
I.J. Information Engineering and Electronic Business, 2014, 2, 41-46
Published Online April 2014 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijieeb.2014.02.05

Copyright © 2014 MECS I.J. Information Engineering and Electronic Business, 2014, 2, 41-46

Detecting Return Value Mismatch during

Component Adaptation with Concern of System

Performance

Aisha Mohammed Alshiky, M. Rizwan Jameel Qureshi
Department of Information Technology, Faculty of Computing and Information Technology, King Abdulaziz University,

Jeddah, Saudi Arabia

aalshikey@yahoo.com, anriz@hotmail.com

Abstract—Component adaptation becomes a critical

problem in component-based software engineering

(CBSE). This problem appears during assembling and

reusing of components into new system. The

interoperability among components needs to use

adaptation technique to solve this problem. Usually, there

are mismatches between interfaces of reusable

components. This research will focus on detecting fully

semantic component interface mismatch by proposing a

solution including return value match next to other match

such as operation name, method of operation and

parameter type match. This research just explains return

value mismatch that are not considered in other solutions.

The proposed solution also concerns about system

performance that is neglected in previous solutions by

proposing a „Detector‟ tool that is responsible to assign

and delete unwanted functions from reusable component

before integration.

Index Terms—Component adaptation, fully semantic

mismatches, return value mismatch.

I. INTRODUCTION

Software component adaptation is a crucial problem in

component-based software engineering (CBSE). The

main advantages of CBSE are time of development will

decrease while quality will increase. Subsequently,

CBSD based application development goes through

multiple step which are selection, adaptation, and

assembly process for components, rather than starting

with software development from the scratch [1].

Software

developers like to use off the shelf components having

high quality and reliability to cut down development time.

Each component provides different functions to meet

different requirements.

As a result of the incompatibilities among components

the need of adaptation methods exists. The commons

methods provided to solve such problems are: changing

the existing component or system during integration;

modify the purchased component as developer wishes

and placing an adaptor between the reusable component

and system [1]. This paper is addressing the adaptor

problem to detect mismatching between requirements and

components. There are two classification of adaptation of

existing reuse unit that are white-box and black-box.

White-box adaptation needs to understand internal

component while the black-box adaptation needs to

understand just interface of subject of reuse [1]. This

research uses black-box adaptation to focus on detecting

component interface mismatch problem. Many research

papers are written to solve this problem but most of them

are inefficient regarding system performance and fully

semantic match. Most of studies supported only

operation name, method of operation and parameter type

mismatch. While the return value mismatch are not

considered. This paper proposes a solution that includes

return value mismatch next to operation name, method of

operation and parameter type mismatch to support. The

proposed solution uses semantic match. A tool is

proposed naming „Detector Tool‟ that assigns and deletes

unwanted functions from reusable component to save

system performance.

The rest of the paper is organized as follows. Section 2

provides the literature review and limitations. Section 3

describes the problem and proposed solution. Validation

of the proposed solution is illustrated in section 4.

II. RELATED WORK

Component based software engineering (CBSE)

concept is not new and huge numbers of off-the-shelf

components are exactingly available. Each component

provides different functions. Mismatch problem is often

faced by the developers during assembling and reusing of

existing components. Integration among components

needs adaptation to solve this problem. There are a lot of

studies which is performed to propose solutions for this

problem.

One of the mismatch solutions used behavior approach

[2]. This solution depends on adaptor concept. The

adaptor is used for synchronous interaction between

components. The system computes a behavior protocol of

adaptor to coordinate the interaction of components. This

solution needs to remember the order of message and

make them reorder [2]. It is proposed that binary

component adaptation techniques are suitable for

effective adaptation of components [3-4]. The main

42 Detecting Return Value Mismatch during Component Adaptation with Concern of System Performance

Copyright © 2014 MECS I.J. Information Engineering and Electronic Business, 2014, 2, 41-46

drawbacks of these solutions are platform dependency.

The static information of component structure and the

classes are required to analyze the existing binary

component. The portions necessary for adaptation are

identified after understanding this information. A

solution is proposed for the integration of new

requirements with the existing components [5].

Integration code is either reused and adapted, or

completely optimized depending on the system‟s

specification. Another study focuses on detection of

mismatch [6]. The previous adaptation models focus only

on message name mismatch while this study considers

data type mismatch in addition to message and parameter

mismatch. This study suggested a solution focusing into

parameters data types [6].

Test-driven prototypes can't find semantics of

matching components [7-8]. Adaptation is difficult to

specify at run time of system [9]. An approach is

suggested using unified meta model of each component

[9]. This approach in [9] has several limitations such as

dynamic adaptation.

