it can detect the reply that comes from
different server. Masaru's solution concentrated to
identify the evil request in malignant website page.

Regarding to the overhead issue, there is a performance
overhead as a result of implementing three
exponentiations and two hashes. In addition to this, the
proposed solution was not implemented; therefore, there
are no evaluation results about the effects of this solution.
When the trusted session started, the browser does not
except any manual changing of the address in that tab
until the session end. Masaru's solution based on using
secret keys for both browser and server and each server
should register in a common deposit agent that holds all
secret keys for all servers which is relatively hard to
implement. Moreover, the browser should retrieve the
secret key for server for each request. The connection
with the deposit agent infrequent will impose more
performance overhead.

Our research proposed a solution relies on useful
information that can be provided by the browser directly
without intervention of any third party. This information
helps to differentiate each session with its startup tab and
other information.

Reference [14] stated that Hossain and Mohammad
implemented a prototype for Firefox plug-in to protect
client from CSRF attack. The proposed plug-in consists
of four modules, and each module has its role in detecting
and handling this attack as following:
1) Request module checks if the request is POST or

GET request with parameters are filled in the form,
and forwards the request to the next module.

2) Window and form module checks two things:
 If none of the open windows is displaying a

webpage from the destination domain of the
request, the request is counted as an attack, and
the attack handler module takes its turn.

 If there is no form in the opened windows, it
considers the request as an attack and forwards
the request to the attack handler module.

3) Content checking module differentiates or modifies
the request by removing all parameters. Then, the
modified version is launched, and the response
contents are checked to see whether they are similar
to the expected contents or not. If they are different,
the attack handler takes its turn.

4) Attack handler module stops the request and warns
the user.

Although it seems efficient, this solution could make
the browser slower by doing all these checks. In addition,
it does not consider browser tabs and the client is
responsible for detecting and preventing the CSRF attack
because the server is not involved.

In 2011 a paper titled “A Study of the Effectiveness of
CSRF Guard” has discussed one of the strategies that has
attempted to prevent and block CSRF attack [15]. CSRF
Guard has tried to verify the integrity of HTTP request by
injecting a different security token to each active HTTP
session between the authenticated client and web server.
The protection that the CSRF Guard has offered against
the CSRF attack deepened on the token generation and
validation. The token has been injected with specified
protected resource. Then the token verified when the user
request protected resource.
 There is a similarity with our proposed solution in

the server check process with each request. However
our solution is different in the content that the server
checks. In CSRF Guard, server checks for a valid
token which is associate with session but in our
solution the server will check on stored static
information (tab, window and IP ID) which are
associate with session whether it is the same or not.

 In CSRF Guard the token might be stolen by using
malicious JavaScript. The attacker could steal the
token from the active session between the client and
the server. It is difficult to protect against a CSRF if
there is a script in the webpage which sends the
CSRF token to the attacker. After that, the CSRF
attack can occur from different sources by using
stolen token. While in our proposed solution if the
information that server stored has been stolen and
there is CSRF attempt from different sources, the
server will reject this attempt because it comes from
different sources (tab ID, Window ID).

 The CSRF Guard and our proposed solution could
not defend against login CSRF attack because all of
checking processes are done after the login process
and depend on active session which initiated
depending on login and associate with it.

IV. METHODOLOGY

To tackle the problem, we have created a Google
browser extension (client–side) that helps server in
preventing the reflected CSRF from happening. In
general, extensions allow the developer to add new
functionalities to the Chrome browser. To develop a
browser extension, some programming languages are
needed such as HTML, JavaScript, CSS and Local server
(WAMP server)

In CSRF Detection Extension, there are two main steps:
 First step is extracting the tab ID. This step is

important to specify the request source whether
comes from different tab or from the same one of a
valid user. The box below shows the code for
extracting the tab ID.

 CSRFDtool: Automated Detection and Prevention of a Reflected Cross-Site Request Forgery 13

Copyright © 2014 MECS I.J. Information Engineering and Electronic Business, 2014, 5, 10-15

 Second step is sending the tab information to the
Server. The below code shows how we post the
information to the server.

 After a user login, the extension gets and sends to the
server userID, IP, browser window ID and tab ID.

 The server would store the information on the
database and reply with session ID to the client. The

server stores the information after hashing the
information by Hash method and define the $Var
variable that is the value of tab ID that is retrieved
from extension. Next, the value of tab ID is hashed
by SHA-1. After that store hashing value into tabs
table that exist in the database into t_ID column.

This process repeats for each piece of information
before inserts the information in database table.
 The extension sends the following information with

every HTTP request: session ID, IP, browser window
ID and tab ID.

