
I.J. Information Engineering and Electronic Business, 2014, 4, 1-11
Published Online August 2014 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijieeb.2014.04.01

Copyright © 2014 MECS I.J. Information Engineering and Electronic Business, 2014, 4, 1-11

A Knowledge-based PSEE with the Ability of

Project Monitoring

Shih-Chien Chou
Department of Computer Science and Information Engineering, National Dong Hwa University, Taiwan

scchou@mail.ndhu.edu.tw

Chiao-Wei Li
Department of Computer Science and Information Engineering, National Dong Hwa University, Taiwan

610121027@ems.ndhu.edu.tw

Abstract— Process-centered software engineering environments

(PSEEs) facilitate managing software projects. According to the

change of enactment environments and the increment of

software development complexity, PSEE features should be

enhanced. We designed a knowledge-based PSEE named

KPSEE. It offers the features: (1) maximizing the degree of

process parallelism, (2) enhancing process flexibility, (3)

managing product consistency, (4) integrating PSEEs, (5)

keeping pace with significant process change, (6) preventing

technique leakage, and (7) offering project monitoring ability.

Index Terms— PSEE; Knowledge-Based; Product-Driven;

Project Monitoring; Maximize the Degree of Process

Parallelism

I. INTRODUCTION

Process-centered software engineering environments

(PSEEs) facilitate managing software projects. PSEE

research is affected by ―processes are also software‖ [1].

More than a decade later, the research is still valuable

although it is not so hot as before. According to the

change of enactment environments (e.g., from single

machine to the network) and the increment of software

development complexity (e.g., from waterfall to the Agile

models [2]), PSEE features should be enhanced.

A PSEE is composed of a process language and an

enactment environment. The language implements

software processes into process programs for the

environment to enact. A process program is primary

composed of activities. An activity is assigned to role(s)

played by software developers. When the condition of the

activity is true, the roles produce output product(s) (e.g.,

specification) by referring to input product(s) using

tool(s). For example, designers (i.e., roles) produce a sub-

design document (i.e., output product) by referring to sub-

specifications (i.e., input products) using Rational Rose

(i.e., tool). Attaching a condition to an activity is

necessary to implement the selection and repetition

constructs. The article in [3] mentioned the important

PSEE features: (1) enactment support, (2) software team

(organization) distribution, (3) consistency management,

(4) process flexibility (i.e., dynamic changing process

program during enactment), (5) process evolution, and (6)

keeping pace with significant change. Although

traditional PSEEs offers one or more features mentioned

above, they generally suffer from shortcomings below.

 Their process languages look like programming

languages, which may limit the degree of process

parallelism. Since the activities of certain processes are

difficult to predict (e.g., the Agile models), limiting the

degree of parallelism induces trouble when modeling

and enacting the processes.

 If multiple organizations cooperate for a software

project and they use different PSEEs, coordinators [4-5]

are needed. Since the functions of different PSEEs are

heterogeneous, the ability of a coordinator may be

limited by the PSEEs.

 Traditional PSEEs offer limited functions to handle

exceptions. They generally provide functions for

process evolution [6-8]. Handling process evolution

may stop software project execution, which results in

time delay.

 If the cooperating organizations are mutually untrusted,

technique leakage may occur because software

development technique may be embedded in software

products. Transferring a product developed by an

organization to an untrusted one may result in

technique leakage.

 Traditional PSEEs release the load of project managers

by remembering when to do what activities using

which tools. However, an executing project should be

monitored. Traditional PSEEs did not offer monitoring

functions. If a PSEE facilitates project monitoring, the

PSEE will be more valuable.

To overcome the shortcomings, we develop a new

PSEE. Since the PSEE is knowledge-based, we name it

KPSEE (knowledge-based PSEE). KPSEE offers the

features mentioned in [2] and the following enhanced

features:

 KPSEE maximizes the degree of parallelism. The

degree of parallelism is maximized if an activity is

enacted immediately when the condition of the activity

is true and the resources required by the activity (such

as input products and roles) are available. KPSEE

enacts activities in this manner. Therefore, it

maximizes the degree of parallelism.

2 A Knowledge-based PSEE with the Ability of Project Monitoring

Copyright © 2014 MECS I.J. Information Engineering and Electronic Business, 2014, 4, 1-11

 KPSEE enhances process flexibility. Process flexibility

allows dynamic process program change [2, 9]. KPSEE

enhances the flexibility by allowing dynamically

adding, removing, and changing all process

components at anytime during enactment. Here process

components include everything in a process program,

such as roles and activities. KPSEE offers this feature

by allowing unstructured statements and providing

solid exception handling functions. With unstructured

statements, KPSEE process statements can be placed

without order. This simplifies the addition of process

components. As to solid exception handling functions,

it supports the changing and removing of process

components.

 KPSEE is an integrator instead of a coordinator, and

offers simple interface for the integration. The

interface is the KPSEE process language. Process

programs in other PSEEs should first be translated into

KPSEE process programs. Since KPSEE statements

are unstructured, placing the translated process

programs together results in an integrated KPSEE

process program. KPSEE enacts an integrated program

without the intervention of other PSEEs. Therefore,

other PSEEs will not limit the function of KPSEE.

 KPSEE process language offers statements to trigger

KPSEE for the handling of exceptions and evolutions

without stopping the executing projects. Since the

characteristic of exception and evolution are similar in

this article, we let ―exception‖ to include both

―evolution‖ and ―exception‖ in the rest of the text.

 KPSEE introduces the information flow control [10-11]

concept to control the access of software products,

which prevents technique leakage.

 KPSEE uses rules to facilitate partial project

monitoring (it is impossible to facilitate full project

monitoring). KPSEE offers default rules for the

monitoring. If necessary, rules can be added, removed,

or changed by the project managers.

The kernel of KPSEE is a knowledge base.

Surrounding the base are functions to enact process

programs. It also offers a sub-system to facilitate

monitoring software projects. In the rest of this paper,

section II discusses related work, section III presents

KPSEE in details, section IV proves that KPSEE offers

the features we mentioned, and section V is the

conclusion.

II. RELATED WORK

Generally, existing PSEEs adopt programming

language constructs (e.g., sequences, selections, and

repetitions) to develop process languages. Therefore, a

process language looks like a programming language. For

example, CSPL [12] adopts the Ada95 programming

language for its process language. All the features of

Ada95 are offered by CSPL. However, most features

mentioned in section I are not provided.

