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Abstract—This research solves the computational 
intelligence problem of devising two mathematical 
engineering tools called Classic-Curvature and Intensity-
Curvature Functional. It is possible to calculate the two 
mathematical engineering tools from any model 
polynomial function which embeds the property of 
second-order differentiability. This work presents results 
obtained with bivariate and trivariate cubic Lagrange 
polynomials. The use of the Classic-Curvature and the 
Intensity-Curvature Functional can add complementary 
information in medical imaging, specifically in Magnetic 
Resonance Imaging (MRI) of the human brain. 
 
Index Terms—Classic-Curvature, Computational 
Intelligence, Intensity-Curvature Functional, Magnetic 
Resonance Imaging (MRI), Model Polynomial Function, 
Second-Order Derivative, Second-Order Differentiability. 
 

I.  INTRODUCTION 

Since the inception of signal-image interpolation 
through the works of Isaac Newton [1], an enormous 
amount of studies corroborated with formulations of 
improved interpolation paradigms have been reported in 
the literature. The most representative studies [2-4] have 
guided the discovery of the unifying framework [5] and 
the unified framework [6] for the improvement of the 
interpolation error. From the two frameworks [5, 6], two 
mathematical engineering tools have been conceived. 

The two mathematical engineering tools are: (i) the 
Classic-Curvature [6] and (ii) the Intensity-Curvature 
Functional [5-8]. The methodological characteristics for 
the calculation of the two aforementioned mathematical 
engineering tools are the same regardless of the model 
polynomial function fitted to the signal-image data. The 
only requirement is that the model polynomial function 
benefits of the property of second-order differentiability 
in its interval of definition, which is that property that 
makes the model polynomial function to have non null  

and continuous second-order derivatives. The key to the 
formulation of the mathematical engineering tools 
presented here is thus the computational intelligence of 
the Classic-Curvature, which is calculated summing up 
all of the second-order derivatives of Hessian of the 
model polynomial function fitted to the signal-image data. 
The calculation of the Classic-Curvature is also beneficial 
to the calculation of the Intensity-Curvature Functional, 
which is defined through the ratio between two terms, 
both of them inclusive of the intensity-curvature content 
of the signal-image. The two terms are: (i) the integral of 
the product between the Classic-Curvature and the value 
of the signal-image intensity, both of them calculated at 
the grid node, and (ii) the integral of the product between 
the Classic-Curvature and the value of the signal-image 
intensity, both of them calculated at the intra-pixel 
coordinate used to re-sample the signal. Thus, re-
sampling, which is inherent to interpolation, is also 
another piece of computational intelligence, which allows 
the calculation of both of the Classic-Curvature and the 
Intensity-Curvature Functional. Specifically, the intra-
pixel coordinate chosen to calculate the aforementioned 
mathematical engineering tools is such to determine the 
information content of the resulting images and thus, in 
the present research, it is relevant to the information 
extracted from the Magnetic Resonance Images.  

In this paper, emphasis is given to two model 
polynomial functions, namely: the bivariate and the 
trivariate cubic Lagrange polynomials [6, 8]. It is here 
shown that from the aforementioned two model 
polynomial functions it is possible to calculate the 
Classic-Curvature and the Intensity-Curvature Functional, 
which extract information from the original MRI images. 
Therefore, through the use of the Classic-Curvature and 
the Intensity-Curvature Functional of the model 
polynomial functions it is possible to highlight 
characteristics of the signal-image which are seen in the 
MRI domain. In the theory section, the procedure for the 
calculation of the mathematical engineering tools will be 
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presented. The results section will present images 
obtained fitting both of the bivariate and the trivariate 
cubic Lagrange polynomials to pathological MRI data of 
the human brain showing a tumor. The results section 
will focus on the capability of the Classic-Curvature and 
the Intensity-Curvature Functional to perform feature 
extraction from the original image, showing that it is 
possible to add complementary information to the 
original MRI. In the discussion and conclusion sections 
the practical implications of this research will be 
presented placing the emphasis on the methodological 
approach and also on the value added to the original MRI 
through the use of the two mathematical engineering 
tools used in this piece of research. 
 

