
I.J. Information Engineering and Electronic Business, 2014, 1, 69-76
Published Online February 2014 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijieeb.2014.01.08

Copyright © 2014 MECS I.J. Information Engineering and Electronic Business, 2014, 1, 69-76

Class Complexity Metric to Predict

Understandability

Kumar Rajnish

Department of Information Technology, Birla Institute of Technology, Mesra, Ranchi, India

E-mail: krajnish@bitmesra.ac.in

Abstract — This paper presents a new class complexity

metric of an Object-Oriented (OO) program which is

used to predict the understandability of classes. The

propose complexity metric is evaluated theoretically

against Weyuker’s properties to analyze the nature of

metric and empirically evaluated against three small

projects developed by Post Graduate (PG)/Under

Graduate (UG) teams. Least Square Regression Analysis

technique is performed to arrive at the result and find

correlation coefficient of propose metric with the Degree

of Understandability. The result indicates that the

propose metric is a good predictor of understandability

of classes. JHAWK TOOL (Java Code Metrics Tool)

were used to evaluate the parameters values involved in

propose metric and for analyzing the results of projects,

Matlab6.1 and IBM SPSS software were used.

Index Terms — Complexity, Metrics, Object-Oriented,

Classes, Understandability, Methods, Instance variables.

1. Introduction

Program complexity plays an important role in the

amount of time spent on development of the program.

Software metrics are units of measurement, which are

used to characterize software engineering products,

processes and people. By careful use, they can allow us

to identify and quantify improvement and make

meaningful estimates. Developers in large projects use

measurements to help them understand their progress

towards completion. Managers look for measurable

milestones so that they can assess schedule and other

commitments. The metrics gathered from historical data

also provide an estimate of future similar projects.

Software complexity is defined as the degree to which

a system or component has a design or implementation

that is difficult to understand and verify [1] i.e.

complexity of a code is directly depend on the

understandability. All the factors that makes program

difficult to understand are responsible for complexity.

Various OO complexity and quality metrics have been

proposed and their reviews are available in the literature.

Rajnish et al [2] has studied the effect of class complexity

(measured in terms of lines of codes, distinct variables

names and function) on development time of various

C++ classes. Rajnish et al [3] has proposed a complexity

metric which is used to measure the complexity of class

at the design stage. Kulkarni et al [4] presents a case

study of applying design measures to assess software

quality. Sanjay et al [5] applied their proposed metric on

a real project for empirical validation and compared it

with Chidamber and Kemerer metrics suites [6] and their

theoretical, practical and empirical validations and the

comparative study prove the robustness of the measure.

Alshayeb and Li have presented an empirical study of

OO metrics in two processes [7]. They predict that OO

metrics are effective in predicting design efforts and

lines of source code added, changed and deleted in one

case and ineffective in other. Emam, Benlarbi, Goel and

Rai validate the various OO metrics for effects of class

size [8]. This view is however not agreed to by Evanco [9].

Churcher et al [10] show some of the ambiguities

associated with the seemingly simple concept of the

number of methods per class. K. K. Agarwal et al [11]

presented a set metrics which measure the robustness of

the design. Koh et al [12] attempts to review the 12 OO

software metrics proposed in 90s’ by Chidamber and

Kemerer [6] and Li [13]. Arisholm, Briand and Foyen

study various Java classes to empirically evaluate the

effect of dynamic coupling measures with the change

proneness of classes [14]. Chae, Kwon and Bae

investigated the effects of dependent instance variables

on cohesion metrics for object-oriented programs [15].

They also proposed an approach to identify the

dependency relations among instance variables. Liu et al
[16] proposed new quality metrics that measure the

method calling relationships between classes and they

also conducted experiments on five open source systems

to evaluate the effectiveness of the new measurement.

Basilli et al [17] presents the results of study in which

they empirically investigated the suite of OO design

metrics introduced in [6] and their goal is to assess these

metrics as predictors of fault-prone classes and

determine whether they can be used as early quality

indicators. Yacoub et al [18] defined two metrics for

object coupling (Import Object Coupling and Export

Object Coupling) and operational complexity based on

state charts as dynamic complexity metrics. The metrics

are applied to a case study and measurements are used to

compare static and dynamic metrics. Jagdish et al [19]

described an improved hierarchical model for the

assessment of high-level design quality attributes in OO

design. In their model, structural and behavioral design

properties of classes, objects, and their relationships are

70 Class Complexity Metric to Predict Understandability

Copyright © 2014 MECS I.J. Information Engineering and Electronic Business, 2014, 1, 69-76