In the early days, PSEEs are generally centralized.

Centralization limits the distribution of software

developers. Under this consideration, decentralized

PSEEs are attractive. Oz [13] is decentralized. It is

structured by homogeneous and independent sub-

environments. Each sub-environment is provided to a

development organization. Multiple organizations

cooperate for a software project using the ―submit

protocol‖. OPERA [14] offers a kernel and an

intermediate language. All process programs enacted in

OPERA should first be translated into the intermediate

language and then enacted by the kernel. Since the kernel

can be distributed, the intermediate language can be

considered integration interface.

The researches in [6-8] manage process evolution or

process change. The general problem for the researches is

time-consuming because process programs may be

suspended when handling evolution. As to product

consistency management, we develop a technique to

achieve that [15]. The technique manages the

dependencies among software products. When a product

is changed, those directly or indirectly dependent on it

will be identified and changed accordingly. ADAMS [16]

applies the fine-grained concept to manage software

artifacts, including all kind of software documents such

as specifications and design documents. It is a SCM

(software configuration management) model rather than a

PSEE. Finer granularity offers the primary features of: (1)

evolving one part of a product will not affect other parts

and (2) reducing the possibility that more than one

developer intends to develop the same artifact. As a SCM

model, ADAMS keeps traceability among artifacts.

Therefore, it manages software consistency. SPACE [17]

is a domain independent environment. It applies meta-

models to manage software process as well as artifacts.

The use of meta-models allows semantic process/artifact-

oriented collaboration. SPACE offers good collaboration

among software organizations and keeps product

traceability. Therefore, consistency management in

SPACE is of no problem.

The researches in [18-19] use process agents [18] or

deviation rules [19] to detect and handle the deviation of

software processes. In general, software process deviation

almost always happens during a software project.

Therefore, deviation handling (or process evolution

handling) is necessary. However, some deviation, such as

that in the Agile models, may be out of control. We are

not sure whether the researches in [18-19] can handle the

deviation. The model-driven approach [20-22] use meta-

models to manage process variability. For example,

MoDErNE [20] reuses existing process models and

applies rules to customize the reused models. During

process modeling, reused process models appear in a

process as modeling tasks or editors. During process

enactment, if a modeling task or editor is encountered, the

associated rules customize the process model. The

approach solves the variability of process. However, if

exceptions occur after customization, MoDErNE cannot

solve them using meta models. This reduces the power of

exception handling in model-driven approach.

Since preventing technique leakage is an important

feature of KPSEE, we also survey this type of PSEEs.

However, we cannot identify a PSEE that offers the

 A Knowledge-based PSEE with the Ability of Project Monitoring 3

Copyright © 2014 MECS I.J. Information Engineering and Electronic Business, 2014, 4, 1-11

feature, except our previous research [23]. The research

embedded an information flow control model in a PSEE,

which is similar to that of KPSEE. The major difference

is that an information flow control model is ―embedded‖

in a PSEE in our previous research, but KPSEE and the

information flow control model are ―fused‖ together.

III. KPSEE

KPSEE decides whether an activity can be enacted by

checking the status of input products. Therefore, it is also

product-driven. As described in section I, if the input

product set IPds of an activity Act are available and the

condition Cond of the activity is true, then Act is

enactable. When the role set Rles required to enact Act

are available, Act is enacted immediately. The following

rule depicts the kernel concept of KPSEE, in which

avl(PD) is the set of available products, avl(RLE) is the

set of available roles, and enact(Act) means enacting Act.

(()) (())

() ()

IPds avl PD Rles avl RLE

Cond TRUE enact Act

The rule does not mention tools because we assume

that software tools are available for software development

organizations.

To prevent technique leakage, the kernel concept

should be adjusted. Suppose a software product is

developed by role(s) and a role is in an organization.

Moreover, an organization trusts zero or more others.

With the assumptions, when an activity requires one or

more input products, the roles enacting the activity should

be in the organizations that can access all the input

products. The organizations that can access a product

belong to the set ―)(iiTORGORG ‖, in which

ORG is the set of organizations that developed the

product, TORGi is the set of organizations trusted by Orgi,

and OrgiORG. Based on this, if the input product set of

an activity is IPD = {IPdi | IPdi is a product} and the

organizations that develop an input product IPdi is ORGi

= {Orgi | Orgi is an organization}, then the roles that can

enact the activity should be in the role set AURLE = {Rlek

| Rlek is a role in an organization of the set

)()(, jijii TOrgORG in which TOrgi,j is the set

of organizations trusted by the organization Orgi and Orgi

)(iiORG }. Sometimes, roles in AURLE are not

enough to enact an activity. To solve this problem, a set

of authorized organizations AO trusted by every

organization should be available. According to the

description above, we need the following information for

technique leakage prevention:

 An organization is associated with a list containing the

organizations it trusts. That is, an organization Orgi

should be associated with a TOrgi,j.

 A product Pdi is associated with a list of organizations

that produced it. That is, Pdi should be associated with

an organization set ORG.

 An authorized list AO containing organizations trusted

by every organization should be offered.

KPSEE

knowledge

base

Knowledge base manager

KPSEE functions

KPSEE process language

(Integration mechanism)

Software Developers

PSEE 1 Parser 1

PSEE n Parser n

.

.

.

Fig. 1. The architecture of KPSEE

Project

monitoring

sub-system

Project manager

Process program statements,

Exception handling statements

Having described the kernel concept of KPSEE, we

describe KPSEE. Fig. 1 shows that KPSEE can be

accessed directly by software developers. It can also

integrate process programs from different PSEEs (i.e.,

KPSEE process language acts as an integration

mechanism). To integrate PSEEs, every PSEE should

offer a parser to translate their process programs into

KPSEE process programs. The component ―KPSEE

functions‖ in the figure includes a parser, the functions to

enact KPSEE process programs and prevent technique

leakage, and an exception handler. The component

―KPSEE knowledge base‖ records the status of products

and activities, and the relationships among products, roles,

activities, organizations, and tools. Information in the

knowledge base is managed by the ―Knowledge base

manager‖. KPSEE also offers a ―Project monitoring sub-

system‖ to facilitate project monitoring. Information

needed by the sub-system is offered by the KPSEE

functions and the project manager. The following sub-

sections describe the KPSEE components.

