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Abstract—To improve the software quality the number of 

errors from the software must be removed. The research 

paper presents a study towards machine learning and 

software quality prediction as an expert system. The 

purpose of this paper is to apply the machine learning 

approaches, such as case-based reasoning, to predict 

software quality. The main objective of this research is to 

minimize software costs. Predict the error in software 

module correctly and use the results in future estimation. 

The novel idea behind this system is that Knowledge base 

(KBS) building is an important task in CBR and the 

knowledge base can be built based on world new problems 

along with world new solutions. Second, reducing the 

maintenance cost by removing the duplicate record set 

from the KBS. Third, error prediction with the help of 

similarity functions. In this research four similarity 

functions have been used and these are Euclidean, 

Manhattan, Canberra, and Exponential. We feel that 

case-based models are particularly useful when it is 

difficult to define actual rules about a problem domain. For 

this purpose we have developed a case-based reasoning 

model and have validated it upon student data. It was 

observed that, Euclidean and Exponential both are good 

for error calculation in comparison to Manhattan and 

Canberra after performing five experiments. In order to 

obtain a result we have used indigenous tool. For finding 

the mean and standard deviation, SPSS version 16 and for 

generating graphs MATLAB 7.10.0 version have been 

used as an analyzing tool. 

 

Index Terms—Machine Learning, Software Quality 

prediction, Case-Based Reasoning, Knowledge base 

building, Distance functions, Expert System. 

 

I.  INTRODUCTION 

Due to Lack of sufficient tools to evaluate and predict 

software quality is one of the major challenges in software 

engineering field. Identifying and locating faults in 

software projects is a hard work. Particularly, when project 

s i z e s  g r o w ,  t h i s  t a s k  b e c o me s  c o s t l y  wi t h  

complicated testing and evaluation mechanisms. On the 

other hand, measuring software in a continuous and 

disciplined manner brings many advantages such as 

accurate estimation of maintenance costs and schedules, 

and enhancing process and product qualities. Thorough 

study of software metric data also gives important clues 

about the position of possible faults in a module. The aim 

of this research is to establish a technique for identifying 

software faults using machine learning methods. It is very 

common to see large projects being undertaken now a day. 

The software being developed in such projects goes 

through many phases of development and can be very 

complicated in terms of quality assessment.  There will 

always be a concern for proper quality and effective cost 

estimation of such software. This can be rather tricky as the 

project being a large one may cover several unknown and 

unseen factors that might previously be very difficult to 

judge. Software fault prediction poses great challenges 

because fault data may not be available for the entire 

software module in the training data. In such cases machine 

learning technique like case-based reasoning (CBR) can be 

successfully applied to fault diagnosis for customer service 

support. CBR systems use nearest neighbor algorithm for 

retrieval of cases from the Knowledge base. Other machine 

learning techniques have also been extensively used for 

software quality (fault) prediction. The majority of today's 

software quality estimation models are built on using data 

from projects of a particular organization. Using such data 

has well known benefits such as ease of understanding and 

controlling of collecting data [3]. But different researchers 

have reported contradictory results using different software 

quality estimation modeling techniques. It is still difficult 

to generalize many of the obtain results. This is due to the 

characteristics of the datasets being used and dataset’s 

small size. Correct prediction of the software fault or 

maintain a software system is one of the most serious 

activities in managing software project. Software 

reliability provides measurement of software dependability 

in which probability of failure is generally 

time dependent. Various software quality characteristics 
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have been suggested by authors such as James McCall and 

Barry Boehm. There have been differences in opinion 

regarding the exact definitions of the qualities of good 

software. For example maintainability has been used to 

define the ease with which an error can be located and 

rectified in the software. This definition also includes the 

ease with which changes can be incorporated in the 

software [4]. 

The rest of the paper is structured as follows: Section II 

gives the background and related work, Section III 

discussed learning methods in brief, Section IV describe 

learning/prediction system, Section V describes software 

quality in brief, Section VI discussed about distance 

functions, Section VII describes the methodology, Section 

VIII discussed Proposed model. In Section IX we 

discussed estimation criteria; Section X describes the 

research category. Experimental analysis and result has 

been presented in Section XI. A conclusion has been 

presented in Section XII and Section XIII ends the paper 

with concluding future scope. The appendix provides the 

detail information about results of five experiments in a 

tabular form (see table 1 to table 5) along with graphs. 

 

II.  BACKGROUND AND RELATED WORK 

In the context of software fault prediction, most research 

works have focused on fault modules. The difficulty of 

software fault and maintainability is an important part of 

software project development. Software size and software 

fault data have regularly been used in the development of 

models that predict software quality. A few software 

quality models predict the quality of software modules as 

also faulty or non faulty [20], [21]. Nowadays one of the 

major application areas for case-based reasoning (CBR) in 

the field of health sciences, multiagent systems as well as in 

Web-based planning. Research on CBR in the area is 

growing, but most of the systems are still prototypes and 

not available in the market as commercial products. 

However, many of the systems are intended to be 

commercialized [22]. There is a little, but increasing piece 

of work in which machine learning method is used in the 

software quality (fault) prediction task. Recent age is more 

worried about the quality of software. Wide research is 

being carried out in this direction. The main thrust in 

modern software engineering research is centered on trying 

to build tools that can enhance software quality. Many 

researchers have used AI-Based approach like Case-Based 

Reasoning (CBR), Genetic Algorithm (GA), Neural 

Network (NN), etc. Khan et al. [7] mentioned that, when 

software quality was predicted, the main objective was to 

predict reliability and stability of the software. Becker et al. 