Schema is presented based on context observation as a

solution of adapting component-based systems during

execution time [10]. The proposal focuses on

architectural models.

III. PROBLEM AND THE PROPOSED SOLUTION

Previous studies tried to solve mismatch problem of

components (mismatch between required/expected

interface and provided interface of reusable.

This paper proposes a solution to solve adaptation

problem catering performance issues of system. The

proposed solution just contains explanation of return

value mismatch other than remaining mismatch

(operation name, method of operation and parameter type

which are supported at previous solutions).

3.1 Save System Performance

Firstly, the proposed solution focuses on performance

of system that is wasted during component integration

and adaptation process. The performance issue is some

time raised due to number of extra functions that are

provided by component. The number of provided

functions may be more than required functions. Loading

time of unnecessary functions into a system consumes

system resources such as memory and CPU. The

„Functions Detector‟ tool is proposed to save the system

performance. This tool checks on component

implementation. The tool contains a database to store

information of required operations for current application

(adaptation specification) and existing component

specification (component operations name, parameter

type and method of operation).

This tool does this:

The proposed tool will select each existing/provided

function and check with the required function.

 If this function is needed and required in the

new system it will be adapted to match required

function interface?

 If this function is not needed then the

operation/function code will be omitted from

existing component?

This step will reduce loading of irrelevant functions to

save time. After this process, the component will be

integrated into system and the adaptation of interface

component will be provided. Figure1 shows the working

of „Function Detector‟ tool.

Fig 1: Function Detector Tool

 Detecting Return Value Mismatch during Component Adaptation with Concern of System Performance 43

Copyright © 2014 MECS I.J. Information Engineering and Electronic Business, 2014, 2, 41-46

Table 1: Comparison of brief literature review

Paper Title Limitations

Research on Behavior

Adaptation of Software

Component

If there is any missing data the deadlock will happen and the message will lose from

system

and calculate the synchronous relations among interacted components and reduce it

Research on Safe

Behavior Adaptation of

Software Component

Time consuming and need to remember the order of message and make them reorder.

Safety Verification of

Software Component

Behavior Adaptation

Time consuming and need to remember the order of message and make them reorder.

Component Adaptation

Mechanism

platform dependent adaptation system based on purely BCA methodologies

understand each static information of the component structure and the classes

Automatic Synthesis

and Adaption of Gray-

box Components for

Embedded Systems

Reuse vs. Optimization

non-functional properties for instance are not taken

Validation of Novel

Approach to Detect

Type Mismatch

Problem Using

Component Based

Development

Reduce performance of system

Automated Creation and

Assessment of

Component Adapters

with Test Cases

Depend on a brute-force (all possibilities) that leads to consuming of time and

resource. Also it slow the response for user research query

 Leveraging Software

Search and Reuse with

Automated Software

Adaptation

The current adaptation algorithm

only considers methods to be compatible if their signatures

Fully match.

Unifying Design and

Runtime Software

Adaptation Using

Aspect Models

Dynamic adaptation of dynamic adaptations

Weaving order at runtime.

Paradigmatic dependence.

An MDE Approach for

Runtime Monitoring

and Adapting

Component Based

Systems: Application to

WIMP User Interface

Architectures

Computational cost due to M2M transformation

consume the system performance

3.2 Component Interface Definition Mismatch Solution

The problem is not mismatch between functionality

of the required functions and the reusable component

implementation. This is due to a syntactic mismatch of

the interface definition. The study in [5] proposed a

solution to detect mismatch between required and

provided interface but it didn't solve fully semantic

mismatch. This paper proposed a solution to add a

check on return value mismatch. First check for each

mismatch between required interface component and

interface of existing component in fully way such as

mismatch of operation name, parameter type, method

of operation and mismatch of return value.

Adapted component (adapter) is to match the

provided functions with required with fully semantic

match. Adapted component contains modified

operation name, methods of operation and return value

this component may contain little of code. The

proposed solution cares about fully semantic match

between adapted and required interface. Adapted

component acts as translator between the system and

existing component which is understand the request

from client and understand reusable component

interface. It receives request from clients and send it to

existing component then it sends the response again

from existing component to client. Table 2 shows

examples of match and mismatch between required and

provided functions.