A. KPSEE Process Language

KPSEE process language does not use traditional

constructs such as selections and repetitions. Its

statements are unstructured (i.e., without order). As long

as the required resources of an activity are available and

its condition is true, the activity is enacted immediately.

This maximizes the degree of process parallelism.

Statements can be added, changed, or removed anytime

during process enactment. This enhances process

flexibility and allows software processes with

unpredictable activities, such as the Agile processes, to be

easily implemented and enacted. KPSEE process

language offers the following simple statements.

 +Role(Rle, PdRle, SD, IP, Org), -Role(Rle, SD, Org),

*Role(SD1, SD2). The former two statements

respectively add and remove a role, in which Rle is a

role, PdRle indicates the products that can be used by

the role, SD is a software developer playing the role, IP

is the IP address assigned to the SD, and Org is the

organization of the role. KPSEE must know the IP

addresses to inform the required roles for activity

enactment. It should also know the role’s organization

to prevent technique leakage. The *Role statement

4 A Knowledge-based PSEE with the Ability of Project Monitoring

Copyright © 2014 MECS I.J. Information Engineering and Electronic Business, 2014, 4, 1-11

replaces SD1 by SD2. It handles SD departure. A

departed SD should be replaced by another to maintain

the products produced by the departed one.

Table 1. Relationships between roles, tools, and products

Pd PType Rle PdRle Tool PdTl

Requirement 1 Customer {1, 2} Word editor {1, 2, 3}

Specification 2 Domain expert {1, 2} UML tool {1, 2, 3}

Design document 3 Analyst {1, 2, 3} Programming Language {4}

Source code 4 Designer {2, 3} Testing tool {4, 5, 6, 7}

Test case 5 Programmer {3, 4}

Test report 6 Tester {4, 5, 6}

Released product 7 Project manager {1, 2, 3, 4, 5, 6, 7}

PdRle facilitates monitoring activities. For example,

requesting a programmer to use requirements for system

analysis is infeasible. In addition to the relationships

between roles and products, those between products and

tools should also be monitored. For example, using

Microsoft Word to implement a program is infeasible.

We use Table 1 to show the relationships among roles,

tools, and products, in which PType is a product type,

Tool is a tool, and PdTl indicates the products that can be

operated by a tool. To allow more flexibility, the contents

of Table 1 can be changed by a project manager.

 +Organization(Org, Rle, TOrg), -Organization(Org),

*Organization(Org, TOrg). The former two statements

respectively add and remove an organization Org.

When adding Org, the roles in it (i.e., Rle) and the

organizations trusted by it (i.e., TOrg) should be

described. The *Organization statement changes the

organizations trusted by Org.

 +AOrg(Org, Rle), -AOrg(Org), *AOrg(Org, Rle). The

former two statements respectively add and remove an

authorized organization. When adding an authorized

organization, roles in the organization (i.e., Rle) should

be presented. The *AOrg statement changes the roles

in an authorized organization.

 +Product(Pd, PType, Org), -Product(Pd),

*Product(Pd): The statements respectively add,

remove, and change a product. PType is the type of the

product (see Table 1). Org is a set of organizations that

produced the product. The +Product statement can add

initially available products such as user requirements.

Adding initially available product is necessary because

KPSEE is product-driven. If no available products

exist, no activity will be enacted.

 +Variable(Var, Val), -Variable(Var), *Variable(Var,

Val): The statements respectively add, remove, and

change variables used in a process program, in which

Var is the variable set and Val is the corresponding

value set for Var. The statements are necessary to

implement the selection and repetition constructs.

 +Tool(TlName, PdTl), -Tool(TlName), *Tool(TlName,

PdTl). The statements respectively add, remove, and

change a tool, in which TlName is a tool name, and

PdTl is shown in Table 1.

 +Activity(ActID, IPd, OPd, Cond, Action, Rle, Tool,

Schl, Budget, HouAct), -Activity(ActID),

*Activity(ActID, newIPd, newOPd, newCond,

newAction, newRle, newTool, newSchl, newBudget,

newHouAct): The former two statements respectively

add and remove an activity. The *Activity statement

changes the contents of an activity. In the statements,

ActID is the identity of an activity to differentiate

activities, IPd is the set of input products, OPd is the

set of output products, Cond is the condition to trigger

the activity, Action is the action of the activity, Rle is

the set of roles to take the action, Tool is the set of

tools used in the activity, Schl is the schedule of the

activity, Budget is the budget of the activity, and

HouAct is the housekeeping actions after the activity

finishes (e.g., if an activity is in a loop, the

housekeeping actions may contain a loop counter

decrement statement). The *Activity statement adds a

word ―new‖ before parameter names means the

contents of the activity is changed.

 +ScheduleBudget(TolSchl, TolBudget),

*ScheduleBudget(TolSchl, TolBudget). They

respectively indicate and change the schedule and

budget of a project.

B. KPSEE Knowledge Base and its Manager

KPSEE knowledge base KPKB (KPSEE knowledge

base) is defined below, in which ―‖ is a ―depend on‖

relationship:

Definition 1. KPKB = (PD, ACT, ROLE, TOOL, ORG,

AO, PDDEP, PDACT, PDROLE), in which:

 PD is the set of software products. It is defined below.

PD = {(Name, Status, PType, Org)i | Namei and Statusi

are the name and status of the i
th

 product, respectively.

PTypei is shown in Table 1. Orgi is the organization set

that produced the product. Product status may be ―A‖

(available), ―U‖ (unavailable), and ―D‖ (removed).}

 ACT is the set of activities, which is defined below.