[8] was predicted performance of the software. Current 

software fault prediction models frequently involve using 

supervised learning methods to train a software fault 

prediction model. Predicting the quality of the software 

p r o d u c t  d u r i n g  i t s  

 

 

 

development phase is a challenging job especially when  

software sizes grow. Zhong et. al has used unsupervised 

Learning techniques to build a software quality estimation 

system [5]. Case-based reasoning has also been used by 

Kadoda et. al in [1]. Myrtveit et al in [2] and Ganesan et. al 

in [3] have also studied CBR was applied to software 

quality modeling of a family of complete industrial 

software systems and the accuracy is measured better than 

a corresponding multiple linear regression model in 

predicting the number of design faults. Aamodt and Plaza 

are given the case-based reasoning cycle [10]. Rashid et. al 

emphasized on the importance of software  quality 

prediction and accuracy of case-based estimation model [6] 

[9]. 

 

III.  LEARNING/PREDICTION SYSTEM 

Learning or training methods can be broadly classified 

into three basic types [19]. 

 

 Supervised Learning: When the actual response 

varies from target response then network generates an 

error signal. To minimize the error we need a 

supervisor or teacher, hence the name supervised 

learning. 

 Unsupervised Learning: Unsupervised learning does 

not require a supervisor or teacher, it needs certain 

guidelines to make groups. Grouping can be done on 

the basis of the pattern or property of the object. 

 Reinforcement learning: It is similar to supervised 

learning. Through this method the teacher does not 

mention how nearer is the actual output to the desired 

output. Therefore error generated during reinforced 

learning is binary. 

 

Machine learning techniques have the capability to 

predict software quality in the early stages of software 

development. Some of them can be applied if previous data 

(Training data) is available in the knowledge base. In this 

research work we have used case-based reasoning (CBR) 

as a machine learning technique. The interactive learning / 

prediction system can be seen in figure 1. A user can access 

the prediction system using the given interface to learn new 

problems and get the predicted outputs (see figure1). The 

components of the prediction system are as follows: 

 

1) Interface: It is the point of interaction.  

2) Estimation/ Prediction system: Estimating or 

predicting a system is typically done by learning from 

the previous experience and provides knowledge for 

future solutions to some extent. 

3) Machine learning algorithm: Case-based reasoning 

has been used as a machine learning algorithm where 

the method of solving a new case(s) based on the 

solutions on similar previous cases. 
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4) Training data: The training data used in this research 

work are collected from the students of computer 

science and engineering from the university campus, 

written in high-level language (C++), They are 

maintained by faculty, supported by the laboratory 

staffs, resources like computers, software etc. 

 

 

Fig 1: Interactive learning/prediction System 

IV.  SOFTWARE QUALITY 

Since quality is the first step for improvement in 

anything, to achieve an improved state of affairs, quality 

must be precisely defined and appropriately measured. But 

very often in quality engineering and management, the term 

quality is misunderstood on account of its ambiguous 

characteristics. The ambiguity aspect of quality owes its 

origin from the following [17]; 

1. Quality being multi-dimensional with 

dimensions of entity of interest, the viewpoint on 

that entity and the quality attributes of that entity 

gets interpreted differently depending upon the 

situation and interpreter. 

2. On the basis of conceptualizing quality, it may be 

referred either in its broadest sense or in its 

precise connotation. 

3. Being an element of our every day language, 

quality may be interpreted differently depending 

upon the uses – popular or professional. 

However as the focus of this research will be around the 

quality of software which is a sort of the professional use of 

the concept quality as against the popular use of the same, 

the third point mentioned above duly makes it very clear 

how quality in popular view is quite different from quality 

in professional view and hence it draws our attention to 

take care. 

 

V.  SELECTION OF DISTANCE FUNCTIONS 

Many literatures are reviewed on case-based reasoning 

and neural network [11] [12] [13]. A similarity function 

determines, for a given case, the most similar cases from 

the knowledge base (i.e. Training data). The function 

computes the distance between the new case and every 

other case in the knowledge base. In this study four types of 

similarity functions are considered and they include the 

Euclidean distance, Canberra distance, Exponential 

distance and the Manhattan distance.  

Suppose a record set S1 of n fields has following values 

u1, u2,…, un for the n fields respectively. Similarly a 

record set S2 of the same type with field values v1, v2, …, 

vn. Table 1 shows the definitions of four distance functions 

which is used in our analysis. 

Table 1: Distance functions 

Distance dist (S1, S2) with equal weights of all 

attributes 

1) Euclidean distance ( diste )  
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3) Canberra distance (distc) 

||/||)2,1(
1

ii

n

i

iiic vuvuwSSdist 
  (3.1) 

4) Exponential distance (distex) 

)()2,1(
1





n

i

d

iex ewSSdist

  (4.1) 

Where d= 
2)( ii vu    

A. Euclidean Distance Function: 

The most popular dissimilarity measure or distance is 

the Euclidean distance. Accepts the record set as input and 

finds the matching cases from the knowledge base. This 

Interface 

Estimation/Predicti

on System 

New Problem 

Machine Learning 

Algorithm 

Training Data 

Predicted 

Output 

User 



12 Machine Learning and Software Quality Prediction: As an Expert System  

Copyright © 2014 MECS                                              I.J. Information Engineering and Electronic Business, 2014, 2, 9-27 

similarity function is probably the most commonly used 

distance measures of dissimilarity between feature vectors 

[6]. The distance is calculated by taking the weighted 

distance between the new case and an existing case. The 

weight associated with each independent variable is 

provided by the user during run time. This distance is also 

commonly used when the record set contains quantitative 

attributes, which is given below: 

The Weighted Euclidian distance (WED) of S1 from S2 

is: 
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B. Manhattan Distance Function: 

This similarity function is sometimes called the city 

block distance or absolute distance or taxicab distance [6]. 