II.  THEORY 

Let the bivariate and trivariate cubic Lagrange 
polynomials g(x) = g(x1, x2…xn) be defined as:  
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The constant f(0) is the pixel (2D) or the voxel (3D) 
intensity. The constant 'a' is the parameter of the cubic 
Lagrange polynomial and is here named as the constant 
parameter in (1). In (1), 'hi' and 'mi' are the coefficients of 
the polynomial, 'n' defines the dimensionality of the 
polynomial and 'i' is the exponent of each of the sums of 
the independent variables. Positions (2) and (3) hold true, 
with 's' and 'r' defining how many pixels are included into 
the polynomial convolutions. 
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Fig. 1. The layout of the pixels in the neighborhood of the bivariate and 
trivariate Lagrange (g(x)) model polynomial functions. 

 
Therefore, the Classic-Curvature of the bivariate cubic 
Lagrange polynomial (1) is given in (4) and it is the sum 

of all second order derivatives of the polynomial with 
respect to all of the variables and all the covariates. 
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In (4) 'n' defines the dimensionality of the polynomial. 
Let the intensity-curvature term before interpolation E0(x) 
[5], and the intensity-curvature term after interpolation 
EIN(x) [5] be defined as per (5) and (6).  
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The definition of the Intensity-Curvature Functional is: 
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It is possible to calculate ΔΕ(x) of both of the bivariate 
and the trivariate cubic Lagrange polynomials through (7) 
[6]. 
 

III.  RESULTS 

This section presents results obtained with Magnetic 
Resonance images of the human brain when the bivariate 
cubic Lagrange polynomial was fitted to the signal-image 
data. Also, the MRI volumes inclusive of the slices 
shown in this section were processed with the trivariate 
cubic Lagrange polynomial fitting the math model as 
shown in the neighborhood of Fig. 1, and the results are 
shown in the following figures. The images which were 
obtained fitting to the 2D signal-data the bivariate cubic 
Lagrange polynomial were re-sampled of 0.1mm along 
the x direction and 0.1mm along the y direction. The 
images which were obtained fitting to the 3D data the 
trivariate cubic Lagrange polynomial were re-sampled of 
0.1mm along the x direction and 0.1mm along the y 
direction and 0.1mm along the z direction. 

 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2. Magnetic Resonance Imaging showing the tumor: (a) the image 

is made of a 262 x 320 pixels matrix with pixel size of 0.78mm x 
0.78mm; (b) the image is made of a 260 x 320 pixels matrix with pixel 
size of 0.78mm x 0.78mm. The images were cropped to the regions of 

interest.
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Fig. 2 shows two of the MRI images employed in this 
piece of research, which are referred here as to be the 
original MRI. The tumor is visible in the human brain in 
both of the pictures shown in Fig. 2.  

Fig. 3 shows the couple of images: Classic-Curvature 
in (a), obtained with the bivariate cubic Lagrange 
polynomial and the Intensity-Curvature Functional in (b), 
obtained with the trivariate cubic Lagrange polynomial. 
Specifically, since it is the object of this piece of research 
to assess the capability of the two mathematical 
engineering tools to provide complementary information 
through feature extraction from the original MRI, the 
emphasis is in the comparison of the appearance of the 
Classic-Curvature and the Intensity-Curvature Functional 
images shown in Fig. 3 and Fig. 4 with the original MRI 
shown in Fig. 2. 

 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3. In reference to the image shown in Fig. 2a, (a) shows the Classic-

Curvature image and (b) shows the Intensity-Curvature Functional 
image. In (a) is visible the reproduction of all of the human brain 
features. In (b) it can be seen the tumor inside the thin line that 

surrounds the pathology. 
 

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4. In reference to the image shown in Fig. 2b, (a) shows the 
Classic-Curvature image and (b) shows the Intensity-Curvature 

Functional image. The Intensity-Curvature Functional shows a thin line 
which encapsulates the tumor and this more evident in (b) than in (a). 
The thin line is lateral to the tumor. Also, the pixels of the Intensity-

Curvature Functional were calculated with the trivariate cubic Lagrange 
polynomial, which process the MRI data using pixels placed in three 

consecutive slices, and so the ventricle is seen in (b). 

 
The value of the constant parameter in (1) was set to 

the value of 2.54 in both of Fig. 3 and Fig. 4. While Fig. 
3a (Classic-Curvature image) reproduces faithfully the 
features of the image seen in Fig. 2a, the Intensity-
Curvature Functional of Fig. 3b shows the demarcations 
of the brain structures, the distinction between gray and 
white matter and also the tumor. Also, visible in Fig. 3b 

more than in Fig. 3a is the contour line enclosing the 
tumor.  