ACT = {(ActID, IPd, OPd, Cond, Action, Rle, Tool,

Schl, Budget, HouAct, Status)i | ActIDi, IPdi, OPdi, Condi,

Tooli, Shcli, Budgeti, and Statusi are respectively the

identity, the set of input products, the set of output

products, the condition, the schedule, the budget, and the

 A Knowledge-based PSEE with the Ability of Project Monitoring 5

Copyright © 2014 MECS I.J. Information Engineering and Electronic Business, 2014, 4, 1-11

status of the i
th

 activity. Actioni is the action of the

activity. Rlei is the set of roles to take the action. Tooli is

the set of tools used in the activity. IPdi and OPdi are

subsets of PD. Activity status may be ―E‖ (enacting), ―W‖

(wait for enactment), ―F‖ (finish enactment), and ―D‖

(removed).}

 ORG is the set of organizations, which is defined

below:

ORG = {(Org, Rle, TOrg)i | Orgi is the i
th

 organization,

Rlei is the set of roles in Orgi, and TOrgi is the set of

organizations trusted by Orgi}

 AO is the set of authorized organizations, which is

defined below:

AO = {(AOrg, Rle)i | AOrgi is the name of the i
th

authorized organization and Rlei is the set of roles in

AOrgi}

 ROLE is the set of roles. It is defined below:

ROLE = {(RName, SDName, PdRle, IP, Org)i | RNamei is

the name of the i
th

 role, SDNamei is the developer’s name

playing the role, PdRle is shown in Table 1, IPi is the IP

address to access the role, and Orgi is the organization

containing the role.}

 F. TOOL is the set of tools. It is defined below:

TOOL = {(TlName, PdTl)i | TlNamei is the name of the i
th

tool. PdTli is shown in Table 1}

 G. PDDEP is the set of product dependencies. After

finishing an activity, every output product depends on

every input product. PDDEP is defined below:

PDDEP =
PDPD 2

 H. PDACT is the relationships between products and

activities. If a product is developed by an activity, there

is a relationship between the product and the activity.

PDACT is defined below:

PDACT = {(ActPd)i | Pdi is developed by the

activity Acti. PdiPD and ActiACT}

 PDROLE is the relationships between products and

roles. If a product was developed by one or more roles,

the relationships are established between the product

and the roles. PDROLE is defined below:

PDROLE =
ROLEPD 2

PDDEP facilitate handling the ripple effects induced

by changing or removing a product. PDACT and

PDROLE facilitate correcting a product. That is, the

original developers should re-enact the original activity to

correct a product if necessary.

The knowledge base KPKB should be associated with

a set of functions to manage the knowledge. We

collectively call the functions the KPKB knowledge base

manager. To simplify describing the manager, we use the

component of a definition as a function to retrieve the

component. For example, Status(Pdi) retrieves the status

of the product Pdi. Important KPKB management

functions are listed below.

 getActID(Pdi). This function returns the identity of the

activity that developed the product Pdi. According to

Definition 1, the function returns ActIDi in which Pdi

ActIDi.

 getSDSet(Pdi). This function returns the IP set of the

software developers that developed the product Pdi

(the software developers played proper roles to develop

the product). According to Definition 1, the function

returns the set {IP(Rlei) | (PdiRle) (RleiRle)}.

 getDepPdSet(Pdi). This function identifies the products

affected by removing or changing Pdi. Therefore, it

returns those directly or indirectly dependent on Pdi.

According to Definition 1, the function returns the set

depPdSet defined as: {Pdj | (Pdj Pdi)

(depPdSetPdk , Pdj Pdk). depPdSet is

recursively defined to identify the products indirectly

dependent on Pdi.

The KPKB manager also offers functions for the

statement of +Activity, +Product, and so on. The

functions insert to KPKB the information obtained from

the parser. As to the functions that implement -Activity,

*Activity, -Role, *Role, -Product, and *Product, they

handle exceptions. We describe them in the next sub-

section.

C. KPSEE Functions

A parser for KPSEE process language is the basic

function. After parsing a statement, the parser invokes

functions to take proper actions. For example, after

parsing the +Activity statement, the parser invokes the

KPKB manager function to insert the activity information

to KPKB. In addition to the parser, KPSEE offers a

proactive function to enact process programs and reactive

ones to handle exceptions. The proactive function

identifies activities with true conditions and available

input products (the activities are enactable). For an

enactable activity, the proactive function informs the

required roles. To prevent technique leakage, only roles

in the organizations that can access all the input products

are informed. An idle role being informed should react.

After the reacted roles are enough, the activity is enacted

immediately. After an activity is finished, the data

structure of KPKB is adjusted.

To inform roles, two approaches can be applied. Firstly,

roles in the authorized organization list and those that can

access all the input products are informed simultaneously.

Secondly, roles that can access all the input products are

informed first. If the reacted roles are not enough after a

time period, roles in the authorized organization list are

informed. The second approach takes authorized

organizations as valuable resources and should be used

only when necessary. We accept the second approach.

The execution logic of the proactive function is shown in

Algorithm 1.

6 A Knowledge-based PSEE with the Ability of Project Monitoring

Copyright © 2014 MECS I.J. Information Engineering and Electronic Business, 2014, 4, 1-11

Algorithm 1. Execution logic of the proactive function (it

enacts process programs).

function enactProcess():

if avl(IPd(ActIDi))Cond(ActIDi) then

insertPd(OPd(ActIDi), ―U‖); // Insert output

products with status ―U‖.

inform(Rle(ActIDi), (j Org(IPd(ActIDi)) j))

(k TOrg(j Org(IPd(ActIDi)) j) k); // Inform

the required roles in the organizations that are

allowed to access all the input products.

setTimeout(time); // Set timeout counter.

end if;

if enough(Rle(ActIDi)) then // Enough roles causes

activity enactment.

enact(subRle, ActIDi) in which subRle
(Rle(ActIDi));

else if Timeout()))((iActIDRleenough then

inform(Rle(ActIDi), Rle(AO)); // If the reacted roles

are not enough, inform roles in the authorized

organization list.

if enough(Rle(ActIDi)) then

enact(subRle, ActIDi) in which subRle
(Rle(ActIDi));

end if;

end if;

if finish(ActIDi) then // If finish is true, the activity is

finished.

setStatus(OPd(ActIDi), ―A‖); // The output

products become available.

setStatus(ActIDi, ―F‖); // The activity has been

finished.

)(ii ActIDOPdOPd do

)(ii ActIDIPdIPd , ii IPdOpd ;

subRleRlei , ii RleOpd ;

ii ActIDOpd ;

end do;

HouAct(ActIDi); // Do the housekeeping actions

of the activity.

end if;

There are built-in functions offered by KPSEE, such as

avl and setTimeout. Perhaps the most important built-in

function is inform, which informs the roles required by an

activity when its condition is true and input products are

available. Parameters of the function include: (1) the roles

required by ActIDi and (2) the roles’ organizations. The

set subRole in Algorithm 1 is a subset of the reacted roles

informed by the proactive function. Roles in subRole are

selected to enact the activity.