It is computed by taking the weighted sum of absolute value 

of the difference in independent variables between the new 

case and an existing case. The weight associated with each 

independent variable is provided by the user during run 

time. 

The Weighted Manhattan distance (WMD) of S1 from 

S2 is: 
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C. Canberra Distance Function: 

The Canberra distance was introduced in the year 1966 

and refined in 1967 by G. N. Lance and W. T. Williams [15] 

[16]. It is a numerical measure of the distance between two 

pairs of points in a vector space. The weight associated 

with each independent variable is provided by the user 

during run time. 

The Weighted Canberra distance (WCD) of S1 from S2 

is: 
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D. Exponential Distance Function: 

The Exponential distance function is a mathematical 

function expd (e, d)
 
where d is a variable and e is the 

constant which is equal to approximately 2. 71828 [14]. 

The weight associated with independent variable is 

provided by the user during run time. The distance is 

calculated by taking the weighted distance between the new 

case and an existing case. 

 

 

The Weighted Exponential distance (WEXD) of S1 from 

S2 is: 
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VI.  METHODOLOGY 

We observe software quality (fault) as a 

multi-dimensional idea, consisting of such properties of the 

software as maintainability, correctness, flexibility, error 

proneness, changeability etc. The training data used in this 

paper are collected from the students of computer science 

and engineering from the university campus, written in 

high-level language (C++), They are maintained by faculty, 

supported by the laboratory staffs, resources like computers, 

software etc. For each program we have evaluated the 

students five times. 

In this study data collected from students included the 

following metrics: 

 Size metrics (LOC) 

 Code documentation metrics (comment lines, 

blank lines) 

 Number of functions or procedures. 

 Difficulty level of Software. 

 Experience of Programmer in Year 

 Development Time  

 Number of Variables 

The values for lines of code, number of functions, level 

of difficulty, experience, development time and a number 

of variables were collected from programs developed by 

students of the university campus over a period of 1 year. 

 

VII.  PROPOSED MODEL 

The parameters selected for the model were based upon 

the following assumptions. 

 The time constraint or development time affects 

the quality level. 

 The mental discrimination required to design and 

code a program depends upon the numbers of 

functions and number of variable 

 The number of functions is a predictor of how 

much effort is required to develop a program. 

 The programming language exposure / experience 

of a programmer affect the quality level. 

 The inherent program difficulty level also affects 

the quality level. 

Through this model (see figure 2) user can take input of 

different attributes of software (the attributes of software 

used LOC, NOF, DL, NOV, DT, PEX as a threshold 

vector) 
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and get output as a exact/nearest matching case from the 

knowledge base (KBS). In this paper first, we have built a 

KBS. Second, we have given the emphasis on how to 

reduce the maintenance cost. For reducing the maintenance 

cost we are removing the duplicate record set from the KBS. 

Third, the magnitude of relative error is calculated with the 

help of distance functions. It can be seen as a snapshot (see 

snapshot 1 through 7). Therefore one can identify the 

distance functions which are more efficient for error 

prediction. Details information regarding separate 

experiment results can be seen in the tabular form (See 

appendix). 

A. Input Data Module 

This module accepts the values of various parameters 

from the user. It also has the provision of assigning weights 

to the parameters if the user wants to do so.

 

 

Fig 2: Software quality prediction system with four distance functions 

VIII.  ESTIMATION CRITERIA 

The fundamental requirement of evaluating and 

validating the methodology for the accuracy of 

estimations, we have used error prediction method i.e. 

Mean Magnitude of Relative Error (MMRE) to measure 

how accurate the estimations are. Relative error is the 

absolute error in the observations divided by its actual 

parameter. Improvements in accuracy of predictions and 

increasing the reliability of the knowledge base were a 

priority. The research paper present the results obtained 

when applying the case-based reasoning model to the data 

set. The accuracy of estimates is evaluated by using the 

magnitude of relative error (MRE) defined as: 

 

MRE=│Actual_Parameter– Targeted_Parameter│ 

Actual_Parameter 

 

IX.  RESEARCH CATEGORY 

Case-based reasoning (CBR) is most popular machine 

learning technique. A CBR system is an expert system that 

aims at finding solutions to a new problem based on 

previous experience. Therefore we can classify this 

research work as an “expert system” because system 

consists of a knowledge base and a software module called 

the inference engine to perform inferences from the 

knowledge base. These inferences are communicated to the 

user. Figure.3 shows the components of an expert system 

[18]. 
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Fig 3: Components of an Expert System 

X.  EXPERIMENTAL ANALYSIS AND RESULTS 

The main objective of this prediction system is to help 

development of good quality software. The purpose of the 

paper is also to explore how case-based reasoning 

technique can support decision-making and help control 

dissimilarity in software fault activities, thus ultimately 

enhancing software quality. Estimating reliability of 

upcoming software versions based on fault history the fault 

estimation to enhance test stage effectiveness; task of 

resources to fix faults, and distinguishing faulty software 

modules from non-faulty ones. We have developed a 

case-based reasoning model and have validated it upon 

student data (see figure 2). 150 data set has been used in 

this research, where 80% data have used for model 

development and 20% data has been used for validation of 

the model (not used for building of models). Five 

consecutive experiments were performed and result with 

respect to development time (MRE w.r.t. Dev_Time) has 

been predicted because development time or time 

constraint affects the quality level (acceptable limit less 

than or equal to 10%). Second, the mean error of each 

record set is calculated for each attributes of nearest data in 

the knowledge base (acceptable limit less than or equal to 

10%). It was observed that predictions are 71.198% and 

92.664% of the cases within 10% error using Euclidean 

and Exponential method and predictions are 67.998% and 

87.328% of the cases within 10% error using the 

Manhattan method, while predictions are 43.864% and 

57.332% of the cases within 10% error using Canberra 

method (See table 7). The results are coming quite good 

when Euclidean and Exponential method has been used. 