Fig. 4 shows the Classic-Curvature image in (a) 
obtained when fitting the bivariate cubic Lagrange 
polynomial, and the Intensity-Curvature Functional 
image in (b) obtained when fitting the trivariate cubic 
Lagrange polynomial to the human brain data. The 
images in Fig. 3 and Fig. 4 show the tumor with a neat 
distinction between the Classic-Curvature image, which 
is similar to the original MRI, and the Intensity-Curvature 
Functional image which focuses on the contours of the 
tumor and the visualization of the pressure exercised by 
the tumor on the ventricles of the human brain. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. The Magnetic Resonance Imaging showing the tumor is (a). The 
image is made of a 512 x 512 pixels matrix with pixel size of 0.45mm x 

0.45mm. The Classic-Curvature image and the Intensity-Curvature 
Functional image are presented in (b) and in (c) respectively. The 

contrast is enhanced in all of the pictures, and when comparing (a) with 
(b) and (c), some presumed blood vessels are highlighted (see white 

arrows). 

 
Fig. 5 shows in (a) the original MRI with the tumor 

distinguishable through the white nuances. Fig. 5b and 
Fig. 5c show the Classic-Curvature image and the 
Intensity-Curvature Functional image, respectively, 
which were obtained from the original MRI shown in (a). 
The white nuances are repeated in the Classic-Curvature 
image of Fig. 5b, and the nuances are seen also in the 
Intensity-Curvature Functional image of Fig. 5c.  

(a) (b) 

(a) (b) (c)
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A remarkable difference between Fig. 5b and Fig. 5c is 
that, while the former shows a flat image which is very 
much alike the one seen in Fig. 5a, the latter elicits the 
perception of the depths of both the anatomical structures 
of the brain and the tumor. As indicated by the two white 
arrows in Fig. 5c, the Intensity-Curvature Functional 
image is also capable of marking the presumed vessels of 
the human brain, and so, such brain vessels, which are 
observable in Fig. 5a and Fig. 5b, are also visible in the 
Intensity-Curvature Functional image of Fig. 5c.  

The Classic-Curvature image (see Fig. 5b) and the 
Intensity-Curvature Functional image (see Fig. 5c) were 
obtained when fitting the bivariate cubic and the trivariate 
cubic Lagrange polynomials respectively to the image 
shown in Fig. 5a. Specifically when using the constant 
parameter in (1) set to the value of 2.54.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 6. The Magnetic Resonance Imaging showing the tumor is (a). The 
image is made of a 416 x 512 pixels matrix with pixel size of 0.49mm x 

0.49mm. The Classic-Curvature image and the Intensity-Curvature 
Functional image are presented in (b) and in (c), (d) respectively. The 

images in (b) and in (c) were obtained setting the parameter in (1) to the 
value of -0.54, while in (d) the value of the parameter was set to 2.54. In 

reference to (d) the tumor is demarcated in its contour and the blood 
components inside the tumor are highlighted. In (c) the low contrast 

does not allow to make the same sharp observations although the blood 
components are visible. 

 
Fig. 6 shows results obtained when fitting the bivariate 

and the trivariate cubic Lagrange polynomial to the brain 
image data seen in (a). In (b) is visible the Classic-
Curvature image and in (c) and in (d) are visible the 
Intensity-Curvature Functional images obtained when 
fitting the bivariate (see (c)) and the trivariate (see (d)) 
cubic Lagrange polynomials. 

The Classic-Curvature image (see Fig. 6b) 
demonstrates faithful reproduction of the original MRI 
therefore showing all of the human brain features 
including the dark spots (fluids) of the tumor which are 
seen in white color. The Intensity-Curvature Functional 

image (see Fig. 6c) places the emphasis on what is seen 
as white spots (fluids) in the Classic-Curvature image 
(see Fig. 6b) and reproduces them with well-defined level 
of details. The brain ventricles in Fig. 6b show well 
demarcated anatomy. As far as the figures in (c) and in (d) 
are concerned, the Intensity-Curvature Functional acts as 
a feature extractor of the image seen in (b), therefore 
showing details (see dark spots) that are seen in both (a) 
and (b), with a different and complementary perspective. 
Similar behavior of the Intensity-Curvature Functional 
images in relationship to the Classic-Curvature images 
was already observed in both of Fig. 3 and Fig. 4. 