The reactive functions handle exceptions. Exceptions

may be caused by changing user requirements or software

processes, verification failure, the departure of software

developers, and changing the trust relationships among

organizations. Changing user requirements or software

processes may result in the addition, change, or removing

of activities or products. Verification failure may result in

correcting products. The departure of software developers

may result in replacing software developers. And,

changing the trust relationships among organizations may

result in changing the list of organizations that can access

a product. The addition of activities, products, roles, and

organizations and the handling of authorized

organizations are not described here because they are

KPKB manager functions. The handling of the statement

-Organization is not described because it only causes the

deletion of an organization. The statement *Organization

causes the change of trustable organizations of an

organization. The change will affect the organizations

that can access a product. The organizations that can

access a product are dynamically identified during

process program enactment (i.e., the *Organization

statement will affect the set ― k TOrg(j

Org(IPd(ActIDi)) j)k‖ in Algorithm 1). In other words, the

*Organization statement will not affect other data

structure in KPKB. Therefore, it is not described. The

important exception handling functions are described

below.

 Change a product. This function implements the

statement *Product. Changing a product may result in

changing the products directly or indirectly dependent

on the changed one, which is a ripple effect.

Algorithm 2. Change a product.

function chgPd(Pdi):

ActIDi = getActID(Pdi); // The KPKB function

getActID identifies the activity that produced Pdi.

setStatus(Pdi, ―U‖); // The function setStatus sets

the status of a product or an activity.

if (status(ActIDi) = ―E‖) then

inform(Rle(ActIDi), ―Stop enactment‖, ActIDi);

end if; // If the activity producing Pdi is being

enacted, inform the roles enacting ActIDi to stop

enactment. The inform statement is overloaded.

setStatus(ActIDi, ―D‖); // Changing Pdi means the

activity producing it becomes incorrect and

should be removed. Software developers should

redesign the activity and re-enact it to produce

the correct Pdi.

// The following statements handle ripple effects.

affPdSet = getDepPdSet(Pdi); // The KPKB function

getDepPdSet identifies the products directly or

indirectly dependent on Pdi.

 PdjaffPdSet do

ActIDj = getActID(Pdj);

setStatus(Pdj, ―U‖);

if (status(ActIDj) = ―E‖) then

inform(Rle(ActIDj), ―Stop enactment‖,

ActIDj);

end if;

setStatus(ActIDj, ―D‖);

end do;

 Remove a product. This function implements the

statement -Product. Removing a product may also

result in ripple effects.

 A Knowledge-based PSEE with the Ability of Project Monitoring 7

Copyright © 2014 MECS I.J. Information Engineering and Electronic Business, 2014, 4, 1-11

Algorithm 3. Remove a product.

function rmvPd(Pdi):

ActIDi = getActID(Pdi);

setStatus(Pdi, ―D‖);

if (status(ActIDi) = ―E‖) then

inform(Rle(ActIDi), ―Stop enactment‖, ActIDi);

end if;

setStatus(ActIDi, ―D‖); // When a product is

removed, the activity producing it should also be

removed.

// The following statements handle ripple effects.

affPdSet = getDepPdSet(Pdi);

 PdjaffPdSet do

ActIDj = getActID(Pdj);

setStatus(Pdj, ―D‖);

if (status(ActIDj) = ―E‖) then

inform(Rle(ActIDj), ―Stop enactment‖,

ActIDj);

end if;

setStatus(ActIDj, ―D‖);

end do; // Pdj may depend on Pdi and others. In this

case, Pdj and the activity developing Pdj

become incorrect and should be removed.

The activity should be re-designed then

re-enacted to product correct Pdj.

 Change an activity. This function implements the

statement *Activity. The actions of changing an

activity with different status will be different.

Algorithm 4. Change an activity.

function chgAct(ActIDi, newIPd, newOPd, newCond,

newAction, newRle, newTool, newHouAct):

setStatus(ActIDi, ―D‖); // Remove the activity to

be changed.

addAct(ActIDi, newIPd, newOPd, newCond,

newAction, newRle, newTool, newHouAct); //

Add the activity that have been redesigned.

if (status(ActIDi) = ―W‖) then // The activity is

waiting for enactment.

// Do nothing.

else if (status(ActIDi) = ―E‖) then // The activity is

enacting.

inform(Rle(ActIDi), ―Stop enactment‖, ActIDi);

// Inform the roles enacting the changed

activity to stop the enactment.

setStatus(ActIDi, ―W‖); // Wait for re-

enactment.

else if (status(ActIDi) = ―F‖) then // The

activity has been finished.

pdSet = OPd(ActIDi);

 pdipdSet,chgPd(pdi);

setStatus(ActIDi, ―W‖);

end if; // If ActIDi finished, the produced

products should be changed. The chgPd

function (Algorithm 2) can be invoked.

 Remove an activity. This function implements the

statement -Activity. The actions of removing an

activity with different status will be different.

Algorithm 5. Remove an activity.

function rmvAct(ActIDi)

setStatus(ActIDi, ―D‖); // Remove the

activity.

if (status(ActIDi) = ―W‖) then // The activity

is waiting for enactment.

// Do nothing.

else if (status(ActIDi) = ―E‖) then // The

activity is being enacted.

inform(Rle(ActIDi), ―Stop enactment‖,

ActIDi);

else if (status(ActIDi) = ―F‖) then // The

activity has been finished.

pdSet = OPd(ActIDi);

 pdipdSet,rmvPd(pdi);

end if; // If ActIDi finished, the produced

products should be removed. The rmvPd

function (Algorithm 3) can be invoked.

 Correct a product. When correcting a product, the

original developers that produced the product should

re-enact the original activity. The original developers

are needed because new ones may be unfamiliar with

the product.

Algorithm 6. Correct a product.

function corrPd(Pdi):

ActIDi = getActID(Pdi); // Identify the activity that

produced Pdi.

setStatus(Pdi, ―U‖); // Avoid an activity to use the

incorrect product.

