
I.J. Information Engineering and Electronic Business, 2014, 2, 9-27
Published Online April 2014 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijieeb.2014.02.02

Copyright © 2014 MECS I.J. Information Engineering and Electronic Business, 2014, 2, 9-27

Machine Learning and Software Quality

Prediction: As an Expert System

Ekbal A. Rashid
Department of CS & E, C.I.T, Tatisilwai, Ranchi, 835103, India

ekbalrashid2004@yahoo.com

Srikanta B. Patnaik and Vandana C. Bhattacherjee
Department of CS & E, SOA University,Bhubaneshwar, Orissa,751030, India

Department of CS & E, B.I.T, Mesra, 834001, Ranchi, India

patnaik_srikanta@yahoo.co.in, vbhattachergee@ieee.org

Abstract—To improve the software quality the number of

errors from the software must be removed. The research

paper presents a study towards machine learning and

software quality prediction as an expert system. The

purpose of this paper is to apply the machine learning

approaches, such as case-based reasoning, to predict

software quality. The main objective of this research is to

minimize software costs. Predict the error in software

module correctly and use the results in future estimation.

The novel idea behind this system is that Knowledge base

(KBS) building is an important task in CBR and the

knowledge base can be built based on world new problems

along with world new solutions. Second, reducing the

maintenance cost by removing the duplicate record set

from the KBS. Third, error prediction with the help of

similarity functions. In this research four similarity

functions have been used and these are Euclidean,

Manhattan, Canberra, and Exponential. We feel that

case-based models are particularly useful when it is

difficult to define actual rules about a problem domain. For

this purpose we have developed a case-based reasoning

model and have validated it upon student data. It was

observed that, Euclidean and Exponential both are good

for error calculation in comparison to Manhattan and

Canberra after performing five experiments. In order to

obtain a result we have used indigenous tool. For finding

the mean and standard deviation, SPSS version 16 and for

generating graphs MATLAB 7.10.0 version have been

used as an analyzing tool.

Index Terms—Machine Learning, Software Quality

prediction, Case-Based Reasoning, Knowledge base

building, Distance functions, Expert System.

I. INTRODUCTION

Due to Lack of sufficient tools to evaluate and predict

software quality is one of the major challenges in software

engineering field. Identifying and locating faults in

software projects is a hard work. Particularly, when project

s i z e s g r o w , t h i s t a s k b e c o me s c o s t l y wi t h

complicated testing and evaluation mechanisms. On the

other hand, measuring software in a continuous and

disciplined manner brings many advantages such as

accurate estimation of maintenance costs and schedules,

and enhancing process and product qualities. Thorough

study of software metric data also gives important clues

about the position of possible faults in a module. The aim

of this research is to establish a technique for identifying

software faults using machine learning methods. It is very

common to see large projects being undertaken now a day.

The software being developed in such projects goes

through many phases of development and can be very

complicated in terms of quality assessment. There will

always be a concern for proper quality and effective cost

estimation of such software. This can be rather tricky as the

project being a large one may cover several unknown and

unseen factors that might previously be very difficult to

judge. Software fault prediction poses great challenges

because fault data may not be available for the entire

software module in the training data. In such cases machine

learning technique like case-based reasoning (CBR) can be

successfully applied to fault diagnosis for customer service

support. CBR systems use nearest neighbor algorithm for

retrieval of cases from the Knowledge base. Other machine

learning techniques have also been extensively used for

software quality (fault) prediction. The majority of today's

software quality estimation models are built on using data

from projects of a particular organization. Using such data

has well known benefits such as ease of understanding and

controlling of collecting data [3]. But different researchers

have reported contradictory results using different software

quality estimation modeling techniques. It is still difficult

to generalize many of the obtain results. This is due to the

characteristics of the datasets being used and dataset’s

small size. Correct prediction of the software fault or

maintain a software system is one of the most serious

activities in managing software project. Software

reliability provides measurement of software dependability

in which probability of failure is generally

time dependent. Various software quality characteristics

mailto:ekbalrashid2004@yahoo.com
mailto:patnaik_srikanta@yahoo.co.in
../IJIEEB-修订稿/vbhattachergee@ieee.org

10 Machine Learning and Software Quality Prediction: As an Expert System

Copyright © 2014 MECS I.J. Information Engineering and Electronic Business, 2014, 2, 9-27

have been suggested by authors such as James McCall and

Barry Boehm. There have been differences in opinion

regarding the exact definitions of the qualities of good

software. For example maintainability has been used to

define the ease with which an error can be located and

rectified in the software. This definition also includes the

ease with which changes can be incorporated in the

software [4].

The rest of the paper is structured as follows: Section II

gives the background and related work, Section III

discussed learning methods in brief, Section IV describe

learning/prediction system, Section V describes software

quality in brief, Section VI discussed about distance

functions, Section VII describes the methodology, Section

VIII discussed Proposed model. In Section IX we

discussed estimation criteria; Section X describes the

research category. Experimental analysis and result has

been presented in Section XI. A conclusion has been

presented in Section XII and Section XIII ends the paper

with concluding future scope. The appendix provides the

detail information about results of five experiments in a

tabular form (see table 1 to table 5) along with graphs.

II. BACKGROUND AND RELATED WORK

In the context of software fault prediction, most research

works have focused on fault modules. The difficulty of

software fault and maintainability is an important part of

software project development. Software size and software

fault data have regularly been used in the development of

models that predict software quality. A few software

quality models predict the quality of software modules as

also faulty or non faulty [20], [21]. Nowadays one of the

major application areas for case-based reasoning (CBR) in

the field of health sciences, multiagent systems as well as in

Web-based planning. Research on CBR in the area is

growing, but most of the systems are still prototypes and

not available in the market as commercial products.

However, many of the systems are intended to be

commercialized [22]. There is a little, but increasing piece

of work in which machine learning method is used in the

software quality (fault) prediction task. Recent age is more

worried about the quality of software. Wide research is

being carried out in this direction. The main thrust in

modern software engineering research is centered on trying

to build tools that can enhance software quality. Many

researchers have used AI-Based approach like Case-Based

Reasoning (CBR), Genetic Algorithm (GA), Neural

Network (NN), etc. Khan et al. [7] mentioned that, when

software quality was predicted, the main objective was to

predict reliability and stability of the software. Becker et al.

[8] was predicted performance of the software. Current

software fault prediction models frequently involve using

supervised learning methods to train a software fault

prediction model. Predicting the quality of the software

p r o d u c t d u r i n g i t s

development phase is a challenging job especially when

software sizes grow. Zhong et. al has used unsupervised

Learning techniques to build a software quality estimation

system [5]. Case-based reasoning has also been used by

Kadoda et. al in [1]. Myrtveit et al in [2] and Ganesan et. al

in [3] have also studied CBR was applied to software

quality modeling of a family of complete industrial

software systems and the accuracy is measured better than

a corresponding multiple linear regression model in

predicting the number of design faults. Aamodt and Plaza

are given the case-based reasoning cycle [10]. Rashid et. al

emphasized on the importance of software quality

prediction and accuracy of case-based estimation model [6]

[9].