Therefore we can conclude that Euclidean and Exponential 

both are good for error calculation in comparison to 

Manhattan and Canberra while applying CBR technique. 

In this research we have shown the strong motivation 

behind the use of CBR as a tool for solving the problem 

which has been given as a snapshot in this paper. Snapshot 

results can be seen in the table 2 of first row which is bold 

given in the appendix as an example. It seems that the 

model is application-based and it is very easy to extend this 

model to a theoretical case-based reasoning. As we know 

that CBR can not develop robustly without theoretical 

support. 

Table 2: The Mean and Std. Deviation of Error with respect to Dev_time using four similarity functions (Experiment no 1). 

Output Name of Similarity Functions Mean Std. Deviation 

Error w.r.t. 

 Dev_Time 

Euclidean 

Manhattan 

Canberra 

Exponent 

8.6667 

11.3000 

19.9667 

8.6667 

15.97484 

15.32217 

21.34040 

15.97484 

Distance (Error) Euclidean 

Manhattan 

Canberra 

Exponent 

4.5487 

5.4452 

9.2740 

4.5487 

3.96596 

4.94870 

7.08273 

3.96596 
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Table 3: The Mean and Std. Deviation of Error with respect to Dev_time using four similarity functions (Experiment no 2). 

Output Name of Similarity Functions Mean Std. Deviation 

Error w.r.t . Dev_Time Euclidean 

Manhattan 

Canberra 

Exponent 

8.1000 

9.0333 

24.3333 

8.1000 

11.90291 

13.31446 

23.88093 

11.90291 

Distance (Error) Euclidean 

Manhattan 

Canberra 

Exponent 

3.1643 

5.1690 

9.0093 

3.1643 

2.49421 

3.94575 

6.98985 

2.49421 

Table 4: The Mean and Std. Deviation of Error with respect to Dev_time  using four similarity functions (Experiment no 3). 

Output Name of Similarity Functions Mean Std. Deviation 

Error w.r.t . Dev_Time Euclidean 

Manhattan 

Canberra 

Exponent 

8.7667 

9.7333 

18.5000 

8.7667 

12.77282 

15.70402 

21.76006 

12.54697 

Distance (Error) Euclidean 

Manhattan 

Canberra 

Exponent 

4.2693 

5.3343 

7.3387 

4.2693 

4.44246 

5.11041 

6.52675 

4.44246 

Table 5: The Mean and Std. Deviation of Error with respect to Dev_time using four similarity functions (Experiment no 4). 

Output Name of Similarity Functions Mean Std. Deviation 

Error w.r.t . Dev_Time Euclidean 

Manhattan 

Canberra 

Exponent 

7.3667 

6.7667 

24.4333 

7.3667 

11.27855 

10.88714 

25.56086 

11.27855 

Distance (Error) Euclidean 

Manhattan 

Canberra 

Exponent 

4.0380 

4.6987 

9.6307 

4.0380 

5.33121 

4.22531 

8.15100 

5.33121 

Table 6: The Mean and Std. Deviation of Error with respect to Dev_time using four similarity functions (Experiment no 5). 

Output Name of Similarity Functions Mean Std. Deviation 

Error w.r.t . Dev_Time Euclidean 

Manhattan 

Canberra 

Exponent 

7.7333 

8.1667 

19.9667 

7.7333 

15.17924 

15.34226 

21.34040 

15.17924 

Distance (Error) Euclidean 

Manhattan 

Canberra 

Exponent 

4.6903 

5.2573 

10.0407 

4.6903 

3.95750 

4.22976 

7.28614 

3.95750 

Table 7: “The Average (%) of 150 data set in five consecutive experiment results using four similarity functions using CBR technique.” 

Experi

ment 

from 1 

to 5 

Euclidean Method Manhattan Method Canberra Method Exponential Method 

MRE w.r.t 

Dev_Time 

within 

(10% ) 

Acceptable%E

rror 

(Acceptable 

Limit 10%) 

MRE 

w.r.t 

Dev_Ti

me 

within(1

0%) 

%Error 

(Acceptable 

Limit 10%) 

MRE 

w.r.t 

Dev_Tim

e 

within(10

%) 

 

%Error 

(Acceptable 

Limit 10%) 

MRE 

w.r.t 

Dev_Tim

e 

within(10

%) 

 

%Error 

(Acceptable Limit 

10%) 

1-5 71.198% 92.664%  67.998% 87.328% 43.864% 57.332%  71.198% 92.664

% 

 

 



16 Machine Learning and Software Quality Prediction: As an Expert System  

Copyright © 2014 MECS                                              I.J. Information Engineering and Electronic Business, 2014, 2, 9-27 

 

Snapshot 1: Building the knowledge base 

 

Snapshot 2: Deletion of duplicate record set from KBS for reducing the maintenance cost. 