IPset = getSDSet(Pdi); // The KPKB function

getSDSet identifies the IP set of the original

developers that produced Pdi.

if avl(IPd(ActIDi)) then

loop while (inform(IPset) = FALSE); // Wait

for the software developer responses. The

inform function is overloaded.

enact(IPset, ActIDi); // The original

developers enact the activity.

if finish(ActIDi) then

setStatus(Pdi, ―A‖);

setStatus(ActIDi, ‖F‖);

end if;

end if;

// Correcting a product may affect others, which

should also be corrected. The correction is

achieved by recursively invoking corrPd.

affPdSet = getDepPdSet(Pdi);

 PdjaffPdSet , corrPd(Pdj);

 Replace a software developer. This function

implements the statement *Role.

Algorithm 7. Replace a software developer.

function chgSD(SD1, SD2):

);,(

,)(

2

1

SDRlesetSDName

SDRleSDNameROLERle

i

ii

8 A Knowledge-based PSEE with the Ability of Project Monitoring

Copyright © 2014 MECS I.J. Information Engineering and Electronic Business, 2014, 4, 1-11

 // ROLE is defined in Definition 1. The function

setSDName sets the software developer’s name

that plays a role.

D. Project Monitoring Support

KPSEE monitoring sub-system in Fig. 1 is a proactive

function that monitors a project following the rules

described in this sub-section. Violation of the rules will

be reported to the project manager for proper handling.

The rules are KPSEE default settings. Project managers

can add, remove, or change them. The rules are described

below (see Table 1 for the meanings of the symbols

PType, PdRle, and PdTl):

 The rule to monitor software products in an activity

ActIDi. For product combination, the product types (i.e.,

PType) of both the input and output products should be

the same. For product development, the product types

of the input products should be the same, those of the

output ones should be the same, and those of the output

ones should be one larger than those of the input ones.

Rule 1: [(PTypeSet(IPd(ActIDi)))-

(PTypeSet(OPd(ActIDi))) =]

[(Max(PTypeSet(IPd(ActIDi)))-

Min(PTypeSet(IPd(ActIDi))) = 0)

(Max(PTypeSet(OPd(ActIDi)))-

Min(PTypeSet(OPd(ActIDi))) = 0)

(Max(PTypeSet(OPd(ActIDi)))-

Min(PTypeSet(IPd(ActIDi))) = 1)]

Contents in the first square brackets mean product

combination and those in the second mean product

development. The function PTypeSet extracts product

types from a set of products. It equals to j

PType(IPd(ActIDi))j, in which PType(IPd(ActIDi))j is the

type of the j
th

 input product of ActIDi.

 The rule to monitor roles in an activity ActIDi. When

input products are referenced to produce output ones,

the required roles can use all the products (the symbol

PdRle(Rle(ActIDi))j is the products that can be used by

the j
th

 role).

Rule 2: (PTypeSet(IPd(ActIDi))
PTypeSet(OPd(ActIDi)))

(j PdRle(Rle(ActIDi)) j)

 The rule to monitor tools in an activity ActIDi. When

input products are referenced to produce output ones,

the required tools can operate on all the products (the

symbol PdTl(Tool(ActIDi))j is the products that can be

operated by the j
th

 tool).

Rule 3: (PTypeSet(IPd(ActIDi))
PTypeSet(OPd(ActIDi)))

(j PdTl(Tool(ActIDi)) j)

 Rules to monitor the frequencies of changing or

correcting products and activities. Large frequencies

reflect the risk of premature project or untrained

developers.

Rule 4. corrCnt(Pdi)+chgCnt(Pdi) FPdi

Rule 5. corrCnt(ActIDi)+chgCnt(ActIDi) FActi

Rule 6. corrCnt(Pd)+chgCnt(Pd) FPd

Rule 7. corrCnt(Act)+chgCnt(Act) FAct

Rules 4 and 5 monitor the frequencies of individual

product and activity. Rules 6 and 7 monitor those of the

entire project. The functions corrCnt and chgCnt return

the counts of correcting and changing products and

activities, respectively. They are offered by the ―KPSEE

functions‖ component in Fig. 1. The numbers FPdi, FActi,

FPd, and FAct are offered by the project manager.

 The rule to monitor the frequency of changing roles

(i.e., the departure of software developers). Large

frequency reflects the risk of unstable development

teams.

Rule 8. deptCnt(Rle) FRle

The functions deptCnt returns the departure frequency

of software developers. It is offered by the ―KPSEE

functions‖ component. The number FRle is offered by the

project manager.

 G. Rules to monitor schedule and budget of individual

activity and the entire project. Over-schedule and over-

budget are possibly the most threatening risk.

Violation of the following rule(s) will enforce the

project manager to take proper actions.

Rule 9. Time()-startTime(ActIDi)
ActScRate*Schl(ActIDi)

Rule 10. Budget(ActIDi)-usedBudget(ActIDi)
ActBdRate*Budget(ActIDi)

Rule 11. Time()-startTime(Prj) PrjScRate*TolSchl

Rule 12. Budget(Prj)-usedBudget(Prj)
PrjBdRate*TolBudget (Prj)

The function Time gets the current time. The function

startTime returns the start time of an activity or the entire

project. The function useBudget returns the budget used

by an activity or the entire project. Both startTime and

usedBudget are offered by the ―KPSEE functions‖

component. The functions TolSchl and TolBudget return

the total schedule and budget of the entire project. They

are obtained from the +ScheduleBudget statement. The

numbers ActScRate, ActBdRate, PrjScRate, and

PrjBdRate are offered by the project manager.

 H. The rule to monitor the reaction time of an informed

role and that to monitor the waiting time of an

enactable activity.

Rule 13. Time()-informTime(Rlei) ReactTime

Rule 14. Time()-etblTime(ActIDi)WaitTime

The function informTime returns the time when the

role Rlei is informed. The function etblTime returns the

time when the activity ActIDi is enactable. Both the

 A Knowledge-based PSEE with the Ability of Project Monitoring 9

Copyright © 2014 MECS I.J. Information Engineering and Electronic Business, 2014, 4, 1-11

functions informTime and etblTime are offered by the

―KPSEE functions‖ component. The numbers ReactTime

and WaitTime are offered by the project manager. The

rules facilitate improving project efficiency.

The monitoring rules reveal that the ―KPSEE functions‖

component in Fig. 1 offers many functions for project

monitoring. We do not describe them because of their

easiness. For example, informTime just records the time

when a role is informed.

IV. FEATURES

KPSEE offers the features mentioned in section I.

Exception handling is solid because of Algorithms 2

through 7. Software development organizations can be

distributed because KPSEE is distributed. Enhancing

process flexibility is offered because KPSEE allows

dynamic adding, removing, and changing process

components anytime during process enactment.

