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Abstract— Time trends of precipitation in the north of Algeria 

from meteorological radar are analysed. A probabilistic 

approach presented here proposes to study the evolution of the 

rainfall phenomenon in two distinct study areas, one located in 

sea and other located in ground. A decision criterion is 

established and based on radar reflectivity in order to classify 

the precipitation events located in both areas. At each radar 

observation, a state of precipitation is classified, either 

convective (heavy precipitation) or stratiform (average 

precipitation) both for the "sea" and for the "ground". In all, a 

time series of precipitation composed of three states; no raining, 

stratiform precipitation and convective precipitation, is obtained 

for each of the two areas. Thereby, we studied and characterized 

the behavior of precipitation in time by a Markov chain of order 

one with three states. Transition probabilities are calculated. 

The results show that rainfall is well described by a Markov 

chain of order one with three states. Indeed, the stationary 

probabilities, which are calculated by using the Markovian 

model, and the actual probabilities are almost identical. 

 

Index Terms— Rainfall; Meteorological Radar; Markov Chain; 

Transition Probabilities 

 

I. INTRODUCTION 

Precipitation, as a major parameter in the hydrological 

cycle, is of great importance for all aspects of human life. 

In general, precipitation can be decomposed into two 

types; convective and stratiform [1,2]. Convective 

precipitation is characterized by a large vertical extent 

and is more intense and of shorter duration than the 

stratiform precipitation. Stratiform precipitation, however, 

usually covers large areas horizontally, and it often forms 

in areas adjacent to convective cells, which contribute to 

a significant portion (40-50%) of rainfall, even for intense 

convective systems.  

The Mediterranean region has a complex orography 

and land-sea contrast very marked. Due to these 

geographical properties, the climate has unstable spatial 

and temporal characteristics. This climate is influenced 

both by the tropical climate and the climate of mid-

latitude systems. Mediterranean rainfall is extremely 

variable in this region. Storms occurring in the 

Mediterranean region provide high intensity and are 

usually associated with convective events. In Algeria in 

recent years, there has been a marked decrease in rainfall, 

with very serious consequences especially in areas where 

the rainfall amount and distribution were already barely 

adequate. From an agronomic perspective, the persistent 

drought during the rainy season is crucial for starting 

agricultural activities. 

In this context, analysis of precipitation data is of great 

interest to interpret and to predict behavior rainfall as 

well as to assist in planning and management of water 

resources. Furthermore, a good description of the 

stochastic rainfall can help especially in the detection and 

evaluation of risk situations. 

Several statistical techniques to analyze rainfall data 

collected by rain gauges networks have been published in 

the literature [3-6]. The models used for this purpose can 

be grouped into four categories, conditional models, 

random cascade models, Markov chain models and 

nonparametric models [7,8]. The first two models require 

large amounts of data and thereby calculations are 

intensive [9]. In contrast, parametric models, when their 

conditions are satisfied, they are more powerful than 

nonparametric models [9,10].  

Therefore, the model, which is widely used to study 

random phenomena, is the model based on Markov 

chains. The traditional notion of randomness has been 

studied by Koutsoyiannis [11]. It has been often used for 

analyzing of precipitation [12, 13, 3, 14,]. The first users 

of Markov chains have shown that it is adequate to 

describe the sequences of dry days and wet days [15, 16]. 

The advantage of Markov chains has been highlighted by 

some authors [15, 17, 18].  Jimoh and Webster [19] 

showed that the order one of a Markov model is sufficient 

to represent the chronological behavior of precipitation. 

For this reason, we chose to use Markov chains due to 

its robustness and because it directly takes into account 

the influence of the recent past on the next immediate. 

This chain is a stochastic model, iterative, which 

determines the probability of transition from a state to 

another, or a persistent state of a system. 

However, many techniques have used only two states 

(wet, dry) to characterize the precipitation. The scale 

considered in the best case, was daily [20, 21]. Indeed, no 

analysis took into account the variability of rainfall 

intensity and also no analysis have been carried out at the 

time scale of the radar observation. Methods are used to 

predict rainfall using Artificial Neural Network [22]. 
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Precipitation is characterized by a high variability in 

space, time and intensity. Historically, precipitation has 

been observed locally by rain gauges, often only as 

accumulated daily amounts. The global distribution of 

gauges is quite variable, from relatively dense networks 

in the developed countries to sparsely distributed gauges 

in developing regions. Over oceans, gauges are almost 

non-existent, with only a few of them on Algeria. 