44 Detecting Return Value Mismatch during Component Adaptation with Concern of System Performance

Copyright © 2014 MECS I.J. Information Engineering and Electronic Business, 2014, 2, 41-46

Table 2: Required and provided interface example

Required functions Provided functions match

SetID() SetID() yes

StudentName(long):

string

GetStudentName

(long): string

no

SearchID(long):

Boolean

SearchID(long):

String

no

As shown in Table 2, there is an example showing

the return value mismatch in function SearchID (long).

The function has name and parameter type match but

there is no return value match. The required return

value of SearchID (long) is Boolean while the provided

function has String as return value of same function as

shown in figures 2 and 3.

Required function:

Fig 2: Required SearchID()

Provided function:

Fig 3: Provided SearchID()

IV. VALIDATION

Survey is used as a research design to validate the

proposed solution. It consists of 20 questions belonging

to 4 goals. Each goal has 5 questions. This survey is

distributed online among different developers and

designers who are interested in component based

development (CBD) and component adaptation.

Likert scale ranges from 1 to 5 as follows.

 Strongly Disagree indicating 1

 Disagree indicating 2

 Neutral indicating 3

 Agree indicating 4

 Strongly agree indicating 5

Thirty respondents fill the data and statistical

analysis is performed using frequency tables and bar

charts.

4.1 Cumulative analysis of first goal

Goal 1: Considering the important of performance

system during component adaptation.

The results of survey of this goal are shown in

Figure 4. It clears from the cumulative descriptive

analysis of goal 1 that 49.33% of the sample agreed to

take care of system performance during component

adaptation and 24.67% strongly agreed while 20.67%

are neither agreed nor disagreed whereas 4.67% are

disagreed.

Fig 4: Graphical representation of cumulative statistical analysis of
goal 1

4.2 Cumulative analysis of second goal

Goal 2: Consider Considering fully semantic match

through component adaptation.

Figure 5 shows the cumulative descriptive analysis

of goal 2 that 46% of the respondents are agreed and

26% are strongly agreed with importance of fully

semantic during component adaptation while 10% are

neither agreed nor disagreed whereas 17.33% are

disagreed.

0

20

40

60

80

Q5

Q4

Q3

Q2

Q1

SearchID (long ID)

{
if there is student
Return true;

Else
Return false
}

SearchID (long ID)
{
String st1, st2;

St1="there is student";
St2="there is no student";
If there is student

Return st1;
Else
Return st2;

}

 Detecting Return Value Mismatch during Component Adaptation with Concern of System Performance 45

Copyright © 2014 MECS I.J. Information Engineering and Electronic Business, 2014, 2, 41-46

Table 3: Cumulative Statistical Analysis of Four Goals

Q. number Strongly Disagree Disagree Neutral Agree Strongly Agree

1 0 1 0 11 18

2 0 3 9 18 0

3 0 1 6 17 6

4 1 2 12 14 1

5 0 0 4 14 12

6 0 0 2 11 17

7 1 24 5 0 0

8 0 0 3 20 7

9 0 1 3 22 4

10 0 1 2 16 11

11 0 0 5 9 16

12 0 2 20 8 0

13 1 5 16 8 0

14 0 0 5 9 16

15 0 1 5 20 4

16 0 9 18 3 0

17 0 10 16 4 0

18 0 1 19 8 2

19 0 0 5 8 17

20 0 0 3 8 19

Total 3 61 158 228 150

Average 0.50% 10.17% 26.33% 38.00% 25.00%

Fig 5: Graphical representation of goal 2

4.3 Cumulative Analysis of third goal

Goal 3: Considering return value through

representing component interface.

The results of survey for goal 3 are shown in figure

6. It displays that 36 of the sample agreed and 24% are

strongly agreed with importance of considering return

value through representing component interface while

34% are neither agreed nor disagreed whereas 5.33%

are disagreed.

Fig 6: Graphical representation of goal 3

Fig 7: Representation of cumulative statistical analysis of goal 4

0

20

40

60

80
Q10

Q9

Q8

Q7

Q6

0

20

40

60Q15

Q14

Q13

Q12

Q11

0
20
40
60
80Q20

Q19

Q18

Q17

Q16

46 Detecting Return Value Mismatch during Component Adaptation with Concern of System Performance

Copyright © 2014 MECS I.J. Information Engineering and Electronic Business, 2014, 2, 41-46

4.4 Cumulative analysis of forth goal

Goal 4: Detecting return value mismatch.

The survey‟s results of goal 4 are shown in figure 7. It

depicts that 25.33% of the respondents are strongly

agreed and 20.67% are agreed while 40.67% are neither

agreed nor disagreed whereas 13.33% are disagreed.