Integrating PSEEs can be achieved because placing

process programs translated from other PSEEs in any

order becomes a KPSEE process program. Keeping pace

with significant change is obvious because the change as

significant as adding, removing, or changing process

component at anytime during process enactment are

allowed. The other features are proved below.

 Maximize the degree of process parallelism

If an activity is enacted immediately when its condition

is true and its input products, required roles, and tools are

available, the degree of process parallelism is maximized.

According to Algorithm 1, when the input products of an

activity is available and its condition is true, KPSEE

informs the roles trusted by the input products. As long as

the reacted roles are enough, the activity is enacted

without waiting. Therefore, KPSEE maximizes the

degree of process parallelism.

 Prevent technique leakage

Suppose Rlei in Orgi is a role that enacts the activity

ActIDi. Moreover, Orgi cannot access one or more input

products of the activity. If this situation occurs, technique

leakage happens. However, Algorithm 1 informs roles in

the organizations ―(j Org(IPd(ActIDi)) j)) (k

TOrg(j Org(IPd(ActIDi)) j)k)‖ or those in AO to enact

the activity. If an organization cannot access one or more

input products of ActIDi, it is not in the organization set

― j Org(IPd(ActIDi)) j‖ or AO. In other words, roles in

the organizations that cannot access one or more input

products will not be informed. This prevents technique

leakage.

Using roles in trusted or authorized organizations is the

basic concept of information flow control to prevent

technique leakage. However, the join operation of an

information flow control model [24] is not mentioned

(the join operation adjusts the subject that can access an

object after an information flow). In fact, the join

operation in KPSEE is achieved by the statement

― subRleRlei , ii RleOpd ‖ in Algorithm 1.

With the statement, a product depends on roles producing

it. When the product should be accessed to enact ActIDm,

the set ―(j Org(IPd(ActIDm))j)) (k TOrg(j

Org(IPd(ActIDm)) j) k)‖ can correctly identify the

organizations that can access the product.

 Manage product consistency

According to Algorithm 1, a product produced by an

activity depends on the input products. When a product

should be changed, Algorithm 2 forces the activity

producing the product to be changed and enacted to

change the product. Moreover, the following algorithm

segment ensures that the products directly or indirectly

depend on the changed product will be changed

accordingly.

affPdSet = getDepPdSet(Pdi);

 PdjaffPdSet do

ActIDj = getActID(Pdj);

setStatus(Pdj, ―U‖);

if (status(ActIDj) = ―E‖) then

inform(Rle(ActIDj), ―Stop enactment‖,

ActIDj);

end if;

setStatus(ActIDj, ―D‖);

end do;

When a product should be removed, Algorithm 3

removes the product and the activity producing the

product. Moreover, the following algorithm segment

removes the products directly or indirectly dependent on

the removed product.

affPdSet = getDepPdSet(Pdi);

 PdjaffPdSet do

ActIDj = getActID(Pdj);

setStatus(Pdj, ―D‖);

if (status(ActIDj) = ―E‖) then

inform(Rle(ActIDj), ―Stop enactment‖,

ActIDj);

end if;

setStatus(ActIDj, ―D‖);

end do;

When a product Pdi should be corrected, Algorithm 6

requires the software developers that developed Pdi to re-

enact the activity to correct Pdi. The algorithm also

corrects the products directly or indirectly dependent on

Pdi through recursively invoking Algorithm 6 as shown

below.

affPdSet = getDepPdSet(Pdi);

 PdjaffPdSet , corrPd(Pdj);

Note that changing or removing activities may also

affect products. Algorithm 4 invokes Algorithm 2 (i.e.,

the function chgPd(pdi);) to handle the change of affected

products and Algorithm 5 invokes Algorithm 3 (i.e., the

function rmvPd(pdi);) to handle the removing of affected

products. The invocations ensure product consistency.

10 A Knowledge-based PSEE with the Ability of Project Monitoring

Copyright © 2014 MECS I.J. Information Engineering and Electronic Business, 2014, 4, 1-11

Currently, our knowledge base (which is KPKB) is

homogeneously. To improve the performance of KPSEE,

we prepare to upgrade the ability of KPKB to offer the

ability of storing heterogeneous knowledge [25]. We

need this ability because different software tools may

create documents in different formats.

V. CONCLUSION

According to the change of enactment environments

and the increment of software development complexity,

PSEE features should be enhanced. We designed a

knowledge-based PSEE named KPSEE. It offers the

following features, in which some are enhanced ones.

 It maximizes the degree of process parallelism. When

the input products of an activity are available and its

condition is true, KPSEE informs the roles trusted by

the input products. As long as the reacted roles are

enough, the activity is enacted without waiting.

Therefore, KPSEE maximizes the degree of process

parallelism.

 It enhances process flexibility. KPSEE offers the

flexibility by allowing dynamic adding, removing, and

changing any components at anytime during process

enactment. The flexibility is achieved by allowing

unstructured statements and offering strong exception

handling functions.

 It manages product consistency. During the deviation

of products and activities, KPSEE properly handles the

products directly or indirectly dependent on the

changed or removed product. Therefore, KPSEE

manages product consistency.

 It integrates PSEEs. KPSEE process statements are

unstructured. Therefore, when process programs in

different PSEEs are translated into KPSEE process

statements. They can be placed in any order to become

an integrated KPSEE process program. Therefore,

KPSEE integrates PSEEs.

 It keeps pace with significant change of a process.

KPSEE allows adding, removing, and changing any

component of a process program at anytime. With this,

no significant change will affect process enactment.

That is, KPSEE keeps pace with significant change of

a process.

 It prevents technique leakage. KPSEE is fused with an

information flow control model. With the model, when

an activity can be enacted, KPSEE informs the roles

whose organizations are allowed to access all the input

products. This prevents technique leakage.

 It offers project monitoring ability. KPSEE offers rules

to monitor project related events. For example, it

monitors both schedule and budget of activities and the

entire project.

REFERENCES

[1] L. Osterweil, ―Software Processes Are Software Too‖, 9’th

IEEE International Conference on Software Engineering,

2-13, New York, 1987

[2] SERENA, ―An Introduction to Agile Software

Development‖, available on http://www.serena.com/docs/

repository/solutions/intro-to-agile-devel.pdf

[3] R. Matinnejad and R. Ramsin, ―An Analytical Review of

Process-centered Software Engineering Environments‖,

IEEE 19’th International Conference and Workshops on

Engineering of Computer-based Systems, pp. 64-73, 2012.