Furthermore, the rain gauge networks provide 

measurements of precipitation only where they are 

installed. In Algeria, these data are measured at the time 

scale “daily”, which is not sufficient for a study on an 

appropriate scale. However, radar data are available in 

real time, and collected even in remote areas where data 

are difficult or impossible to collect by rain gauges 

networks. The radar provides continuous coverage in 

time and space of precipitation fields. The coastal radar 

offers the particular advantage of being a tool to study the 

behavior of precipitation both on sea and on ground. Its 

measurements are widely used for hydrological purposes 

and in the prevention of natural disasters.  

For this purpose, our contribution in this paper is to 

provide a better description of precipitation chronological 

behavior over the sea and the ground, using 

measurements of instantaneous weather radar. It is 

applied to the complex situation of the Mediterranean 

climate of this region. The probabilistic approach used 

here is a Markov chain of first order with three states. 

 

II. PRESENTATION OF STUDY REGION AND DATA 

Algeria is located on the south shore of the 

Mediterranean and is bordered to the east by Tunisia and 

Libya to the south by Niger and Mali, southwest by 

Mauritania and Western Sahara and the west by Morocco. 

The rainfall spatial distribution is characterized by a 

north-south gradient very marked and east-west gradient 

very low. The rainy season extends from October to 

March, with maximum rainfall occurring during 

November-December. In the north, the climate is 

Mediterranean transit, marked by seasonal oscillations. 

The annual rainfall average is estimated at about 600 mm. 

The minimum rainfall is recorded in the southern regions, 

it is about 50 mm, while the maximum is observed in the 

Djurdjura massif located in Kabylia and the massif of 

Edough located at east, where it exceeds 1 500 mm. 

The radar data used in this study are collected by the 

radar of Setif (Algeria). This coastal radar located at 

latitude 36 ° N, longitude 05 ° E with an altitude of 

1033m, it records an image of size 512 x 512 pixels every 

fifteen minutes. Each pixel coded on four bits, it has a 

resolution of one km
2
. The representative physical 

parameter of the radar reflectivity factor is noted Z 

(mm
6
m

_3
). The conversion of reflectivity factor Z into 

rainfall intensity R(mm/h) is obtained using (1) adapted to 

our Radar. 

5.1300 RZ  .                                                        (1) 

The Z can also be converted into dBZ.  

The displacement in azimuth is between 0 to 360 

degrees in continuous and the movement in inclination is 

between -20 ° to 90 °. Its polarization is linear and 

horizontal. The technical characteristics of used radar are: 

Wavelength (5.5cm), Peak power (250kw), Repetition 

frequency (250Hz) and Pulse duration (4µs). 

The data consist of a series of 17660 images by season 

(October to March) collected by the meteorological radar 

of Setif (Algeria).  The datasets are divided into a training 

and a validation data set. The training data set is used for 

the development of the technique and collected from 

October 2001 to March 2002. The validation data set is 

considered for the appraisal of the proposed technique is 

recorded during the rainy seasons, 2002/2003, 2003/2004, 

2004/2005, 2005/2006 (Table 1). 

 

III. METHODOLOGY 

A. Selection of ground and sea area 

Two study areas have been selected on the radar 

domain. One area is located over the sea and other over 

the ground (Fig. 1). We only set the size of the area to 15 

x 15km
2
. This is to avoid high values of the variance of 

pixels in the area, which may skew the classification. 

This situation can occur when a part of precipitation 

systems pass over the area. The values of each area are 

obtained by using (2) which represents the weighted 

average on the 15x15 pixels of the area. 

 
 

Fig. 1. Localisation of study areas (Ground area and Sea area) in Radar 

image 

 

B. Rainfall type 

In general, rainfall can be decomposed into two types; 

convective and stratiform. Convective precipitation is 

characterized by a large vertical extension and is more 

intense and of shorter duration than the stratiform 

precipitation. Stratiform precipitation, however, usually 

covers large areas horizontally, and it often forms in areas 

adjacent to convective cells. 

The radar reflectivity maps can be used to diagnose 

stratiform and convective precipitation fields. Convective 

precipitation is characterized by high reflectivity and a 

clearer spatial intensity gradient. Several authors propose 
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thresholds to identify convective clouds [21]. The 

National office of meteorology (O.N.M.) of Algiers had 

adopted the threshold 42 dBZ from which convective 

clouds are identified. The experiment conducted by the 

O.N.M.  showed that on 422 events of a convective data 

sets references, 89% of these events are identified on the 

weather radar reflectivities using the threshold  42 dBZ. 