III. LEARNING/PREDICTION SYSTEM

Learning or training methods can be broadly classified

into three basic types [19].

 Supervised Learning: When the actual response

varies from target response then network generates an

error signal. To minimize the error we need a

supervisor or teacher, hence the name supervised

learning.

 Unsupervised Learning: Unsupervised learning does

not require a supervisor or teacher, it needs certain

guidelines to make groups. Grouping can be done on

the basis of the pattern or property of the object.

 Reinforcement learning: It is similar to supervised

learning. Through this method the teacher does not

mention how nearer is the actual output to the desired

output. Therefore error generated during reinforced

learning is binary.

Machine learning techniques have the capability to

predict software quality in the early stages of software

development. Some of them can be applied if previous data

(Training data) is available in the knowledge base. In this

research work we have used case-based reasoning (CBR)

as a machine learning technique. The interactive learning /

prediction system can be seen in figure 1. A user can access

the prediction system using the given interface to learn new

problems and get the predicted outputs (see figure1). The

components of the prediction system are as follows:

1) Interface: It is the point of interaction.

2) Estimation/ Prediction system: Estimating or

predicting a system is typically done by learning from

the previous experience and provides knowledge for

future solutions to some extent.

3) Machine learning algorithm: Case-based reasoning

has been used as a machine learning algorithm where

the method of solving a new case(s) based on the

solutions on similar previous cases.

 Machine Learning and Software Quality Prediction: As an Expert System 11

Copyright © 2014 MECS I.J. Information Engineering and Electronic Business, 2014, 2, 9-27

4) Training data: The training data used in this research

work are collected from the students of computer

science and engineering from the university campus,

written in high-level language (C++), They are

maintained by faculty, supported by the laboratory

staffs, resources like computers, software etc.

Fig 1: Interactive learning/prediction System

IV. SOFTWARE QUALITY

Since quality is the first step for improvement in

anything, to achieve an improved state of affairs, quality

must be precisely defined and appropriately measured. But

very often in quality engineering and management, the term

quality is misunderstood on account of its ambiguous

characteristics. The ambiguity aspect of quality owes its

origin from the following [17];

1. Quality being multi-dimensional with

dimensions of entity of interest, the viewpoint on

that entity and the quality attributes of that entity

gets interpreted differently depending upon the

situation and interpreter.

2. On the basis of conceptualizing quality, it may be

referred either in its broadest sense or in its

precise connotation.

3. Being an element of our every day language,

quality may be interpreted differently depending

upon the uses – popular or professional.

However as the focus of this research will be around the

quality of software which is a sort of the professional use of

the concept quality as against the popular use of the same,

the third point mentioned above duly makes it very clear

how quality in popular view is quite different from quality

in professional view and hence it draws our attention to

take care.

V. SELECTION OF DISTANCE FUNCTIONS

Many literatures are reviewed on case-based reasoning

and neural network [11] [12] [13]. A similarity function

determines, for a given case, the most similar cases from

the knowledge base (i.e. Training data). The function

computes the distance between the new case and every

other case in the knowledge base. In this study four types of

similarity functions are considered and they include the

Euclidean distance, Canberra distance, Exponential

distance and the Manhattan distance.

Suppose a record set S1 of n fields has following values

u1, u2,…, un for the n fields respectively. Similarly a

record set S2 of the same type with field values v1, v2, …,

vn. Table 1 shows the definitions of four distance functions

which is used in our analysis.

Table 1: Distance functions

Distance dist (S1, S2) with equal weights of all

attributes

1) Euclidean distance (diste)





n

i

iiie vuwSSdist
1

2))(()2,1(

(1.1)

2) Manhattan distance (distm)





n

i

iiim vuwSSdist
1

||)2,1(

(2.1)

3) Canberra distance (distc)

||/||)2,1(
1

ii

n

i

iiic vuvuwSSdist 
 (3.1)

4) Exponential distance (distex)

)()2,1(
1





n

i

d

iex ewSSdist

 (4.1)

Where d=
2)(ii vu 

A. Euclidean Distance Function:

The most popular dissimilarity measure or distance is

the Euclidean distance. Accepts the record set as input and

finds the matching cases from the knowledge base. This

Interface

Estimation/Predicti

on System

New Problem

Machine Learning

Algorithm

Training Data

Predicted

Output

User

12 Machine Learning and Software Quality Prediction: As an Expert System

Copyright © 2014 MECS I.J. Information Engineering and Electronic Business, 2014, 2, 9-27

similarity function is probably the most commonly used

distance measures of dissimilarity between feature vectors

[6]. The distance is calculated by taking the weighted

distance between the new case and an existing case. The

weight associated with each independent variable is

provided by the user during run time. This distance is also

commonly used when the record set contains quantitative

attributes, which is given below:

The Weighted Euclidian distance (WED) of S1 from S2

is:





n

i

iiie vuwSSdist
1

2))(()2,1(

B. Manhattan Distance Function:

This similarity function is sometimes called the city

block distance or absolute distance or taxicab distance [6].

It is computed by taking the weighted sum of absolute value

of the difference in independent variables between the new

case and an existing case. The weight associated with each

independent variable is provided by the user during run

time.

The Weighted Manhattan distance (WMD) of S1 from

S2 is:





n

i

iiim vuwSSdist
1

||)2,1(

C. Canberra Distance Function:

The Canberra distance was introduced in the year 1966

and refined in 1967 by G. N. Lance and W. T. Williams [15]

[16]. It is a numerical measure of the distance between two

pairs of points in a vector space. The weight associated

with each independent variable is provided by the user

during run time.

The Weighted Canberra distance (WCD) of S1 from S2

is:

||/||)2,1(
1

ii

n

i

iiic vuvuwSSdist 


D. Exponential Distance Function:

The Exponential distance function is a mathematical

function expd (e, d)

where d is a variable and e is the

constant which is equal to approximately 2. 71828 [14].

The weight associated with independent variable is

provided by the user during run time. The distance is

calculated by taking the weighted distance between the new

case and an existing case.

The Weighted Exponential distance (WEXD) of S1 from

S2 is:

)()2,1(
1





n

i

d

iex ewSSdist

Where d=
2)(ii vu 

VI. METHODOLOGY

We observe software quality (fault) as a

multi-dimensional idea, consisting of such properties of the

software as maintainability, correctness, flexibility, error

proneness, changeability etc. The training data used in this

paper are collected from the students of computer science

and engineering from the university campus, written in

high-level language (C++), They are maintained by faculty,

supported by the laboratory staffs, resources like computers,

software etc. For each program we have evaluated the

students five times.