 
 
 
 
 
 
 
 

Fig. 7. The Magnetic Resonance Imaging showing the tumor is (a), the 
image is made of a 484 x 484 pixels matrix with pixel size of 0.41mm x 

0.41mm; (b) the Classic-Curvature and (c) the Intensity-Curvature 
Functional. The images in (b) and in (c) were obtained setting the 

parameter in (1) to the value of -0.54. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8. The Magnetic Resonance Imaging showing the tumor is (a). The 
image is made of a 512 x 512 pixels matrix with pixel size of 0.39mm x 

0.39mm; (b) the Classic-Curvature, (c) and (d) show the Intensity-
Curvature Functional images. The images in (b) and in (c) were 

obtained setting the parameter in (1) to the value of -0.54, while in (d) 
the value of the parameter was set to 2.54. In (d) is visible the mass 

effect of the tumor pushing the ventricles. Also well visible in (d) are 
the white components which could be water and/or blood, fluid more in 

general. 

 
Fig. 7 and Fig. 8 show the original MRI with the tumor 

in (a), the Classic-Curvature image in (b) and the 
Intensity-Curvature Functional image in (c). The imaging 
behavior of the two mathematical engineering tools is 
similar in both of Fig. 7 and Fig. 8. While the Classic-
Curvature shows remarkable reproduction of the original 

(a) 

(c) (d) 

(b) 

(a) (b) (c) 

(d) 
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(c)
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MRI image features overall all of the anatomical 
structures, the Intensity-Curvature Functional seen in Fig. 
7c and Fig. 8c performs feature extraction from both of 
the white and dark nuances of the tumor which are visible 
in Fig. 7a and Fig. 8a.  

The area of the tumor is well visible in Fig. 7b and Fig. 
8b, whereas the contours of the white and the dark 
nuances of the tumor are demarcated in the Intensity-
Curvature Functional of Fig. 7c and Fig. 8c. Fig. 8d 
shows the Intensity-Curvature Functional obtained when 
fitting the data with the trivariate cubic Lagrange 
polynomial. Similarly to what was seen in Fig. 5c, Fig. 8d 
place the emphasis on the depths of the anatomical 
structures of the brain and of the tumor. 

Generally speaking, the Classic-Curvature images 
shown in this paper manifest high similarity when 
compared to the original MRI and therefore behave as 
information provider to the diagnostic value of the 
original MRI. The Classic-Curvature images can also 
appear inverted as far as regards their comparison with 
the original MRI and such behavior is observable because 
of the use of a negative value of the constant 'a' in (1). 
Examples of the aforementioned behavior can be seen in 
Fig. 6b, Fig. 7b and Fig. 8b. Distinction between gray and 
white matter of the human brain and highlights on well 
demarcated brain structures are all possible to achieve 
with the Classic-Curvature images.  

On the other hand, the Intensity-Curvature Functional 
images tend to highlight the contours, the inner structures 
of the tumor, such as the white and dark spots, and also 
are able to provide depth information of the brain 
structures such as the sulci (see Fig. 8d). 
 

IV.  DISCUSSION 

A. The Computational Intelligence 

This section discusses how to obtain the Classic-
Curvature and the Intensity-Curvature Functional from 
two-dimensional MRIs. The first step to undertake is that 
one of fitting a polynomial function to the signal-image 
data. The polynomial function needs to benefit of the 
property of second-order differentiability, which is that 
one that admits the model polynomial function to have 
non null and continuous second-order derivatives in its 
interval of definition. The effect of fitting the model 
polynomial function, to the discrete sequel of digital 
samples the MRI which is made of, is that of creating the 
continuum from the digital (discontinuous) nature of an 
MRI two-dimensional image.  

The second step is the calculation of all of the second-
order derivatives of Hessian of the polynomial function. 
This step implies that also the second-order derivatives 
with respect to the covariates are calculated (for instance 
x and y) and is the step which provides both of third and 
fourth steps of the mathematical procedure with the 
computational intelligence. 

The third step is the calculation of the Classic-
Curvature, which is possible through the summation of all 
of the second-order derivatives of the Hessian of the 

model polynomial function fitted to the signal-image. The 
calculation of the Classic-Curvature brings the benefit of 
including into the resulting second-order derivative of the 
signal-image both of the derivatives in the same variable 
and the derivatives in the covariates. 