Below of this threshold, stratiform precipitation is 

detected. Therefore, in order to classify radar data, we 

considered that all convective precipitation (first class), 

lie in the interval (≥42 dBZ) and all stratiform 

precipitation (second class) have values between 18 dBZ 

and 42 dBZ (42 dBZ  not included). The third class is the 

class no raining, it is obtained for all reflectivities less 

than 18 dBZ.  

The weighted mean representing the reflectivities of 

15x 15 pixels from one area, which will be compared 

with thresholds to determine its class, is calculated by 

applying (2): 

 

 

 

 



15

1

15

1

15

1

15

1
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i j

i j

jiC

jiPjiC
MP .                  (2) 

Where P(i,j) is the pixel value (in dBZ) at position i 

and j of 15x15 pixels. C(i,j) is the weighting coefficient 

depending on the position i and j  of a pixel.  

The largest coefficient is the central pixel, the farther 

away from the center, the coefficient value decreases. 

We plotted curves showing the evolution of the 

weighted average of reflectivity factors of 15 x 15 pixels 

for each of the two areas during the study period (Fig. 2). 

It should be noted that these data have been acquired with 

a time step of fifteen minutes (temporal resolution of the 

radar). 

 

Fig. 2. The evolution of weighted mean of radar reflectivities over time 

 

C. Time series of Rainfall 

Precipitation is classified into three states, stratiform 

state or convective state, and a third to represent the no 

raining state. These states are obtained from the following 

decision criteria: 

 Convective state (S2: heavy rainfall): if MP≥42dBZ   

 Stratiform state (S1: average rainfall): if 18dBZ≤MP< 

42dBZ 

 No raining state (S0: low or no rainfall): if  MP< 

18dBZ   

The 17660 images that we have used in this study 

correspond to a period of six months, from October 2001 

to March 2002. At each radar observation, a state, which 

is based on the weighting coefficient calculated by 

applying (2), is defined as, either high rainfall, average 

rainfall or no raining. Thereby, we obtain time series of 

precipitation, one observed over ground and other over 

sea. Each is composed of three states, namely 

"convective", "stratiform" and "no raining". The 

appearances states according the rainy season and study 

area are given in table 1. 

 
Table 1. Tabulated summary data 

Rainy season Type of use Study area 
Appearances states 

Convective Stratiform No-raining 

2001/02 Training 
Ground 

Sea 
2528 
1504 

6271 
5195 

8861 
10961 

2002/03 Validation 
Ground 

Sea 

2511 

1425 

6309 

5200 

8840 

11035 

2003/04 Validation 
Ground 

Sea 

2630 

1524 

6254 

5240 

8776 

10896 

2004/05 Validation 
Ground 

Sea 
2701 
2200 

6442 
5896 

8517 
9564 

2005/06 Validation 
Ground 

Sea 
2653 
1987 

6457 
6003 

8550 
9670 

 

D. Markov chain  

A Markov chain can be described as a set of states, 

S={S0,S1,…,Sm}, where the process begins in one of these 

states and transits from one state to another. 

If the chain is in a state Si at time t, it switches to Sj  at 

time t+1 with a probability which is noted Pij. The 

probabilities Pij are called transition probabilities. The 

process may persist in a state with a probability Pii. An 

initial probability distribution defines the state of the 

chain at time (t=0), which specifies the initial state. 

With a sequence of states in discrete time, the 

transition probability of the variable of state S(t) at time t 

depends only on its state at time t-1. The general form of 

these probabilities is given by the following expression: 

])(/)1(Pr[ ijij StSStSP  .                     (3) 

These probabilities can be grouped into a matrix, called 

the transition matrix and given by the following 

expression (4): 
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They are calculated using (5): 

i

ij

ij
N

N
P  .                                                                  (5) 

Where i and j=0,1,…,m. Nij is the number of transitions 

from state Si to state Sj, and Ni is the number of transitions 

from state Si  to any other state. 

For a Markov chain with finite state space and 

transition matrix M, the evolution over time of the initial 

probability distribution Q (0) is given by: 

nMQMnQnQ  )0()1()(                               (6) 

Where Q(n) is the probability vector at time n. The 

probability vector is given by the following form: 

 )()()()( 10 mSPSPSPtQ                         (7) 

Where P(Sk) is the probability of the state Sk with 

k=0,1,…,or m. 

E. Analysis using a Markov chain of first order with three 

states 

To analyze the two time series of precipitation 

obtained in the previous sections by using Markov chains, 

we set the following assumptions: 

 The precipitation process is described by state space 

S={S0,S1,S2}, this is a Markov chain with finite state 

space. 