4.5. Comprehensive Cumulative analysis of four goals

Table 3 shows that 38% of the respondents are agreed

and 25% are strongly agreed to all of the four goals.

26.33% are neutral while 10.17% are disagreed and

0.50% strongly disagreed.

V. CONCLUSION

Software component adaptation has become a crucial

problem in component-based software engineering

(CBSE) as a result of mismatch and incompatibility

between the interfaces for the purchased components and

the required functions during assembling and reuse. This

paper proposed a solution to solve this problem by

focusing on detecting fully semantic mismatch without

sacrificing system performance. The solution is to

include return value mismatch next to operation name,

method of operation and parameter type mismatch. A

„Detector‟ tool is proposed to assigns and deletes

unwanted functions from reusable component to save

system performance before integration process. The

proposed solution is validated using a survey. It is

concluded from the cumulative analysis that system

performance is an important factor during adaptation of

components. Return value mismatch has high effect

during component adaptation process. Therefore, return

value mismatch should be taken into consideration while

selecting component interfaces using the proposed

„Detector‟ tool.

REFERENCES

[1] Sae Hoon Kim; Jeong-Ah Kim, “Component Adaptation

Mechanism,” Ubiquitous Computing and Multimedia

Applications (UCMA), 2011 International.

[2] Xiong Xie; Weishi Zhang; Xiuguo Zhang; Zhiying Cao;

Jinyu Shi, "Research on Safe Behavior Adaptation of

Software Component," Computational Intelligence and

Software Engineering (CiSE), 2010 International

Conference, pp.1-4, 10-12 Dec. 2010.

[3] Xiong Xie; Weishi Zhang; Xiuguo Zhang; Zhiying Cao;

Jinyu Shi, "Research on Safe Behavior Adaptation of

Software Component," Computational Intelligence and

Software Engineering (CiSE), 2010 International

Conference, pp.1,4, 10-12 Dec. 2010.

[4] Xiong Xie; Weishi Zhang; Zhiying Cao; Xiuguo Zhang;

Jinyu Shi, "Safety Verification of Software Component

Behavior Adaptation," E-Product E-Service and E-

Entertainment (ICEEE), 2010 International Conference,

pp.1,4, 7-9 Nov. 2010.

[5] Borde, E.; Carlson, J., "Automatic Synthesis and

Adaption of Gray-Box Components for Embedded

Systems - Reuse vs. Optimization," 35th Annual

Computer Software and Applications Conference

Workshops (COMPSACW), 2011, pp.224-229, July 2011.

[6] Rizwan Jameel; Ebtesam Alomari," Validation of Novel

Approach to Detect Type Mismatch Problem Using

Component Based Development," information technology

and computer sciences, pp. 108-117 August 2013.

[7] Hummel, O. and Atkinson, C.: Aut omated Creation and

Assessment of Component Adapters with Test Cases,

International Conference on Component-Based Software

Engineering (CBSE), Prague, 2010.

[8] Janjic, W.; Atkinson, C., “Leveraging software search and

reuse with automated software adaptation,” Search-

Driven Development - Users, Infrastructure, Tools and

Evaluation (SUITE), 2012 ICSE Workshop, pp.23,26, 5-5

June 2012.

[9] C. Parra, X. Blanc, A. Cleve, and L. Duchien, “Unifying

design and runtime software adaptation using aspect

models,” Science of Computer Programming, 2011.

[10] Criado, J.; Iribarne, L.; Padilla, N.; Troya, J.; Vallecillo,

A., "An MDE Approach for Runtime Monitoring and

Adapting Component-Based Systems: Application to

WIMP User Interface Architectures," Software

Engineering and Advanced Applications (SEAA), 2012

38th EUROMICRO Conference, pp.150,157, 5-8 Sept.

2012.

Authors’ Profiles

Aisha Mohammed Alshiky is a master student in IT

Department at King Abdulaziz University, interested in CBD

and Technology Management.

Dr. M. Rizwan Jameel Qureshi received his

Ph.D degree from National College of

Business Administration & Economics,

Pakistan 2009. This author is best researcher

awardees from Department of Information

Technology, King Abdulaziz University

Saudi Arabia in 2013 and Department of

Computer Science, COMSATS Institute of

Information Technology Pakistan in 2008.

How to cite this paper: Aisha Mohammed Alshiky, M. Rizwan Jameel Qureshi,"Detecting Return Value Mismatch

during Component Adaptation with Concern of System Performance", IJIEEB, vol.6, no.2, pp.41-46, 2014. DOI:

10.5815/ijieeb.2014.02.05