In this study data collected from students included the

following metrics:

 Size metrics (LOC)

 Code documentation metrics (comment lines,

blank lines)

 Number of functions or procedures.

 Difficulty level of Software.

 Experience of Programmer in Year

 Development Time

 Number of Variables

The values for lines of code, number of functions, level

of difficulty, experience, development time and a number

of variables were collected from programs developed by

students of the university campus over a period of 1 year.

VII. PROPOSED MODEL

The parameters selected for the model were based upon

the following assumptions.

 The time constraint or development time affects

the quality level.

 The mental discrimination required to design and

code a program depends upon the numbers of

functions and number of variable

 The number of functions is a predictor of how

much effort is required to develop a program.

 The programming language exposure / experience

of a programmer affect the quality level.

 The inherent program difficulty level also affects

the quality level.

Through this model (see figure 2) user can take input of

different attributes of software (the attributes of software

used LOC, NOF, DL, NOV, DT, PEX as a threshold

vector)

 Machine Learning and Software Quality Prediction: As an Expert System 13

Copyright © 2014 MECS I.J. Information Engineering and Electronic Business, 2014, 2, 9-27

and get output as a exact/nearest matching case from the

knowledge base (KBS). In this paper first, we have built a

KBS. Second, we have given the emphasis on how to

reduce the maintenance cost. For reducing the maintenance

cost we are removing the duplicate record set from the KBS.

Third, the magnitude of relative error is calculated with the

help of distance functions. It can be seen as a snapshot (see

snapshot 1 through 7). Therefore one can identify the

distance functions which are more efficient for error

prediction. Details information regarding separate

experiment results can be seen in the tabular form (See

appendix).

A. Input Data Module

This module accepts the values of various parameters

from the user. It also has the provision of assigning weights

to the parameters if the user wants to do so.

Fig 2: Software quality prediction system with four distance functions

VIII. ESTIMATION CRITERIA

The fundamental requirement of evaluating and

validating the methodology for the accuracy of

estimations, we have used error prediction method i.e.

Mean Magnitude of Relative Error (MMRE) to measure

how accurate the estimations are. Relative error is the

absolute error in the observations divided by its actual

parameter. Improvements in accuracy of predictions and

increasing the reliability of the knowledge base were a

priority. The research paper present the results obtained

when applying the case-based reasoning model to the data

set. The accuracy of estimates is evaluated by using the

magnitude of relative error (MRE) defined as:

MRE=│Actual_Parameter– Targeted_Parameter│

Actual_Parameter

IX. RESEARCH CATEGORY

Case-based reasoning (CBR) is most popular machine

learning technique. A CBR system is an expert system that

aims at finding solutions to a new problem based on

previous experience. Therefore we can classify this

research work as an “expert system” because system

consists of a knowledge base and a software module called

the inference engine to perform inferences from the

knowledge base. These inferences are communicated to the

user. Figure.3 shows the components of an expert system

[18].

Input case

Retry

Modify

Accept

User

 Input

Data

Module

Knowledg

e Base

User

Knowledg

e Base

Add

Retrieved Case

Modified

Case

No

Yes

1

Euclidean

Method

2

Canberra

Method

3

Manhattan

Method

4

Exponential

Method

Matching

case

Matching

case

Matching

case

Matching

case

14 Machine Learning and Software Quality Prediction: As an Expert System

Copyright © 2014 MECS I.J. Information Engineering and Electronic Business, 2014, 2, 9-27

Fig 3: Components of an Expert System

X. EXPERIMENTAL ANALYSIS AND RESULTS

The main objective of this prediction system is to help

development of good quality software. The purpose of the

paper is also to explore how case-based reasoning

technique can support decision-making and help control

dissimilarity in software fault activities, thus ultimately

enhancing software quality. Estimating reliability of

upcoming software versions based on fault history the fault

estimation to enhance test stage effectiveness; task of

resources to fix faults, and distinguishing faulty software

modules from non-faulty ones. We have developed a

case-based reasoning model and have validated it upon

student data (see figure 2). 150 data set has been used in

this research, where 80% data have used for model

development and 20% data has been used for validation of

the model (not used for building of models). Five

consecutive experiments were performed and result with

respect to development time (MRE w.r.t. Dev_Time) has

been predicted because development time or time

constraint affects the quality level (acceptable limit less

than or equal to 10%). Second, the mean error of each

record set is calculated for each attributes of nearest data in

the knowledge base (acceptable limit less than or equal to

10%). It was observed that predictions are 71.198% and

92.664% of the cases within 10% error using Euclidean

and Exponential method and predictions are 67.998% and

87.328% of the cases within 10% error using the

Manhattan method, while predictions are 43.864% and

57.332% of the cases within 10% error using Canberra

method (See table 7). The results are coming quite good

when Euclidean and Exponential method has been used.

Therefore we can conclude that Euclidean and Exponential

both are good for error calculation in comparison to

Manhattan and Canberra while applying CBR technique.

In this research we have shown the strong motivation

behind the use of CBR as a tool for solving the problem

which has been given as a snapshot in this paper. Snapshot

results can be seen in the table 2 of first row which is bold

given in the appendix as an example. It seems that the

model is application-based and it is very easy to extend this

model to a theoretical case-based reasoning. As we know

that CBR can not develop robustly without theoretical

support.

Table 2: The Mean and Std. Deviation of Error with respect to Dev_time using four similarity functions (Experiment no 1).

Output Name of Similarity Functions Mean Std. Deviation

Error w.r.t.

 Dev_Time

Euclidean

Manhattan

Canberra

Exponent

8.6667

11.3000

19.9667

8.6667

15.97484

15.32217

21.34040

15.97484

Distance (Error) Euclidean

Manhattan

Canberra

Exponent

4.5487

5.4452

9.2740

4.5487

3.96596

4.94870

7.08273

3.96596

Expert System

Inference Engine

(Software Module)

Knowledge

Base

User

 Machine Learning and Software Quality Prediction: As an Expert System 15

Copyright © 2014 MECS I.J. Information Engineering and Electronic Business, 2014, 2, 9-27

Table 3: The Mean and Std. Deviation of Error with respect to Dev_time using four similarity functions (Experiment no 2).

Output Name of Similarity Functions Mean Std. Deviation

Error w.r.t . Dev_Time Euclidean

Manhattan

Canberra

Exponent

8.1000

9.0333

24.3333

8.1000

11.90291

13.31446

23.88093

11.90291

Distance (Error) Euclidean

Manhattan

Canberra

Exponent

3.1643

5.1690

9.0093

3.1643

2.49421

3.94575

6.98985

2.49421

Table 4: The Mean and Std. Deviation of Error with respect to Dev_time using four similarity functions (Experiment no 3).