 

Snapshot 3: Selection of similarity Function for error prediction 
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Explanation: Snapshot 4. Accuracy using Euclidean 

Method (Exact/Nearest mathing case retrieved from the 

knowledge base along with a record no as well as MRE 

w.r.t Dev_Time value=0%. In this research magnitude of 

relative error is calculated with the help of dependent 

variable I, e development time. It can be seen in the form of 

output where the input parameter given by the user during 

run time and getting the result from the knowledge base as 

a retrieved case in which dependent variable is 

development time is same. In this case rest of the 

parameters have been matched except LOC which is 

retrieved from the knowledge base. We also display the 

distance of the input record set is calculated for each 

attributes of nearest data in the knowledge base (KBS) in 

the form of error (See Table 2 of row one which is bold 

given in appendix) 

 

 
 

Explanation: Snapshot 5. Accuracy using Manhattan 

Method (Exact/Nearest mathing case retrieved from 

knowledge base along with record no as well as MRE w.r.t 

Dev_Time value=0%. In this research magnitude of 

relative error is calculated with the help of dependent 

variable I, e development time. It can be seen in the form of 

output where the input parameter given by the user during 

runs time and getting the result from the knowledge base as 

a retrieved case in which dependent variable is 

development time is same. In this case  rest of the 

parameters have been  matched except LOC which is 

retrieved from the knowledge base. We also display the 

distance of the input record set is calculated for each 

attributes of nearest data in the knowledge base (KBS) in 

the form of error (See Table 2 of row one which is bold 

given in appendix) 

 

 
 

Explanation: Snapshot 6: Accuracy using Canberra 

Method (Exact/Nearest mathing case retrieved from the 

knowledge base along with record no as well as MRE w.r.t 

dev_Time value=50%. In this research magnitude of 

relative error is calculated with the help of dependent 

variable I, e development time. It can be seen in the form of 

output where the input parameter given by the user during 

run time and getting the result from the knowledge base as 

a retrieved case in which dependent variable is 

development time is not same as stored in the knowledge 

base as well as rest of the parameters are not exact matched, 

it is a nearest matching case which has been retrieved from 

the knowledge base. We also display distance of input 

record set is calculated for each attributes of nearest data in 

the knowledge base (KBS) in the form of error (See Table 2 

of row one which is bold given in appendix). 



18 Machine Learning and Software Quality Prediction: As an Expert System  

Copyright © 2014 MECS                                              I.J. Information Engineering and Electronic Business, 2014, 2, 9-27 

 
 

Explanation: Snapshot 7. Accuracy using Exponential 

Method (Exact/Nearest mathing case retrieved from 

knowledge base along with record no as well as MRE w.r.t 

Dev_Time value=0%. In this research magnitude of 

relative error is calculated by the help of dependent 

variable i,e development time. It can be seen in the form of 

output where the input parameter given by the user during 

run time and getting the result from the knowledge base as 

a retrieved case in which dependent variable is 

development time is same. In this case  rest of the 

parameters have been  matched except LOC which is 

retrieved from the knowledge base. We also display 

distance of input record set is calculated for each attributes 

of nearest data in the knowledge base (KBS) in the form of 

error (See Table 2 of row one which is bold given in 

appendix). 

 

XI.  ADVANTAGES OF THIS RESEARCH 

The software is compiled using Turbo C++ 3.0 and 

hence it is very compact and standalone, It can be readily 

deployed on any low configuration system and it would not 

impact its performance, as it does not rely on external 

runtimes and DLL’s like the .NET programs rely on. The 

software is a console based application and thus does not 

use the GUI functions of the operating System, which 

makes it very fast in execution. 

The biggest advantages of this research has given below: 

a) A Knowledge base (KBS) is created and maintained to 

store the cases as a different attributes of the software 

against which the matching process has to be performed. 

b) The objective is to predict the quality of the software 

project accurately and use the results in future predictions. 

c) The matching has done using various similarity 

measures like Euclidean, Manhattan, Canberra, 

Exponential. 

d) The prediction is based upon Case-Based Reasoning 

(CBR) technique. Because CBR takes minimum time in 

comparison to other AI approach like Neural Network (NN) 

and Genetic Algorithm (GA). But for accuracy the data 

requirement for CBR, NN, GA are high [23].  

e) New features and functionalities can be added easily to 

the existing system to satisfy the future requirements for 

example easy to extend. 

f) The advantages of this research work are a 

result-oriented because CBR systems use nearest neighbor 

algorithm for retrieval of cases from the Knowledge base.  

g) Improving the quality of the software through early 

prediction of error patterns. 

h) Removing the duplicate record set from the KBS for 

reducing the maintenance cost. 

i) This technique can be successfully applied to fault 

diagnosis for customer service support. 

j) CBR systems can use existing solution and adapt it to the 

current situation. 

k) To add new record set to CBR system, a user only needs 

to add new cases to the system. 

 

XII.  CONCLUSIONS 

The main contribution of this paper is a use of 

case-based reasoning as an expert system for predicting the 

software fault in a software module. After developing the 

case-based reasoning model (see figure 2) we validated it 

with part of the data set. In this research work four distance 

functions the Euclidean, Canberra, Exponential and 

Manhattan method were taken into consideration in terms 

of percentage of errors generated during execution of 

programs. For their efficacy in determining errors, the low 

error programs detected by these methods may help to 

design error free programs. If the error estimation is less 

than 10% then the input record set is auto saved to the 

knowledge base. Once the result is predicted it is added to 

the database to enhance the accuracy of future predictions. 

Only those results are added that give an error of 10% or 

less. But if the error estimation is more than 10% then the 

input record set must be revised then save to the knowledge 

base for future solutions. These data can be safely 

classified as high quality data. In the current  
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analysis, the accuracy performed by all four distance 

functions which is given in the tabular form (See appendix) 

while using CBR technique. Also it can be seen in the form 

of a snapshot (See snapshot 4 through snapshot 7). And a 

result is derived where acceptable range is within 10%. 