 The evolution of phenomenon is random: it is a 

stochastic process. 

 The future depends only on the present; it verifies the 

Markov property (no memory): this is a Markov chain. 

 Possible developments of the process does not depend 

on time, the system verifies the homogeneity property: 

this is a homogeneous Markov chain. 

We therefore used a Markov chain of first order with a 

state space S={S0,S1,S2}. The time series of precipitation 

are modeled by the graph of the chain given in Fig. 3. 

The determination of transition probabilities is an 

important part for the forcast of precipitation behavior. 

For this case study, nine transition probabilities are 

determined from the Markov chain. These probabilities 

are grouped into the following matrix (8) : 
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IV. RESULTS 

It should be noted that three states representing rainfall 

are considered in this study. The state of high 

precipitation corresponds to convective precipitation, the 

state of average precipitation corresponds to stratiform 

precipitation and the third state is no raining state. A 

transition matrix has been determined for each of the two 

study areas during the rainy season from October 2001 to 

March 2002. The elements of these matrices are 

calculated using (5). The results are given in Table 2. 

 
Table 2. Results of Transition probabilities matrix 

Study area Ground Sea 

 S0          S1         S2 S0        S1        S2 

S0 

S1 

S2 

0.83       0.14        0.03 

0.25        0.61        0.14 

0.07        0.41        0.52 

0.88    0.11     0.01 

0.22    0.67     0.11 

0.06    0.37     0.57 

 

The results show that the probability of finding the 

same state at the next moment is stronger than that to find 

a different state for the two areas. The probability of 

transiting from convective or no raining to no raining or 

convective, respectively is near zero. For the two areas, 

these probabilities are interpreted as follows: 

 If we have a no raining state, the probability to have a 

stratiform state at the next moment is greater than the 

probability to have a convective state. 

 The probability of a stratiform state pass to convection 

state is lower than the probability to transit to no 

raining state. 

The probability that a convective state is followed by 

stratiform state is higher than the probability to be 

followed by no raining state. 

 

  

Fig. 4. Graph of Markov chain of precipitation. 
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A. Simulation  

According to the theory of Markov stochastic process, 

we use the transition probability matrix and the initial 

probability vector to predict the evolution of probability 

distribution over time, during the rainy season from 

October 2002 to March 2003. Using (6), we calculated 

the probability of each state at every moment during the 

prediction period. The curves showing the evolution of 

these probabilities are given in Fig. 4. 

Results show that the evolution of probability 

distributions tends towards stationary probabilities. The 

probability of having a convective or stratiform state is 

low in sea and in ground. Note that for these two states, 

however, the probability is smaller in the sea area than in 

the ground area. In contrast, for the no raining case, the 

probability values are high for both areas, but more 

important in sea area than in ground area. 

 

B. Validation 

To test our model, we have compared the stationary 

probabilities estimated previously by applying Markov 

chains with the actual probabilities of validation data.  

The validation data are collected during the rainy season 

from October to March of the period 2002/2003, 

2003/2004, 2004/2005 and 2005/2006. These data are 

independent of all data used in the methodology. We 

calculated the actual probabilities using (9): 

N

N
PA i

i  .                                                                (9) 

Where Ni is the number of states Si of observation 

sequence and, N is the length of the observation sequence. 

The comparison is carried out using the test X
2

(0.05) to 

judge the 95% significance of the results and then 

determine if the model is applicable or not. The value of 

the chi-square X
2
 statistic is computed based on the null 

hypothesis H0. The method of computing the X
2
 for 

testing serial independence against Markovian property is 

extensively discussed in Wilks (2006).  In the presented 

study, the degrees of freedom would be 2 (3 categories -

1). At this degree of freedom, the critical value in the test 

(0.05) is 5.991.  The null hypothesis is rejected whenever 

the computed X
2
 exceeds the critical value (5.991). 

Otherwise, the model is considered plausible. 

Test results have been calculated with (10) and are 

given in Table 3 with actual probabilities and estimated 

probabilities of the period 2002/2003: 

 

 
2

3
2

0.05
1

i i

i i

PE PA
X

PE


                                     (10) 

Where PEi and PAj are the probabilities estimated by 

the model and the actual probabilities of the observation 

series, respectively.  

In the Table 4, we give the results of test X
2
(0.05) of 

periods 2003/2004, 2004/2005 and 2005/2006. 