Output Name of Similarity Functions Mean Std. Deviation

Error w.r.t . Dev_Time Euclidean

Manhattan

Canberra

Exponent

8.7667

9.7333

18.5000

8.7667

12.77282

15.70402

21.76006

12.54697

Distance (Error) Euclidean

Manhattan

Canberra

Exponent

4.2693

5.3343

7.3387

4.2693

4.44246

5.11041

6.52675

4.44246

Table 5: The Mean and Std. Deviation of Error with respect to Dev_time using four similarity functions (Experiment no 4).

Output Name of Similarity Functions Mean Std. Deviation

Error w.r.t . Dev_Time Euclidean

Manhattan

Canberra

Exponent

7.3667

6.7667

24.4333

7.3667

11.27855

10.88714

25.56086

11.27855

Distance (Error) Euclidean

Manhattan

Canberra

Exponent

4.0380

4.6987

9.6307

4.0380

5.33121

4.22531

8.15100

5.33121

Table 6: The Mean and Std. Deviation of Error with respect to Dev_time using four similarity functions (Experiment no 5).

Output Name of Similarity Functions Mean Std. Deviation

Error w.r.t . Dev_Time Euclidean

Manhattan

Canberra

Exponent

7.7333

8.1667

19.9667

7.7333

15.17924

15.34226

21.34040

15.17924

Distance (Error) Euclidean

Manhattan

Canberra

Exponent

4.6903

5.2573

10.0407

4.6903

3.95750

4.22976

7.28614

3.95750

Table 7: “The Average (%) of 150 data set in five consecutive experiment results using four similarity functions using CBR technique.”

Experi

ment

from 1

to 5

Euclidean Method Manhattan Method Canberra Method Exponential Method

MRE w.r.t

Dev_Time

within

(10%)

Acceptable%E

rror

(Acceptable

Limit 10%)

MRE

w.r.t

Dev_Ti

me

within(1

0%)

%Error

(Acceptable

Limit 10%)

MRE

w.r.t

Dev_Tim

e

within(10

%)

%Error

(Acceptable

Limit 10%)

MRE

w.r.t

Dev_Tim

e

within(10

%)

%Error

(Acceptable Limit

10%)

1-5 71.198% 92.664% 67.998% 87.328% 43.864% 57.332% 71.198% 92.664

%

16 Machine Learning and Software Quality Prediction: As an Expert System

Copyright © 2014 MECS I.J. Information Engineering and Electronic Business, 2014, 2, 9-27

Snapshot 1: Building the knowledge base

Snapshot 2: Deletion of duplicate record set from KBS for reducing the maintenance cost.

Snapshot 3: Selection of similarity Function for error prediction

 Machine Learning and Software Quality Prediction: As an Expert System 17

Copyright © 2014 MECS I.J. Information Engineering and Electronic Business, 2014, 2, 9-27

Explanation: Snapshot 4. Accuracy using Euclidean

Method (Exact/Nearest mathing case retrieved from the

knowledge base along with a record no as well as MRE

w.r.t Dev_Time value=0%. In this research magnitude of

relative error is calculated with the help of dependent

variable I, e development time. It can be seen in the form of

output where the input parameter given by the user during

run time and getting the result from the knowledge base as

a retrieved case in which dependent variable is

development time is same. In this case rest of the

parameters have been matched except LOC which is

retrieved from the knowledge base. We also display the

distance of the input record set is calculated for each

attributes of nearest data in the knowledge base (KBS) in

the form of error (See Table 2 of row one which is bold

given in appendix)

Explanation: Snapshot 5. Accuracy using Manhattan

Method (Exact/Nearest mathing case retrieved from

knowledge base along with record no as well as MRE w.r.t

Dev_Time value=0%. In this research magnitude of

relative error is calculated with the help of dependent

variable I, e development time. It can be seen in the form of

output where the input parameter given by the user during

runs time and getting the result from the knowledge base as

a retrieved case in which dependent variable is

development time is same. In this case rest of the

parameters have been matched except LOC which is

retrieved from the knowledge base. We also display the

distance of the input record set is calculated for each

attributes of nearest data in the knowledge base (KBS) in

the form of error (See Table 2 of row one which is bold

given in appendix)

Explanation: Snapshot 6: Accuracy using Canberra

Method (Exact/Nearest mathing case retrieved from the

knowledge base along with record no as well as MRE w.r.t

dev_Time value=50%. In this research magnitude of

relative error is calculated with the help of dependent

variable I, e development time. It can be seen in the form of

output where the input parameter given by the user during

run time and getting the result from the knowledge base as

a retrieved case in which dependent variable is

development time is not same as stored in the knowledge

base as well as rest of the parameters are not exact matched,

it is a nearest matching case which has been retrieved from

the knowledge base. We also display distance of input

record set is calculated for each attributes of nearest data in

the knowledge base (KBS) in the form of error (See Table 2

of row one which is bold given in appendix).

18 Machine Learning and Software Quality Prediction: As an Expert System

Copyright © 2014 MECS I.J. Information Engineering and Electronic Business, 2014, 2, 9-27

Explanation: Snapshot 7. Accuracy using Exponential

Method (Exact/Nearest mathing case retrieved from

knowledge base along with record no as well as MRE w.r.t

Dev_Time value=0%. In this research magnitude of

relative error is calculated by the help of dependent

variable i,e development time. It can be seen in the form of

output where the input parameter given by the user during

run time and getting the result from the knowledge base as

a retrieved case in which dependent variable is

development time is same. In this case rest of the

parameters have been matched except LOC which is

retrieved from the knowledge base. We also display

distance of input record set is calculated for each attributes

of nearest data in the knowledge base (KBS) in the form of

error (See Table 2 of row one which is bold given in

appendix).

XI. ADVANTAGES OF THIS RESEARCH

The software is compiled using Turbo C++ 3.0 and

hence it is very compact and standalone, It can be readily

deployed on any low configuration system and it would not

impact its performance, as it does not rely on external

runtimes and DLL’s like the .NET programs rely on. The

software is a console based application and thus does not

use the GUI functions of the operating System, which

makes it very fast in execution.

The biggest advantages of this research has given below:

a) A Knowledge base (KBS) is created and maintained to

store the cases as a different attributes of the software

against which the matching process has to be performed.

b) The objective is to predict the quality of the software

project accurately and use the results in future predictions.

c) The matching has done using various similarity

measures like Euclidean, Manhattan, Canberra,

Exponential.

d) The prediction is based upon Case-Based Reasoning

(CBR) technique. Because CBR takes minimum time in

comparison to other AI approach like Neural Network (NN)

and Genetic Algorithm (GA). But for accuracy the data

requirement for CBR, NN, GA are high [23].

e) New features and functionalities can be added easily to

the existing system to satisfy the future requirements for

example easy to extend.

f) The advantages of this research work are a

result-oriented because CBR systems use nearest neighbor

algorithm for retrieval of cases from the Knowledge base.

g) Improving the quality of the software through early

prediction of error patterns.

h) Removing the duplicate record set from the KBS for

reducing the maintenance cost.

i) This technique can be successfully applied to fault

diagnosis for customer service support.

j) CBR systems can use existing solution and adapt it to the

current situation.

k) To add new record set to CBR system, a user only needs

to add new cases to the system.