[4] S. -C. Chou, ―Using Product Status to Coordinate

Heterogeneous Process Environments‖, IEICE Trans.

Information and Systems, vol. E86-D, no.1, pp.56-62, Jan.

2003.

[5] S. -C. Chou, ―ADPE: Agent-based Decentralized Process

Engine‖, IEICE Transactions on Information and Systems,

E88-D(3), 603-609, Mar., 2005.

[6] S. C. Bandinelli, A. Fuggetta, and C. Ghezzi, ―Software

Process Model Evolution in the SPADE Environment,‖

IEEE Transactions on Software Engineering, Vol. 19, No.

12, 1128-1144, Dec. 1993.

[7] S. -C. Chou and J.-Y. J. Chen, ―Process Program Change

Control in a Process Environment‖, Software - Practice

and Experience, vol. 30, no. 3, 175-197, 2000.

[8] G. Cugola, ―Tolerating Deviations in Process Support

Systems via Flexible Enactment of Process Models‖, IEEE

Transaction on Software Engineering, vol. 24, no. 11, 982-

1001, 1998.

[9] D. Kim, M. Kim, H. Kim, ―Dynamic Business Process

Management Based on Process Change Patterns‖,

International Conference on Convergence Information

Technology, pp. 1154-1161, 2007.

[10] W. She, I. –L. Yen, B. Thuraisingham, and E. Bertino,

―The SCIFC Model for Information Flow Control in Web

Service Composition‖, 2009 IEEE International

Conference on Web Services, 2009.

[11] A. Myers and B. Liskov, ―Complete, Safe Information

Flow with Decentralized Labels‖, 14’th IEEE Symp.

Security and Privacy, pp. 186-197, 1998.

[12] J. Y. J. Chen, ―CSPL: An Ada95-like, Unix-based Process

Environment,‖ the IEEE Transactions on Software

Engineering, vol. 23, no. 3, pp. 171 - 184, March 1997.

[13] I. Z. Ben-Shaul and G. E. Kaiser, ―A Paradigm for

Decentralized Process Modeling and its Realization in the

Oz Environment‖, in Proceedings of the 16th ICSE, pp.

179-188, 1994.

[14] C. J. Hagen, ―A Generic Kernel for Reliable Process

Support‖, Ph. D. Dissertation of the Swiss Federal Institute

of Technology Zurich, 1999.

[15] J.-Y. Chen and S.-C. Chou, ―Consistency Management in a

Process Environment‖, Journal of Systems and Software,

vol. 47, pp. 105-110, 1999.

[16] A.D. Lucia, F. Fasano, R. Oliveto, and G. Tortora, ―Fine-

grained management of software artefacts: the ADAMS

system‖, Software Practice and Experience, vol. 40, no. 11,

pp. 1007-1034, 2010.

[17] S. Weber, A. Emrich, J. Broschart, E. Ras, and O . U nalan,

―Supporting Software Development Teams with a

Semantic Process-and Artifact-oriented Collaboration

Environment‖, Proc. SOFTEAM'09, 2009

[18] M.A. Almeida da Silva, R. Bendraou, X. Blanc, and M.P.

Gervais, ―Early Deviation Detection in Modeling

Activities of MDE Processes‖, LNCS, vol. 6395, pp. 303-

317, 2010.

[19] M.A. Almeida da Silva, R. Bendraou, J. Robin, and X.

Blanc, ―Flexible Deviation Handling during Sofware

Process Enactment‖, Proc. EDOCW'11, pp. 34-41, 2011.

[20] R. S. P. Maciel, R. A. Comes, A. P. Magalhaes, B. C. Silva,

and J. P. B. Queiroz, ―Supporting Model-driven

Development Using a Process-centered Software

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Dongsoo%20Kim.QT.&searchWithin=p_Author_Ids:37695204100&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Minsoo%20Kim.QT.&searchWithin=p_Author_Ids:37694577900&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Hoontae%20Kim.QT.&searchWithin=p_Author_Ids:37835533600&newsearch=true

 A Knowledge-based PSEE with the Ability of Project Monitoring 11

Copyright © 2014 MECS I.J. Information Engineering and Electronic Business, 2014, 4, 1-11

Engineering Environment‖, Automated Software

Engineering, 20(3), pp. 427-461, 2013.

[21] F.A. Aleixo, M.A. Freire, W.C. dos Santos, and U. Kulesza,

―Automating Variabitliy Management, Customization and

Deployment of Software Processes: A Model-Driven

Approach‖, Proc. ICEIS'11, pp. 372-387, 2011.

[22] R. S. P. Maciel, B. C. Silva, and N. S. Rosa, ―An

Integrated Approach for Model Driven Process Modeling

and Enactment‖, Proc. SBES'09, pp. 104-114, 2009.

[23] S. –C. Chou, W. –C. Hsu, and W. –K. Lo, ―DPE/PAC:

Decentralized Process Engine with Product Access

Control‖, Journal of Systems and Software, 76(3), 207-219,

June, 2005.

[24] A. C. Myers, ―JFlow: Practical Mostly-Static Information

Flow Control‖, Proceedings of the 26’th ACM Symposium

on Principles of Programming Language, 228-241, 1999.

[25] M. K. Yusof, A. F. A. Abidin, and M. N. A. Rahman,

―Architecture for Accessing Heterogeneous Databases‖,

International Journal of Information Technology and

Computer Science(IJITCS), vol 4, no. 1, pp. 25-31, 2012.

Authors’ Profiles

Shih-Chien Chou is a Professor in the

Department of Computer Science and

Information Engineering, National Dong

Hwa University, Taiwan. He is major in

software engineering, process environment,

software reuse, and information flow

control.

Chiao-Wei Li is a graduate student in the

Department of Computer Science and

Information Engineering, National Dong

Hwa University, Taiwan.

How to cite this paper: Shih-Chien Chou, Chiao-Wei Li,"A Knowledge-based PSEE with the Ability of Project

Monitoring", IJIEEB, vol.6, no.4, pp.1-11, 2014. DOI: 10.5815/ijieeb.2014.04.01