 For sensitive requests that include post function,
server creates hashes of information and verifies if
the request is generated from the same tab of a
browser. This verification is performed by
comparing the stored hashing information with the
hashing information that is sent with each request.
The request will be executed if the comparing result
is true otherwise the session will be destroyed. Fig. 3
shows all steps of the CSRF detection tool.

Fig 3. Steps of CSRF detection tool

V. METHODOLOGY TEST

There are two famous purpose of the testing. First, to
make sure that the result you find is the same as what you
already specified. Second purpose is to know the problems
and try to fix them before applying the proposed solution.
We have done testing to ensure the efficiency of our
solution.
• Test Environment:

o WampServer is a Windows web development
environment. It allows the developer to create
web applications with server-side languages like
PHP and MySQL database. Also it helps the
developer to manage databases easily.

o Teacher & Students Academic Communication
is a website that is written by PHP, HTML,
JavaScript and MySQL. It saves cookies that are
important element in CSRF and creates sessions
then it stores encrypted information of each
request from clients.

• Test Scenario:
Case 1: Without the CSRF Detection Extension
1- The Administrator login to the website and

tries to add a teacher (one of the most
process that should be done only by
administrator). Fig. 4 shows this process.

2- The Administrator login to the website and
the administrator clicks on malicious link
(sent by attackers). Because there is no
detection against CSRF attack in this website,

14 CSRFDtool: Automated Detection and Prevention of a Reflected Cross-Site Request Forgery

Copyright © 2014 MECS I.J. Information Engineering and Electronic Business, 2014, 5, 10-15

String AsIP Dim
IP = GetLocalIP()

String Ashashi, hashi2 Dim
hashi =

(TabControl1.SelectedIndex.ToStGenerateHash
ring)

hashi2 = GenerateHash(IP.ToString)
String AsinputString Dim

+ hashi2 " "inputString = hashi +
+ vbNewLine

wam\"C:.Computer.FileSystem.WriteAllText(My
)True, inputString, tab.txt"\www\p

the attackers can easily trick the user through
malicious link. Therfore, attackers can access
the saved cookies and valid session on the
victim's computer.

Fig 4. Teacher registration done

Case 2: With the CSRF Detection Extension
The Admin login to the website and tries to
add a teacher. He clicks on malicious link that
exploited the saved cookies and valid session.
Fig 5 shows how the request from different
sources will be rejected and the valid session
will be ended as shown in dialog box.

Fig 5. Teacher registration done page

VI. SIMULATION

In order to complete the implementation, a browser has
been developed by using visual basic language in order to
use it in the simulation process and also to test the result
as shown in fig 6.

Fig 6. The browser simulator

The benefit of having our own browser is to perform all
sorts of tasks over it. Therefore, it will help in sending any
needed information to our server (tab index and IP
address). As previously mentioned, we could get the tab
index by using our Chrome extension, but there is a
problem with Chrome extension open source that prevent
the posting of the tab index value to the server. Therefore,
the developed browser will assist in performing this
function.

The tab index and IP address are sent to a shared file
between the browser and the server. Hash function simply
is applied to exchange data between the browser and
server to provide data protection. As mentioned, the two
needed values are:

• Tab index: to differentiate the session for
specific tab and should be unique.

• IP address: one of the additional information that
is used to provide more security over the tab
index. IP address is used to identify the host. IP
is used here to ensure there is no repetition of
the session.

VII. RESULT AND DISCUSSION

By completing the test, CSRF Detection Extension has
demonstrated the ability to prevent the occurrence of the
reflected CSRF. Moreover, compared to the solutions
mentioned in the literature review section, CSRF
Detection tool detects the attack with less number of
verification. This leads to faster detection.

The possible limitations of the CSRF Detection
Extension are as follows:
• CSRF Detection Extension is designed just for

Google Chrome browser and it does not work with
other browsers.

• CSRF Detection Extension is limited to detect one
type of CSRF attack that called reflected CSRF,
while it cannot detect stored CSRF.

• CSRF Detection Extension makes connection
between session id and static information (window
browser ID, tab ID and IP address) to check user
validity. Because of this dependency, it cannot
defend login CSRF attack.

 CSRFDtool: Automated Detection and Prevention of a Reflected Cross-Site Request Forgery 15

Copyright © 2014 MECS I.J. Information Engineering and Electronic Business, 2014, 5, 10-15

VIII. CONCLUSION

CSRF is placed in the list of the most dangerous threats
to security in 2013 according to OWASP. As known,
CSRF tends to use the valid session by illegitimate third
party without user permission. This attack leads to expose
victim's personal information such as bank accounts and
any other kinds of critical information.