XII. CONCLUSIONS

The main contribution of this paper is a use of

case-based reasoning as an expert system for predicting the

software fault in a software module. After developing the

case-based reasoning model (see figure 2) we validated it

with part of the data set. In this research work four distance

functions the Euclidean, Canberra, Exponential and

Manhattan method were taken into consideration in terms

of percentage of errors generated during execution of

programs. For their efficacy in determining errors, the low

error programs detected by these methods may help to

design error free programs. If the error estimation is less

than 10% then the input record set is auto saved to the

knowledge base. Once the result is predicted it is added to

the database to enhance the accuracy of future predictions.

Only those results are added that give an error of 10% or

less. But if the error estimation is more than 10% then the

input record set must be revised then save to the knowledge

base for future solutions. These data can be safely

classified as high quality data. In the current

 Machine Learning and Software Quality Prediction: As an Expert System 19

Copyright © 2014 MECS I.J. Information Engineering and Electronic Business, 2014, 2, 9-27

analysis, the accuracy performed by all four distance

functions which is given in the tabular form (See appendix)

while using CBR technique. Also it can be seen in the form

of a snapshot (See snapshot 4 through snapshot 7). And a

result is derived where acceptable range is within 10%.

Snapshot 4, 5, 6 and 7 shows the accuracy comparisons of

different distance functions. The average (%) of the 150

data set in five consecutive experiment results using four

similarity functions using CBR technique shown in table 7.

We have also calculated the mean and standard deviation

of each experiment results using these similarity functions

(see table 2 through 6).

XIII. FUTURE SCOPE

Through empirical investigations and literature reviews

conducted as part of this research work, we anticipate a

promising future where there are further research

opportunities for evaluating the application of case-based

reasoning in software quality prediction and software

testing. The long term goal of the research is as follows:

1. Use of neural network and/or fuzzy logic model for

software quality prediction.

2. Addition of new parameters: Additional fields can be

added to the record set so as to incorporate the dependency

of the prediction if any, on these parameters. Till now, only

those parameters were considered that had more

dependency.

3. Addition of new similarity measures: Apart from

Euclidean, Canberra, Exponential and Manhattan methods

other similarity measures can be used to find similar cases.

For example Chebychev method. Choice in the use of

similarity measure adds flexibility to the system and allows

to compare among the methods.

APPENDIX A

Table 1: Comparative Analysis of Error Prediction with four distance functions using CBR technique (Experiment One).

Id Euclidean Method Manhattan Method Canberra Method Exponential Method

MRE

w.r.t

Dev_Time

within

(10%)

%Error

(Acceptable

Limit 10%)

MRE

w.r.t

Dev_Ti

me

within(1

0%)

%Error

(Acceptable

Limit 10%)

MRE

w.r.t

Dev_

Time

within

(10%)

%Error

(Acceptable

Limit 10%)

MRE

w.r.t

Dev_Ti

me

within(1

0%)

%Error

(Acceptable

Limit 10%)

1 25 5.68 25 5.68 25 5.68 25 5.68

2 0.0 5.71 0.0 11.43 50 14.29 0.0 5.71

3 0.0 8.93 0.0 8.93 33 16.07 0.0 8.93

4 20 6.0 0.0 0.0 0.0 0.0 20 6.0

5 0.0 1.89 0.0 1.89 0.0 1.89 0.0 1.89

6 0.0 2.86 0.0 2.86 0.0 5.71 0.0 2.86

7 0.0 5.45 0.0 5.45 33 5.45 0.0 5.45

8 7 0.0 23 2.38 23 7.14 7 0.0

9 20 2.13 20 2.13 20 2.13 20 2.13

10 25 7.14 25 7.14 0.0 0.0 25 7.14

11 0.0 2.63 0.0 5.41 50 18.92 0.0 2.63

12 0.0 0.0 0.0 0.0 13 12.50 0.0 0.0

13 0.0 2.13 0.0 2.13 0.0 10.64 0.0 2.13

14 75 3.57 0.0 17.86 0.0 17.86 75 3.57

15 33 4.17 33 4.17 33 4.17 33 4.17

16 0.0 3.45 30 5.17 60 20.69 0.0 3.45

17 0.0 3.33 25 8.33 50 13.33 0.0 3.33

18 0.0 6.67 0.0 3.33 50 13.33 0.0 6.67

19 16 7.46 16 10.45 16 10.45 16 7.46

20 0.0 1.49 23 7.46 23 7.46 0.0 1.49

21 0.0 4.44 0.0 4.44 0.0 4.44 0.0 4.44

22 0.0 20.0 50 0.0 0.0 0.0 0.0 20.0

23 0.0 5.08 0.0 5.08 0.0 11.86 0.0 5.08

24 11 11.76 44 21.32 44 21.32 11 11.76

25 8 3.45 25 5.17 16 10.34 8 3.45

26 0.0 2.67 0.0 1.33 0.0 1.33 0.0 2.67

27 20 2.94 0.0 2.94 0.0 11.76 20 2.94

28 0.0 0.97 0.0 0.97 0.0 0.0 0.0 0.97

29 0.0 4.46 0.0 4.46 0.0 4.46 0.0 4.46

30 0.0 0.0 0.0 0.0 60 25 0.0 0.0

70% 96.66% 60% 86.66% 43% 50% 70% 96.66%

20 Machine Learning and Software Quality Prediction: As an Expert System

Copyright © 2014 MECS I.J. Information Engineering and Electronic Business, 2014, 2, 9-27

Table 2: Comparative Analysis of Error Prediction with four distance functions using CBR technique (Experiment Two)

Id Euclidean Method Manhattan Method Canberra Method Exponential Method

MRE

w.r.t

Dev_Tim

e within

(10%)

%Error

(Acceptable

Limit 10%)

MRE

w.r.t

Dev_Ti

me

within(1

0%)

%Error

(Acceptable

Limit 10%)

MRE

w.r.t

Dev_

Time

within

(10%)

%Error

(Acceptable

Limit 10%)

MRE

w.r.t

Dev_Ti

me

within(1

0%)

%Error

(Acceptable

Limit 10%)