Snapshot 4, 5, 6 and 7 shows the accuracy comparisons of 

different distance functions. The average (%) of the 150 

data set in five consecutive experiment results using four 

similarity functions using CBR technique shown in table 7. 

We have also calculated the mean and standard deviation 

of each experiment results using these similarity functions 

(see table 2 through 6). 

 

XIII.  FUTURE SCOPE 

Through empirical investigations and literature reviews 

conducted as part of this research work, we anticipate a 

promising future where there are further research 

opportunities for evaluating the application of case-based 

reasoning in software quality prediction and software 

testing. The long term goal of the research is as follows: 

1. Use of neural network and/or fuzzy logic model for 

software quality prediction. 

2. Addition of new parameters: Additional fields can be 

added to the record set so as to incorporate the dependency 

of the prediction if any, on these parameters. Till now, only 

those parameters were considered that had more 

dependency. 

3. Addition of new similarity measures: Apart from 

Euclidean, Canberra, Exponential and Manhattan methods 

other similarity measures can be used to find similar cases. 

For example Chebychev method. Choice in the use of 

similarity measure adds flexibility to the system and allows 

to compare among the methods. 

APPENDIX A 

Table 1: Comparative Analysis of Error Prediction with four distance functions using CBR technique (Experiment One). 

Id Euclidean Method Manhattan Method Canberra Method Exponential Method 

MRE 

w.r.t 

Dev_Time 

within 

(10% ) 

%Error 

(Acceptable 

Limit 10%) 

MRE 

w.r.t 

Dev_Ti

me 

within(1

0%) 

%Error 

(Acceptable 

Limit 10%) 

MRE 

w.r.t 

Dev_

Time 

within

(10%) 

%Error 

(Acceptable 

Limit 10%) 

MRE 

w.r.t 

Dev_Ti

me 

within(1

0%) 

%Error 

(Acceptable 

Limit 10%) 

1 25 5.68  25 5.68 25 5.68  25 5.68  

2 0.0 5.71  0.0 11.43  50 14.29  0.0 5.71  

3 0.0 8.93  0.0 8.93  33 16.07  0.0 8.93  

4 20 6.0  0.0 0.0  0.0 0.0  20 6.0  

5 0.0 1.89  0.0 1.89  0.0 1.89  0.0 1.89  

6 0.0 2.86  0.0 2.86  0.0 5.71  0.0 2.86  

7 0.0 5.45  0.0 5.45  33 5.45  0.0 5.45  

8 7 0.0  23 2.38  23 7.14  7 0.0  

9 20 2.13  20 2.13  20 2.13  20 2.13  

10 25 7.14  25 7.14  0.0 0.0  25 7.14  

11 0.0 2.63  0.0 5.41  50 18.92  0.0 2.63  

12 0.0 0.0  0.0 0.0  13 12.50  0.0 0.0  

13 0.0 2.13  0.0 2.13  0.0 10.64  0.0 2.13  

14 75 3.57  0.0 17.86  0.0 17.86  75 3.57  

15 33 4.17  33 4.17  33 4.17  33 4.17  

16 0.0 3.45  30 5.17  60 20.69  0.0 3.45  

17 0.0 3.33  25 8.33  50 13.33  0.0 3.33  

18 0.0 6.67  0.0 3.33  50 13.33  0.0 6.67  

19 16 7.46  16 10.45  16 10.45  16 7.46  

20 0.0 1.49  23 7.46  23 7.46  0.0 1.49  

21 0.0 4.44  0.0 4.44  0.0 4.44  0.0 4.44  

22 0.0 20.0  50 0.0  0.0 0.0  0.0 20.0  

23 0.0 5.08  0.0 5.08  0.0 11.86  0.0 5.08  

24 11 11.76  44 21.32  44 21.32  11 11.76  

25 8 3.45  25 5.17  16 10.34  8 3.45  

26 0.0 2.67  0.0 1.33  0.0 1.33  0.0 2.67  

27 20 2.94  0.0 2.94  0.0 11.76  20 2.94  

28 0.0 0.97  0.0 0.97  0.0 0.0  0.0 0.97  

29 0.0 4.46  0.0 4.46  0.0 4.46  0.0 4.46  

30 0.0 0.0  0.0 0.0  60 25  0.0 0.0  

70%              96.66%                60%            86.66%                  43%        50%                       70%           96.66%
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Table 2: Comparative Analysis of Error Prediction with four distance functions using CBR technique (Experiment Two) 

Id Euclidean Method Manhattan Method Canberra Method Exponential Method 

MRE 

w.r.t 

Dev_Tim

e within 

(10% ) 

%Error 

(Acceptable 

Limit 10%) 

MRE 

w.r.t 

Dev_Ti

me 

within(1

0%) 

%Error 

(Acceptable 

Limit 10%) 

MRE 

w.r.t 

Dev_

Time 

within

(10%) 

%Error 

(Acceptable 

Limit 10%) 

MRE 

w.r.t 

Dev_Ti

me 

within(1

0%) 

%Error 

(Acceptable 

Limit 10%) 