 

Table 3. Estimated probabilities and actual probabilities for 2002/2003 

Study area 

state 

Ground Sea 

PEi              PAi PEi              PAi 

convective 

Stratiform 

No-rainning 

0.1496        0.1432 

0.3434        0.3551 

0.5070        0.5017 

0.0882       0.0852 

0.2879       0.2942 

0.6239       0.6206 

Test:  X2
(0.05) 0.0633 0.0753 

 
Table 4. Results of the test X2

(0.05) for periods 2003/2004, 2004/2005 and 
2005/2006 

 Test X2
(0.05) 

 Ground Sea 

2003/2004 0.0795 0.0873 

2004/2005 0.0813 0.0963 

2005/2006 0.0903 0.0996 

 

The values of the test X
2
(0.05) are lower than 5.991, so 

they indicate that the prevision probabilities and the 

actual probabilities are almost identical. These results 

validate the Markov chain model which is used for 

modeling of precipitation series with three states. It is 

therefore possible to use the matrix of transition 

probabilities of the Markov chain to predict the evolution 

of probability distribution over study area. 

C. Discussion 

The present study attempts to explain the behavior of 

precipitation in the Mediterranean region. However, the 

coexistence of convective and stratiform rain complicates 

their understanding. The model takes into account this 

complexity. Indeed, we have used a Markov chain with 

three states, representing a convective state, a stratiform 

state and a no raining state. The results show that it is the 

no raining state which tends to be the most persisting. 

Indeed, high probabilities for long sequences are found 

no rainy. However, they are reaching record highs in the 

sea area. The dynamic difference of rainfall between 

ground and sea has been demonstrated in this study. 

Indeed, the results show that rainy instant tends to favor 

the rain at the next time in the ground area contrary to the 

sea area. The climate is more unstable in the ground area 

than in the area sea and the memory effect more 

pronounced in the sea area compared with ground area. 

This can be explained by the fact that the temperature 

varies more quickly on ground than on sea. The 

convective precipitation is more frequent in ground than 

in sea. This explained by the effect of orography on 

precipitation in the ground of the Mediterranean region. 

Stratiform regime appears to be relatively similar in both 

areas. 

Moreover, the test result validation shows that rainfall 

is well described by Markov chains both in ground and in 

sea. 

It should be noted that we issued this conclusion after 

applying the methodology on many areas of radar 

coverage; the results are identical on the northern part of 

Algeria and part of the Mediterranean, each of these 

regions is covered by the radar domain. 
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V. CONCLUSION 

The main goal of this work was to determine the 

probability precipitation and to analyze their activities 

and to discern the difference of its behavior between the 

ground and the sea. It permits to characterize the 

variability of the convective-stratiform in the 

Mediterranean region. The model has been validated by 

the results of test. All results obtained here are important 

sources of information for understanding the behavior of 

precipitation in the region. 

The drought trend has been confirmed by this study. 

This drought is mainly due to global climate change 

which increased the annual average temperatures. It 

should be noted that the climate becomes increasingly dry 

in many countries, including Algeria. 

Drought can cause considerable implications and 

serious consequences for the country's development. 

Environmental conditions responsible to maintain the 

ecosystem health of wetlands are degraded because the 

traditional water management considers only the 

distribution of water between economic departments and 

the daily lives of people, ignoring the needs in water for 

ecosystem functions. The quota of water consumption is 

unevenly distributed and there is a huge imbalance 

between offer and demand.  

Today, Algeria is more than ever called upon to take 

measures necessary to address this deficit. The rational 

use of water resources and the optimal allocation of water 

resources is necessary to ensure the sustainable 

development of areas relating to agriculture and the needs 

of the population. 

Moreover, there are watersheds at high altitude (above 

1500 m) that receive heavy rainfall. Thus, Algeria has 

finally important water resources, but they remain poorly 

exploited. 

The authorities concerned must firstly initiate projects 

for the construction of infrastructure (dams) to hold this 

water and also expand the measuring device that will 

allow a better understanding of water resources. 

In addition to these factors, the lack of available 

scientific research has complicated the understanding of 

water cycle. For these reasons, the plan Orsec has been 

declared and the rationalization of water distribution has 

been respected. This work here is part of this logic for the 

development of methods for assessing water resources 

and evaluating drought risk in Algeria. 

Perspective, further analysis of rainfall in this region 

deserves to be carried out with dynamic climate models. 

Indeed, the Markov assumptions used in this article do 

not represent the all activity rainfall. The rainfall intensity 

depends on the season and it is linked to the situation day 

or night. It would be interesting to test this technique over 

long periods of observation and use of non-homogeneous 

Markov chains by increasing the order. 
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