1 0.0 1.92 0.0 1.92 50 13.46 0.0 1.92

2 40.0 3.70 50 12.35 40.0 3.70 40.0 3.70

3 6.0 1.20 0.0 6.02 6.0 1.20 6.0 1.20

4 0.0 10.0 0.0 10.0 0.0 10.0 0.0 10.0

5 0.0 0.0 0.0 4.69 0.0 4.69 0.0 0.0

6 7.0 5.0 15.0 1.67 23.0 11.67 7.0 5.0

7 0.0 2.78 16 1.39 16 13.89 0.0 2.78

8 25 2.17 25 2.17 25 2.17 25 2.17

9 0.0 5.41 0.0 5.41 0.0 5.41 0.0 5.41

10 0.0 3.17 0.0 3.17 33.0 4.76 0.0 3.17

11 25 6.38 25 6.38 25 0.0 25 6.38

12 0.0 6.90 0.0 6.90 0.0 6.90 0.0 6.90

13 28 2.86 0.0 14.29 28 22.86 28 2.86

14 25 2.38 37.0 11.90 37.0 11.90 25 2.38

15 15 1.64 15 0.0 53.0 21.31 15 1.64

16 0.0 6.25 0.0 6.25 60 12.50 0.0 6.25

17 0.0 5.17 0.0 5.17 0.0 3.45 0.0 5.17

18 0.0 0.0 0.0 10.26 0.0 10.26 0.0 0.0

19 0.0 0.0 0.0 0.0 33 11.76 0.0 0.0

20 8.0 0.0 8.0 0.0 66 16.42 8.0 0.0

21 15 3.03 15 3.03 69 15.15 15 3.03

22 9.0 2.94 9.0 2.94 63 17.65 9.0 2.94

23 7.0 0.0 7.0 0.0 7.0 0.0 7.0 0.0

24 0.0 4.67 0.0 4.67 20.0 1.87 0.0 4.67

25 0.0 5.36 0.0 5.36 0.0 5.36 0.0 5.36

26 33.0 5.32 33.0 5.32 0.0 4.26 33.0 5.32

27 0.0 0.98 0.0 2.94 0.0 2.94 0.0 0.98

28 0.0 3.45 16 8.62 16 8.62 0.0 3.45

29 0.0 2.25 0.0 2.25 0.0 1.12 0.0 2.25

30 0.0 0.0 0.0 10.0 60 25 0.0 0.0

76% 100% 70% 86.66% 46.66% 60% 76% 100%

 Machine Learning and Software Quality Prediction: As an Expert System 21

Copyright © 2014 MECS I.J. Information Engineering and Electronic Business, 2014, 2, 9-27

Table 3: Comparative Analysis of Error Prediction with four distance functions using CBR technique (Experiment Three)

Id Euclidean Method Manhattan Method Canberra Method Exponential Method

MRE

w.r.t

Dev_Time

within

(10%)

%Error

(Acceptable

Limit 10%)

MRE

w.r.t

Dev_Ti

me

within

(10%)

%Error

(Acceptable

Limit 10%)

MRE

w.r.t

Dev_

Time

within

(10%)

%Error

(Acceptable

Limit 10%)

MRE

w.r.t

Dev_Ti

me

within

(10%)

%Error

(Acceptable

Limit 10%)

1 25 5.68 25 5.68 25 5.68 25 5.68

2 0 3.33 0 3.33 0 3.33 0 3.33

3 20 6.67 0 11.11 20 6.67 20 6.67

4 0 0 0 0 0 0 0 0

5 0 1.64 0 4.92 0 1.64 0 1.64

6 0 0 0 0 0 0 0 0

7 0 11.11 0 11.11 0 11.11 0 11.11

8 25 0 0 5.41 0 13.51 25 0

9 0 5.17 0 5.17 73 20.69 0 5.17

10 0 0 0 0 0 0 0 0

11 25 20 25 20 25 8 25 20

12 33 5 66 17.50 33 5 33 5

13 42 12.50 42 12.50 42 5 42 12.50

14 0 0 0 0 0 0 0 0

15 25 9.09 0 9.09 50 18.18 25 9.09

16 0 3.23 0 3.23 13 9.68 0 3.23

17 0 4.88 0 9.76 0 4.88 0 4.88

18 0 2.78 0 2.78 0 2.78 0 2.78

19 0 2.60 0 3.90 0 3.90 0 2.60

20 0 4.29 0 4.29 0 2.86 0 4.29

21 11 0 11 0 16 10.45 11 0

22 7 1.79 7 1.79 64 16.07 7 1.79

23 8 5.26 8 5.26 16 8.77 8 5.26

24 25 1.92 25 1.92 50 23.08 25 1.92

25 0 1.37 0 1.37 0 1.37 0 1.37

26 0 4.84 25 1.61 41 12.90 0 4.84

27 0 3.41 0 5.68 0 1.14 0 3.41

28 22 3.57 22 3.57 22 5.36 22 3.57

29 20 7.95 20 7.95 40 15.91 20 7.95

30 0 0 16 1.10 16 2.20 0 0

63.33% 90% 66.66% 86.66% 46.66% 70% 63.33% 90%

22 Machine Learning and Software Quality Prediction: As an Expert System

Copyright © 2014 MECS I.J. Information Engineering and Electronic Business, 2014, 2, 9-27

Table 4: Comparative Analysis of Error Prediction with four distance functions using CBR technique (Experiment Four)

Id Euclidean Method Manhattan Method Canberra Method Exponential Method

MRE w.r.t

Dev_Time within

(10%)

%Error

(Acceptable

Limit 10%)

MRE

w.r.t

Dev_Time

within

(10%)

%Error

(Acceptable

Limit 10%)

MRE

w.r.t

Dev_Time

within

(10%)

%Error

(Acceptable

Limit 10%)

MRE

w.r.t

Dev_Time

within

(10%)

%Error

(Acceptable

Limit 10%)

1 0 2.13 0 2.13 0 2.13 0 2.13

2 0 11.11 0 6.67 60 13.33 0 11.11

3 0 0 0 4.69 0 4.69 0 0

4 0 1.96 0 9.80 73 23..53 0 1.96

5 0 5.13 0 10.26 0 10.26 0 5.13

6 0 0 0 4.69 0 4.69 0 0

7 0 3.23 0 3.23 0 3.23 0 3.23

8 0 0 0 7.69 0 0 0 0

9 20 2.63 20 0 0 27.03 20 2.63

10 25 7.41 0 8.64 25 8.64 25 7.41

11 13 2.94 0 0 73 17.65 13 2.94

12 0 2.38 0 2.38 0 2.38 0 2.38

13 0 28 0 20 20 0 0 28

14 0 3.51 0 1.75 33 8.77 0 3.51

15 40 2.94 40 2.94 0 11.76 40 2.94

16 0 2.13 0 2.13 60 17.02 0 2.13

17 0 3.23 0 3.23 25 11.29 0 3.23

18 26 8.33 26 8.33 55 22.92 26 8.33

19 20 7.37 20 7.37 20 7.37 20 7.37

20 0 6.25 0 4.69 50 18.75 0 6.25

21 7 1.79 15 8.93 69 17.86 7 1.79

22 25 5.13 25 6.41 25 5.13 25 5.13

23 18 3.45 18 3.45 18 3.45 18 3.45

24 0 2.86 0 2.86 8 2.86 0 2.86

25 20 5.88 0 2.94 0 11.76 20 5.88

26 7 1.35 7 1.35 7 1.35 7 1.35

27 0 0 16 1.10 16 3.30 0 0

28 0 0 16 3.30 16 3.30 0 0

29 0 0 0 0 20 0 0 0

30 0 0 0 0 60 25 0 0

70% 93.33% 70% 93.33% 40% 56.66% 70% 93.33%

 Machine Learning and Software Quality Prediction: As an Expert System 23

Copyright © 2014 MECS I.J. Information Engineering and Electronic Business, 2014, 2, 9-27