1 0.0 1.92  0.0 1.92 50 13.46  0.0 1.92  

2 40.0 3.70  50 12.35  40.0 3.70  40.0 3.70  

3 6.0 1.20  0.0 6.02  6.0 1.20  6.0 1.20  

4 0.0 10.0  0.0 10.0  0.0 10.0  0.0 10.0  

5 0.0 0.0  0.0 4.69  0.0 4.69  0.0 0.0  

6 7.0 5.0  15.0 1.67  23.0 11.67  7.0 5.0  

7 0.0 2.78  16 1.39  16 13.89  0.0 2.78  

8 25 2.17  25 2.17  25 2.17  25 2.17  

9 0.0 5.41  0.0 5.41  0.0 5.41  0.0 5.41  

10 0.0 3.17  0.0 3.17  33.0 4.76  0.0 3.17  

11 25 6.38  25 6.38  25 0.0  25 6.38  

12 0.0 6.90  0.0 6.90  0.0 6.90  0.0 6.90  

13 28 2.86  0.0 14.29  28 22.86  28 2.86  

14 25 2.38  37.0 11.90  37.0 11.90  25 2.38  

15 15 1.64  15 0.0  53.0 21.31  15 1.64  

16 0.0 6.25  0.0 6.25  60 12.50  0.0 6.25  

17 0.0 5.17  0.0 5.17  0.0 3.45  0.0 5.17  

18 0.0 0.0  0.0 10.26  0.0 10.26  0.0 0.0  

19 0.0 0.0  0.0 0.0  33 11.76  0.0 0.0  

20 8.0 0.0  8.0 0.0  66 16.42  8.0 0.0  

21 15 3.03  15 3.03  69 15.15  15 3.03  

22 9.0 2.94  9.0 2.94  63 17.65  9.0 2.94  

23 7.0 0.0  7.0 0.0  7.0 0.0  7.0 0.0  

24 0.0 4.67  0.0 4.67  20.0 1.87  0.0 4.67  

25 0.0 5.36  0.0 5.36  0.0 5.36  0.0 5.36  

26 33.0 5.32  33.0 5.32  0.0 4.26  33.0 5.32  

27 0.0 0.98  0.0 2.94  0.0 2.94  0.0 0.98  

28 0.0 3.45  16 8.62  16 8.62  0.0 3.45  

29 0.0 2.25  0.0 2.25  0.0 1.12  0.0 2.25  

30 0.0 0.0  0.0 10.0  60 25  0.0 0.0  

76%                100%                  70%            86.66%                 46.66%      60%                        76%        100% 
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Table 3: Comparative Analysis of Error Prediction with four distance functions using CBR technique (Experiment Three) 

Id Euclidean Method Manhattan Method Canberra Method Exponential Method 

MRE 

w.r.t 

Dev_Time 

within 

(10%) 

%Error 

(Acceptable 

Limit 10%) 

MRE  

w.r.t 

Dev_Ti

me 

within 

(10%) 

%Error 

(Acceptable 

Limit 10%) 

MRE 

w.r.t 

Dev_

Time 

within 

(10%) 

%Error 

(Acceptable 

Limit 10%) 

MRE  

w.r.t 

Dev_Ti

me 

within 

(10%) 

%Error 

(Acceptable 

Limit 10%) 

1 25 5.68  25 5.68 25 5.68  25 5.68  

2 0 3.33  0 3.33  0 3.33  0 3.33  

3 20 6.67  0 11.11  20 6.67  20 6.67  

4 0 0  0 0  0 0  0 0  

5 0 1.64  0 4.92  0 1.64  0 1.64  

6 0 0  0 0  0 0  0 0  

7 0 11.11  0 11.11  0 11.11  0 11.11  

8 25 0  0 5.41  0 13.51  25 0  

9 0 5.17  0 5.17  73 20.69  0 5.17  

10 0 0  0 0  0 0  0 0  

11 25 20  25 20  25 8  25 20  

12 33 5  66 17.50  33 5  33 5  

13 42 12.50  42 12.50  42 5  42 12.50  

14 0 0  0 0  0 0  0 0  

15 25 9.09  0 9.09  50 18.18  25 9.09  

16 0 3.23  0 3.23  13 9.68  0 3.23  

17 0 4.88  0 9.76  0 4.88  0 4.88  

18 0 2.78  0 2.78  0 2.78  0 2.78  

19 0 2.60  0 3.90  0 3.90  0 2.60  

20 0 4.29  0 4.29  0 2.86  0 4.29  

21 11 0  11 0  16 10.45  11 0  

22 7 1.79  7 1.79  64 16.07  7 1.79  

23 8 5.26  8 5.26  16 8.77  8 5.26  

24 25 1.92  25 1.92  50 23.08  25 1.92  

25 0 1.37  0 1.37  0 1.37  0 1.37  

26 0 4.84  25 1.61  41 12.90  0 4.84  

27 0 3.41  0 5.68  0 1.14  0 3.41  

28 22 3.57  22 3.57  22 5.36  22 3.57  

29 20 7.95  20 7.95  40 15.91  20 7.95  

30 0 0  16  1.10 16 2.20  0 0  

63.33%          90%                    66.66%        86.66%                 46.66%      70%                  63.33%        90% 
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Table 4: Comparative Analysis of Error Prediction with four distance functions using CBR technique (Experiment Four) 

Id Euclidean Method Manhattan Method Canberra Method Exponential Method 

MRE w.r.t 

Dev_Time within 

(10%) 

%Error 

(Acceptable 

Limit 10%) 

MRE 

w.r.t 

Dev_Time 

within 

(10%) 

%Error 

(Acceptable 

Limit 10%) 

MRE 

w.r.t 

Dev_Time 

within 

(10%) 

%Error 

(Acceptable 

Limit 10%) 

MRE 

w.r.t 

Dev_Time 

within 

(10%) 

%Error 

(Acceptable 

Limit 10%) 