Thus, the aforementioned approach advances the state 
of the art versus approaches which use compact finite 
differences [9], multidimensional derivative filters [10] to 
calculate both of first and second order derivatives, 
and/or gradients [11], and/or the Sobel operator to 
calculate the first order derivatives of the signal-image 
[12]. 

The fourth step is that one of the calculation of the 
Intensity-Curvature Functional through the ratio between 
two terms each of which is a composition between pixel 
intensity and Classic-Curvature of the model polynomial 
function. The two terms are: (i) the numerator, which is 
made of the integral of the product between the pixel 
intensity at the grid node (the value f(0, 0) in 2D, or f(0, 0, 
0) in 3D) of the intensity extracted from the discrete 
sequel of digital samples) and the Classic-Curvature 
calculated at the grid node ((x, y) ≡ (0, 0) in 2D, or (x, y, 
z) ≡ (0, 0, 0) in 3D); and (ii) the denominator, which is 
made of the integral of the product between the pixel 
intensity at the intra-pixel re-sampling location (x, y), 
which is (x, y, z) in the three-dimensional case, and the 
Classic-Curvature calculated at (x, y), which is (x, y, z) in 
the three-dimensional case. It is therefore important to 
stress that in the calculation of both Classic-Curvature 
and Intensity-Curvature Functional the intra-pixel re-
sampling coordinate is another piece of computational 
intelligence and is also one main determinant of the 
appearance of the images of the two aforementioned 
mathematical engineering tools. Another main 
determinant is the polynomial form of the model function 
fitted to the signal-image data. A consequence of the 
intra-pixel re-sampling is that for a given MRI there are 
an immense number of possible Classic-Curvature and 
Intensity-Curvature Functional images, each of which is 
corresponding to the coordinate (x, y) or (x, y, z). This 
characteristic gives plenty of freedom regarding the 
calculation and the choice of the Classic-Curvature and 
the Intensity-Curvature Functional images which allow 
achieving best diagnostic results. 

B. The Value Added to the Original MRI 

As seen in the results section the characteristics of the 
Classic-Curvature and the Intensity-Curvature Functional 
images are those of adding imaging information to the 
one already available through the observation of the 
original MRI. It is visible from the figures presented in 
the results section that the two mathematical engineering 
tools can highlight various anatomical structures of the 
human brain. The cortex (see Fig. 3), the sulci and their 
depths (see Fig. 7c and Fig. 8c, Fig. 8d), the distinction 
between gray matter and white matter (see Fig. 6b), the 
ventricles and the Cerebrospinal Fluid (CSF) (see Fig. 3a, 
Fig. 4b, Fig. 6b, Fig 7b, Fig. 8b), the cerebellum (see Fig. 
5b and Fig. 5c) and also sub-cortical structures (see Fig. 
3a and Fig. 3b), are all anatomical structures that both the 
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Classic-Curvature and the Intensity-Curvature Functional 
images can reproduce. It is also possible to have 
confirmation of an anomaly such as the tumor as studied 
in this paper. Most importantly, though, the Classic-
Curvature and the Intensity-Curvature Functional images 
can perform feature extraction from the original MRI. 
Specifically, what was already seen in Fig. 3b, Fig. 4b, 
Fig. 5c, Fig. 6d, Fig. 7c and Fig. 8d, remark that the 
Intensity-Curvature Functional extracts features which 
are seen under a different perspective when compared to 
the information provided with the original MRI.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Additionally, Fig. 7c, Fig. 8c and Fig. 8d serve as 
example of the behavior, shown by the Intensity- 
Curvature Functional images, which emphasizes on the 
depth and the length of the brain sulci in a manner which 
is different from the depth perceived when visually 
inspecting the original MRI.  

In the present research, the emphasis is on the 
collection from the tumor of information which is not 
readily observable through the original MRI. Thus, 
through the use of the Classic-Curvature and the 
Intensity-Curvature Functional, it is possible to extract 
features from the original MRI. The process of feature 

Fig. 9. The original MRI is placed in the left column (Col. A). Three different calculations of the Intensity-Curvature Functional with the trivariate cubic 
Lagrange formula when re-sampling at: (x, y, z) ≡ (0.1mm, 0.1mm, 0.1mm), see images in the second column from right (Col. B); (x, y, z) ≡ (0.5mm, 

0.5mm, 0.5mm), see images in the third column from right (Col. C); and (x, y, z) ≡ (0.9mm, 0.9mm, 0.9mm), see images in the left column (Col. D). All 
of the images are brightness-contrast enhanced. 