Table 5: Comparative Analysis of Error Prediction with four distance functions using CBR technique (Experiment Five)

Id Euclidean Method Manhattan Method Canberra Method Exponential Method

MRE

w.r.t

Dev_time

within

(10%)

%Error

(Acceptable

Limit 10%)

MRE

w.r.t

Dev_Ti

me

within

(10%)

%Error

(Acceptable

Limit 10%)

MRE

w.r.t

Dev_

Time

within

(10%)

%Error

(Acceptable

Limit 10%)

MRE

w.r.t

Dev_Ti

me

within

(10%)

%Error

(Acceptable

Limit 10%)

1 0 1.35 0 4.05 25 5.68 0 1.35

2 0 4.88 0 4.88 50 14.29 0 4.88

3 0 1.69 0 1.67 33 16.07 0 1.69

4 16 9.62 25 7.69 0.0 0.0 16 9.62

5 0 0 0 0 0.0 1.89 0 0

6 0 0 0 7.69 0.0 5.71 0 0

7 66 11.11 66 11.11 33 5.45 66 11.11

8 25 0 0 16.67 23 7.14 25 0

9 42 11.11 42 11.11 20 2.13 42 11.11

10 0 2.67 0 2.67 0.0 0.0 0 2.67

11 0 12.50 0 12.50 50 18.92 0 12.50

12 16 10.34 16 8.62 13 12.50 16 10.34

13 0 2 0 2 0.0 10.64 0 2

14 0 9.30 0 9.30 0.0 17.86 0 9.30

15 7 1.49 7 1.49 33 4.17 7 1.49

16 0 6.25 0 6.25 60 20.69 0 6.25

17 0 2.17 0 2.17 50 13.33 0 2.17

18 7 3.70 0 1.85 50 13.33 7 3.70

19 0 6.32 0 1.05 16 10.45 0 6.32

20 0 4.11 20 1.37 23 7.46 0 4.11

21 0 3.30 0 3.30 0.0 4.44 0 3.30

22 0 11.81 0 11.81 0.0 0.0 0 11.81

23 16 7.14 16 7.14 0.0 11.86 16 7.14

24 9 4.26 9 4.44 44 21.32 9 4.26

25 0 2.22 0 2.22 16 10.34 0 2.22

26 0 1.96 0 1.96 0.0 1.33 0 1.96

27 28 5.66 28 5.66 0.0 11.76 28 5.66

28 0 2.78 0 2.78 0.0 0.0 0 2.78

29 0 0.97 0 0.97 0.0 4.46 0 0.97

30 0 0 16 3.30 60 25 0 0

76.66% 83.33% 73.33% 83.33% 43% 50% 76.66% 83.33%

APPENDIX B

Fig 1: shows number of programs versus % error predicted with respect to development time using Euclidean method on the basis of experiment 1 to

experiment 5

24 Machine Learning and Software Quality Prediction: As an Expert System

Copyright © 2014 MECS I.J. Information Engineering and Electronic Business, 2014, 2, 9-27

Fig 2: shows number of programs versus % error using Euclidean method on the basis of table 1 to table 5.

Fig 3: shows number of programs versus % error predicted with respect to development time using Manhattan method on the basis of table 1 to table 5.

Fig 4: shows number of programs versus % error using Manhattan method on the basis of table 1 to table 5.

 Machine Learning and Software Quality Prediction: As an Expert System 25

Copyright © 2014 MECS I.J. Information Engineering and Electronic Business, 2014, 2, 9-27

Fig 5: shows number of programs versus % error predicted with respect to development time using Canberra method on the basis of table 1 to table 5.

Fig 6: shows number of programs versus % error with respect to development time using Manhattan method on the basis of table 1 to table 5.

Fig 7: shows number of programs versus % error predicted with respect to development time using Exponential method on the basis of table 1 to table

5.

26 Machine Learning and Software Quality Prediction: As an Expert System

Copyright © 2014 MECS I.J. Information Engineering and Electronic Business, 2014, 2, 9-27

Fig 8: shows number of programs versus % error using Exponential method on the basis of table 1 to table 5.

REFERENCES

[1] G. Kadoda, M Cartwright, L Chen, and M. Shepperd.

(2000), “Experiences Using Case- Based Reasoning to

Predict Software Project Effort”, In Proceeding of EASE, p.

23-28, Keele, UK.

[2] I. Myrtveit and E. Stensrud. (1999), “A Controlled

Experiment to Assess the Benefits of Estimating with

Analogy and Regression Models”, IEEE transactions on

software Engineering, Vol 25, no. 4, pp. 510-525.

[3] K. Ganeasn, T.M. Khoshgoftaar, and E. Allen. (2000),

“Case-based Software Quality Prediction”, International

journal of Software Engineering and Knowledge

Engineering, 10 (2), pp. 139-152.

[4] Bob Hughes & Mike Cotterell “software Project

Management”, Tata McGraw-Hill.

[5] Shi Zhong,Taghi M.Khoshgoftaar and Naeem Selvia

“Unsupervised Learning for Expert-Based Software

Quality Estimation”.Proceeding of the Eighth IEEE

International Symposium on High Assurance Systems

Engineering (HASE’04).

[6] Ekbal Rashid, Srikanta Patnaik, Vandana Bhattacherjee “A

Survey in the Area of Machine Learning and Its

Application for Software Quality Prediction” has been

published in ACM SigSoft ISSN 0163-5948, volume 37,

number 5, September 2012,

http://doi.acm.org/10.1145/2347696.2347709 New York,

NY, USA.

[7] M. J. Khan, S. Shamail, M. M Awais, and T. Hussain,

“Comparative study of various artificial intelligence

techniques to predict software quality” in proceedings of

the 10th IEEE multitopic conference, 2006, INMIC 06, PP

173-177, Dec 2006.

[8] S. Becker, L. Grunske, R. Mirandola, and S. Overhage,

“ Performance prediction of component-based systems a

survey from an engineering perspective”, In architechture

systems with Trust-worthy components, Vol 3938 of

LNCS, Springer, 2006.