1 0 2.13  0 2.13 0 2.13  0 2.13  

2 0 11.11  0 6.67  60 13.33  0 11.11  

3 0 0  0 4.69  0 4.69  0 0  

4 0 1.96  0 9.80  73 23..53  0 1.96  

5 0 5.13  0 10.26  0 10.26  0 5.13  

6 0 0  0 4.69  0 4.69  0 0  

7 0 3.23  0 3.23  0 3.23  0 3.23  

8 0 0  0 7.69  0 0  0 0  

9 20 2.63  20 0  0 27.03  20 2.63  

10 25 7.41  0 8.64  25 8.64  25 7.41  

11 13 2.94  0 0  73 17.65  13 2.94  

12 0 2.38  0 2.38  0 2.38  0 2.38  

13 0 28  0 20  20 0  0 28  

14 0 3.51  0 1.75  33 8.77  0 3.51  

15 40 2.94  40 2.94  0 11.76  40 2.94  

16 0 2.13  0 2.13  60 17.02  0 2.13  

17 0 3.23  0 3.23  25 11.29  0 3.23  

18 26 8.33  26 8.33  55 22.92  26 8.33  

19 20 7.37  20 7.37  20 7.37  20 7.37  

20 0 6.25  0 4.69  50 18.75  0 6.25  

21 7 1.79  15 8.93  69 17.86  7 1.79  

22 25 5.13  25 6.41  25 5.13  25 5.13  

23 18 3.45  18 3.45  18 3.45  18 3.45  

24 0 2.86  0 2.86  8 2.86  0 2.86  

25 20 5.88  0 2.94  0 11.76  20 5.88  

26 7 1.35  7 1.35  7 1.35  7 1.35  

27 0 0  16 1.10  16 3.30  0 0  

28 0 0  16 3.30  16 3.30  0 0  

29 0 0  0 0  20 0  0 0  

30 0 0  0 0  60 25  0 0  

70%                  93.33%             70%                  93.33%           40%                  56.66%             70%           93.33% 
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Table 5: Comparative Analysis of Error Prediction with four distance functions using CBR technique (Experiment Five) 

Id Euclidean Method Manhattan Method Canberra Method Exponential Method 

MRE 

w.r.t 

Dev_time 

within 

(10%) 

 

%Error 

(Acceptable 

Limit 10%) 

MRE 

w.r.t 

Dev_Ti

me 

within 

(10%) 

%Error 

(Acceptable 

Limit 10%) 

MRE 

w.r.t 

Dev_

Time 

within 

(10%) 

%Error 

(Acceptable 

Limit 10%) 

MRE 

w.r.t 

Dev_Ti

me 

within 

(10%) 

%Error 

(Acceptable 

Limit 10%) 

1 0 1.35  0 4.05 25 5.68  0 1.35  

2 0 4.88  0 4.88  50 14.29  0 4.88  

3 0 1.69  0 1.67  33 16.07  0 1.69  

4 16 9.62  25 7.69  0.0 0.0  16 9.62  

5 0 0  0 0  0.0 1.89  0 0  

6 0 0  0 7.69  0.0 5.71  0 0  

7 66 11.11  66 11.11  33 5.45  66 11.11  

8 25 0  0 16.67  23 7.14  25 0  

9 42 11.11  42 11.11  20 2.13  42 11.11  

10 0 2.67  0 2.67  0.0 0.0  0 2.67  

11 0 12.50  0 12.50  50 18.92  0 12.50  

12 16 10.34  16 8.62  13 12.50  16 10.34  

13 0 2  0 2  0.0 10.64  0 2  

14 0 9.30  0 9.30  0.0 17.86  0 9.30  

15 7 1.49  7 1.49  33 4.17  7 1.49  

16 0 6.25  0 6.25  60 20.69  0 6.25  

17 0 2.17  0 2.17  50 13.33  0 2.17  

18 7 3.70  0 1.85  50 13.33  7 3.70  

19 0 6.32  0 1.05  16 10.45  0 6.32  

20 0 4.11  20 1.37  23 7.46  0 4.11  

21 0 3.30  0 3.30  0.0 4.44  0 3.30  

22 0 11.81  0 11.81  0.0 0.0  0 11.81  

23 16 7.14  16 7.14  0.0 11.86  16 7.14  

24 9 4.26  9 4.44  44 21.32  9 4.26  

25 0 2.22  0 2.22  16 10.34  0 2.22  

26 0 1.96  0 1.96  0.0 1.33  0 1.96  

27 28 5.66  28 5.66  0.0 11.76  28 5.66  

28 0 2.78  0 2.78  0.0 0.0  0 2.78  

29 0 0.97  0 0.97  0.0 4.46  0 0.97  

30 0 0  16 3.30  60 25  0 0  

76.66%         83.33%                 73.33%       83.33%                 43%        50%                     76.66%        83.33% 

APPENDIX B 

 

Fig 1: shows number of programs versus % error predicted with respect to development time using Euclidean method on the basis of experiment 1 to 

experiment 5 
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Fig 2: shows number of programs versus % error using Euclidean method on the basis of table 1 to table 5. 

 

Fig 3: shows number of programs versus % error predicted with respect to development time using Manhattan method on the basis of table 1 to table 5. 

 

Fig 4: shows number of programs versus % error using Manhattan method on the basis of table 1 to table 5. 
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Fig 5: shows number of programs versus % error predicted with respect to development time using Canberra method on the basis of table 1 to table 5. 

 

Fig 6: shows number of programs versus % error with respect to development time using Manhattan method on the basis of table 1 to table 5. 

 

Fig 7: shows number of programs versus % error predicted with respect to development time using Exponential method on the basis of table 1 to table 

5.
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Fig 8: shows number of programs versus % error using Exponential method on the basis of table 1 to table 5. 
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