Col. A Col. B Col. C Col. D 
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extraction is enhanced because the Classic-Curvature and 
the Intensity-Curvature Functional can be calculated at an 
enormous number of intra-pixel coordinates of the MRI 
images. Each time the two mathematical engineering 
tools are calculated, the signal-image is re-sampled 
through the model function fitted to the signal-image. 
Therefore, the computational intelligence provided with 
re-sampling (which is inherent to the calculation of the 
two mathematical engineering tools) makes it possible the 
tuning of the property of feature extraction from MRI 
images. Thus it is possible the collection of information 
from the tumor, which is complementary to the 
information provided with the original MRI.  

In order to investigate the effect of the change of the 
intra-pixel coordinates where the signal is re-sampled, the 
experiment shown in Fig. 9 was performed using the 
trivariate cubic Lagrange formula. The MRI volume was 
re-sampled at the intra-voxel coordinates: (x, y, z) ≡ 
(0.1mm, 0.1mm, 0.1mm), (x, y, z) ≡ (0.5mm, 0.5mm, 
0.5mm) and (x, y, z) ≡ (0.7mm, 0.7mm, 0.7mm). The 
images in the top row of Fig. 9 generally show that the 
Intensity-Curvature Functional reconstructs the tumor 
structure quite faithfully regardless of the intra-voxel 
coordinates used for re-sampling (see inside the white 
ellipses), although the image re-sampled with (x, y, z) ≡ 
(0.1mm, 0.1mm, 0.1mm) (see the second image from left 
in top row) is slightly more accurate than the other two. 
The Intensity-Curvature Functional seen in the second 
row from the top shows to be very much alike in the 
reconstruction of the MRI (except for the brightness-
contrast enhancement) for all of the three intra-voxels 
coordinates (see the tumor region enclosed in the white 
circle). The images in the bottom row in Fig. 9 show that 
none of the three intra-voxel coordinates, used for re-
sampling and for the calculation of the Intensity-
Curvature Functional, make the reconstruction of the 
tumor structure accurate (see the white arrow). Whereas 
the tumor structure inside the white ellipse in the bottom 
row is satisfactorily reconstructed when using all of the 
re-sampling intra-voxel coordinates.  

To place the research herein presented within the 
context of the literature, it is due to acknowledge the 
interdisciplinary nature of the research. Our research 
intersects with biomedical informatics [13] as well as 
with biomedical image processing [14], and biomedical 
feature extraction from the pathological human brain [15]. 

C. Benefits and Limitations 

The behavior of MRI feature extraction is certainly a 
benefit which originally descends from the process of 
fitting the polynomial function to the digital sequel of 
MRI samples. The mathematical process to obtain the 
Classic-Curvature and the Intensity-Curvature Functional 
is somehow lengthy and needs extra attention because of 
the non-trivial application of calculus and algebra. This 
process can be considered a limitation because it makes 
complex the calculation of the mathematical engineering 
tools. The coding of the math of both Classic-Curvature 
and Intensity-Curvature Functional is also a limitation 
because of the complexity of the math formulae.  

Nevertheless, the most precious advantage of this piece 
of research, which is related to a larger research project 
published recently in [6], is that the feature extraction 
behavior of the Classic-Curvature and the Intensity-
Curvature Functional can contribute to diagnostic 
radiology. The contribution is within the context of the 
analysis of medical images in Magnetic Resonance 
Imaging and it is determined through the herein presented 
computational intelligence approach. 
 

V.  CONCLUSION 

In the study presented in this paper, the characteristics 
of the MRI of the human brain which are given as 
complementary information to the MRI are: (i) the 
contour line of the tumor (see for instance the Intensity-
Curvature Functional image in Fig. 3b), (ii) the pressure 
on the ventricles exercised by the tumor (see for instance 
the Intensity-Curvature Functional image in Fig. 4b), (iii) 
presumed brain vessels shown in the original MRI (see 
Fig. 5b, which is a Classic-Curvature image and Fig. 5c, 
which is an Intensity-Curvature Functional image), (iv) 
liquids of the tumor (see Fig. 6b and Fig. 8b, which are 
Classic-Curvature images, and Fig. 6d and Fig. 8d, which 
are Intensity-Curvature Functional images), and (v) the 
overall structure of the tumor with a shaded region 
enclosing the pathology (see Fig. 7b, which is a Classic-
Curvature image). 
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