[9] Ekbal Rashid, Srikanta Patnaik, Vandana Bhattacherjee

“Enhancing the accuracy of case-based estimation model

through Early Prediction of Error Patterns” proceedings

published by the IEEE Computer Society 10662 Los

Vaqueros Circle Los Alamitos, CA, in International

Symposium on Computational and Business Intelligence

(ISCBI 2013), New Delhi, 24~26 Aug 2013 ISBN

978-07695-5066-4/13 IEEE, DOI 10.1109/ISCBI.2013.

[10] Aamodt, A. and E. Plaza, Case-based reasoning:

foundational issues, methodical variations and system

approaches. AI Communications 7(1), 1994.

[11] M. M.T. Thwin and T.S. Quah, “Application of neural

network for predicting software development faults using

object-oriented design metrics” in proceeding of the 9th

International Conference on neural information processing,

ICONIP 02 Vol. 5, 2002.

[12] D. Grosser, H. A. Sahraoui, and P. Valtchev,

“Analogy-based software quality prediction”, in 7th

Workshop on Quantitative Approaches in Object-Oriented

Software Engineering, QAOOSE 03, June 2003.

[13] T.W. Lioa, and Z. Zhang, “Similarity measures for retrieval

in Case-Based Reasoning Systems” Applied Artificial

Intelligence, Vol. 12, 1998, 267-288.

[14] Venkata U.B.Challagulla et al ”A Unified Framework for

Defect data analysis using the MBR technique”.

Proceeding of the 18th IEEE International Conference on

Tools with Artificial Intelligence (ICTAI’06).

[15] Lance, G. N.; Williams, W. T. (1966). "Computer programs

for hierarchical polythetic classification ("similarity

analysis")."Computer Journal 9 (1): 60–64.

doi:10.1093/comjnl/9.1.60.

[16] Lance, G. N.; Williams, W. T. (1967). "Mixed-data

classificatory programs I.) Agglomerative Systems".

Australian Computer Journal: 15–20.

[17] Stephen H. Kan Metrics and Models in Software Quality

Engineering, second edition by Pearson.

[18] Donald A. Waterman A guide to Expert Systems, First

Impression, 2008, Pearson.

[19] Du Zhang, Jeffrey J. P. Tsai “Advances in Machine

Learning Applications in Software Engineering” Idea

Group Publishing.

[20] L. C. Briand, W. L.Melo and J. Wust. “Assessing the

applicability of fault-proneness models across

object-oriented software projects” IEEE Transactionson

Software Engineering, 28(7): 706-720, July 2002.

[21] T. M. Khoshgoftaar and N. Seliya. Analogy-based practical

classification rules for software quality estimation

Empirical Software Engineering Journal, 8(4):325-350,

December 2003.

http://doi.acm.org/10.1145/2347696.2347709
http://en.wikipedia.org/wiki/W._T._Williams
http://en.wikipedia.org/wiki/Digital_object_identifier
http://dx.doi.org/10.1093%2Fcomjnl%2F9.1.60
http://en.wikipedia.org/wiki/W._T._Williams

 Machine Learning and Software Quality Prediction: As an Expert System 27

Copyright © 2014 MECS I.J. Information Engineering and Electronic Business, 2014, 2, 9-27

[22] Begum, S. Ahmed, M.U.; Funk, P.; Ning Xiong; “Folke,

M.Sch. of Innovation, Design & Eng., Malardalen Univ.,

Vasteras, Sweden, Published in Systems, Man, and

Cybernetics, Part C: Applications and Reviews, IEEE

Transactions on (Volume:41, Issue: 4), July 2011,

ISSN :1094-6977, 10.1109/TSMCC.2010.2071862.

[23] “A Survey of measurement-based software quality

prediction techniques” Technical Report, Lums, Dec 2007.

Ekbal Rashid is working as a Assistant

Professor in the department of computer

science and Engineering in Cambridge

Institute of Technology, Tatisilwai, Ranchi,

Jharkhand. He has received the Bachelors in

computer application in 2000, Master in

computer application in 2003 from IGNOU.

He has received M.Tech. degree in Computer Science from Birla

Institute of Technology in 2009. He is pursuing Ph.D. from

Siksha "O" Anusandhan University, Bhubaneshwar. He has over

15 National and International publications in Journal and

Conference Proceedings of repute. His research area is software

engineering, machine learning, data mining and artificial

intelligence

Prof. Srikanta Patnaik has graduated in

Electronics and Telecommunication

Engineering in 1989 and post graduated in

Master of Business Administration in 1991

from Sambalpur University. He has received

his Ph.D. in Engineering in the year 1999 from

Jadavpur University, Calcutta. He is Professor

and Associate Dean of Siksha "O" Anusandhan University,

Bhubaneshwar. He has published more than 60 technical papers

in International and National Journals of repute. He has been

awarded with the MHRD Fellowship for the year 1995 and his

name has been placed in the MARQUIS Who’s Who in the

World for the 2004. He has been awarded as the International

Educator of the Year 2005, by International Biographical Centre,

Great Britain. He is the Editor-in-Chief of the International

Journal of Information and Communication Technology and

International Journal of Computational Vision and Robotics,

published by Inderscience Publishing House, England. He is also

Editor-in-Chief of Book Series on Modeling and Optimization in

Science and Technology [MOST], published from Springer,

Germany and other two series namely Advances in Computer and

Electrical Engineering (ACEE) and Advances in Medical

Technologies and Clinical Practice (AMTCP) published from

IGI-Global, USA.

Prof. Vandana Bhattacherjee is working as

a Professor, Department of Computer Science

and Engineering, Birla Institute of

Technology, Ranchi. She completed her B. E.

(CSE) in 1989 and her M. Tech and Ph. D in

Computer Science from JNU New Delhi in

1991 and 1995 respectively. She has over 100

National and International publications in Journal and

Conference Proceedings. She is a member of IEEE Computer

Society and Life Member of Computer Society of India. Her

research areas include Software Process Models, Software Cost

Estimation, Data Mining and Software Metrics.

How to cite this paper: Ekbal A. Rashid, Srikanta B. Patnaik, Vandana C. Bhattacherjee,"Machine Learning and

Software Quality Prediction: As an Expert System", IJIEEB, vol.6, no.2, pp.9-27, 2014. DOI: 10.5815/ijieeb.2014.02.02

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Begum,%20S..QT.&searchWithin=p_Author_Ids:37715587900&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Ahmed,%20M.U..QT.&searchWithin=p_Author_Ids:38184452800&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Funk,%20P..QT.&searchWithin=p_Author_Ids:37865836800&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Ning%20Xiong.QT.&searchWithin=p_Author_Ids:37345068600&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Folke,%20M..QT.&searchWithin=p_Author_Ids:37426400400&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Folke,%20M..QT.&searchWithin=p_Author_Ids:37426400400&newsearch=true
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=5326
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=5326
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=5326
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=5876619
http://dx.doi.org/10.1109/TSMCC.2010.2071862