This paper has focused on one type of CSRF which is
the reflected CSRF. The proposed solution has
demonstrated that it can prevent CSRF attack from
occurrence. CSRFD tool is developed to be able to
distinguish between the legitimate and illegitimate users to
secure web browser communication.

CSRFD tool detects the attack occurrence by checking
composed information (user ID, IP, browser ID, tab ID)
that associated with each request instead of checking only
the user ID (valid session). The proposed solution is
implemented and tested by using WampServer and
Teacher & Students Academic Communication site which
is developed by developers other than the authors. Authors
have proved the efficiency of the solution depending on
the test results. When request comes from different
sources (illegitimate user) during a valid session the
CSRFD tool successes in preventing this request to
happen and end valid session. In future, the authors will
address all the limitations of the proposed solution
mentioned in previous.

REFERENCES

[1] Mateo Martinez, CISSP, "OWASP Latem Tour Venezuela
2013", 2013 the McAfee.

[2] S. Shah, "HTML5 Top 10 Threats Stealth Attacks and
Silent Exploits," BlackHat Europe, 2012.

[3] C. Raghavendran, G. N. Satish, and P. S. Varma,
"Security Challenges and Attacks in Mobile Ad Hoc
Networks," 2013.

[4] P. I. Singh, "Robust Security System for Critical
Computers," International Journal of Information
Technology and Computer Science (IJITCS), vol. 4, p. 24,
2012.

[5] Siddiqui, M.S.; Verma, D., "Cross site request forgery: A
common web application weakness," Communication
Software and Networks (ICCSN), 2011 IEEE 3rd
International Conference on, vol., no., pp.538,543, 27-29
May 2011.

[6] B. Hill, "Adaptive user interface randomization as an anti-
clickjacking strategy," ed: May, 2012.

[7] A. Elias-Bachrach, "CSRF: Not All Defenses Are Created
Equal," in AppSec USA 2013, 2013.

[8] Shahriar, H., & Zulkernine, M. (2010, November). Client-
side detection of cross-site request forgery attacks. In
Software Reliability Engineering (ISSRE), 2010 IEEE
21st International Symposium on (pp. 358-367). IEEE.

[9] B. Meshram, "Client Side CSRF Defensive Tool,"
International Journal of Information and Network Security
(IJINS), vol. 1, pp. 171-180, 2012.

[10] R. D. Kombade and B. Meshram, "CSRF Vulnerabilities
and Defensive Techniques," International Journal of
Computer Network and Information Security (IJCNIS),
vol. 4, p. 31, 2012.

[11] F. van der Loo, "Comparison of penetration testing tools
for web applications," Master thesis, Radboud University
Nijmegen, 2011. http://www. ru.
nl/publish/pages/578936/frank_van_der_loo_scriptie. pdf,
2011.

[12] Jovanovic, N.; Kirda, E.; Kruegel, C., "Preventing Cross
Site Request Forgery Attacks," Securecomm and
Workshops, 2006 , vol., no., pp.1,10, Aug. 28 2006-Sept.
1 2006.

[13] Takesue, M., "An HTTP Extension for Secure Transfer of
Confidential Data," Networking, Architecture, and
Storage, 2009. NAS 2009. IEEE International Conference
on , vol., no., pp.101,108, 9-11 July 2009.

[14] Shahriar, H., & Zulkernine, M. (2010, November). Client-
side detection of cross-site request forgery attacks. In
Software Reliability Engineering (ISSRE), 2010 IEEE
21st International Symposium on (pp. 358-367). IEEE.

[15] Boyan Chen; Zavarsky, P.; Ruhl, R.; Lindskog, D., "A
Study of the Effectiveness of CSRF Guard," Privacy,
security, risk and trust (passat), 2011 ieee third
international conference on and 2011 ieee third
international conference on social computing (socialcom) ,
vol., no., pp.1269,1272, 9-11 Oct. 2011.

Authors’ Profiles

Omar A. Batarfi is assistant professor in the Faculty of
Computing and Information Technology at King Abdulaziz
University. His research interests lie in several areas including
security, e-learning, web development and distributed computing.
He has a Master from the George Washington University and a
PhD from Newcastle University.

Aisha M. Alshiky is a master student in IT Department at King
Abdulaziz University, interested in Network Attacks and
Technology Managment.

Alaa A. Almarzouqi is a master student in IT Department at
King Abdulaziz University, interested in Database, Security and
Artificial Intelligent.

Nora A. Farraj is a master student in IT Department at King
Abdulaziz University, interested in Internet Technology,
database and operating system.

http://www/�

	I. Introduction
	II. Overview of cross site request forgery
	III. Literature review
	IV. Methodology
	V. Methodology test
	VI. Simulation
	VII. Result and discussion
	VIII. Conclusion
	References