evaluated using a suite of OO design metrics. Their

model relates design properties such as encapsulation

modularity, coupling and cohesion to high-level quality

attributes such as reusability, flexibility, and complexity

using empirical and anecdotal information. Munson et al
[20] showed that relative complexity gives feedback on

the same complexity domains that many other metrics

do. Thus, developers can save time by choosing one

metric to do the work of many. Mayo et al [21] explained

the automated software quality measures: Interface and

Dynamic metrics. Interface metrics measure the

complexity of communicating modules, whereas

Dynamic metrics measure the software quality as it is

executed. Sandip et al [22-23] presented in his paper to

analytically evaluate against the Weyuker’s property [24]

and empirically validate a proposed inheritance metrics

(against a three versions of the same project) that can be

used to measure the quality (especially focus on the

quality factors ―Reuse‖ and ―Design Complexity‖) of an

OO systems in terms of the using class inheritance tree.

The rest of the paper is organized as follows: Section

2 presents a Weyuker’s properties. Section 3 presents

description of proposed metric and its analysis on data

sets. Section 4 presents Conclusion and Future scope

respectively.

2. Weyuker’s Property

The basic nine properties proposed by Weyuker’s [24]

are listed below. The notations used are as follows: P, Q,

and R denote classes, P+Q denotes combination of

classes P and Q, µ denotes the chosen metrics, µ(P)

denotes the value of the metric for class P, and P≡Q (P

is equivalent to Q) means that two class designs, P and

Q, provide the same functionality. The definition of

combination of two classes is taken here to be same as

suggested by [25], i.e., the combination of two classes

results in another class whose properties (methods and

instance variables) are the union of the properties of the

component classes. Also, ―combination‖ stands for

Weyuker’s notion of ―concatenation‖.

Property 1. Non-coarseness: Given a class P and a

metric µ, another class Q can always be found such that,

µ(P)≠ µ(Q).

Property 2. Granularity: There is a finite number of

cases having same metric value. This property will be

met by any metric measured at the class level.

Property 3. Non-uniqueness (notion of equivalence):

There can exist distinct classes P and Q such that µ(P)=

µ(Q).

Property 4. Design details are important: for two

class designs, P and Q, which provide the same

functionality, it does not imply that the metric vales for

P and Q will be same.

Property 5. Monotonicity: For all classes P and Q the

following must hold: µ(P) ≤ µ(P+Q) and µ(Q) ≤ (P+Q)

where P+Q implies combination of P and Q.

Property 6. Non-equivalence of interaction: ∃P, ∃Q,

∃R such that μ (P) = μ (Q) does not imply that μ(P+R) =

μ (Q+R).

Property 7. Permutation of elements within the item

being measured can change the metric value.

Property 8. When the name of the measured entity

changes, the metric should remain unchanged.

Property 9. Interaction increases complexity.∃P and

∃Q such that: μ (P) + μ (Q) < μ (P + Q)

Weyuker’s list the properties has been criticized by

some researchers; however, it is widely known formal

approach and serves as an important measure to evaluate

metrics. In the above list however, property 2 and 8 will

trivially satisfied by any metric that is defined for a class.

Weyuker’ second property ―granularity‖ only requires

that there be a finite number of cases having the same

metric value. This metric will be met by any metric

measured at the class level. Property 8 will also be

satisfied by all metrics measured at the class level since

they will not be affected by the names of class or the

methods and instance variables. Property 7 requires that

permutation of program statements can change the

metric value. This metric is meaningful in traditional

program design where the ordering of if-then-else blocks

could alter the program logic and hence the metric. In

OOD (Object-Oriented Design) a class is an abstraction

of a real world problem and the ordering of the

statements within the class will have no effect in

eventual execution. Hence, it has been suggested that

property 7 is not appropriate for Object-Oriented Design

(OOD) metrics.

Analytical evaluation is required so as to

mathematically validate the correctness of a measure as

an acceptable metric. For example Properties 1, 2 and 3

namely Non-Coarseness, Granularity, and Non-

Uniqueness are general properties to be satisfied by any

metric. By evaluating the metric against any property

one can analyze the nature of the metric. For example,

property 9 of Weyuker will not normally be satisfied by

any metric for which high values are an indicator of bad

design measured at the class level. In case it does, this

would imply that it is a case of bad composition, and the

classes, if combined, need to be restructured. Having

analytically evaluated a metric, one can proceed to

validate it against data.

Assumptions. Some basic assumptions used in

Section 3 have been taken from Chidamber and Kemerer
[6] regarding the distribution of methods and instance

variables in the discussions for the metric properties.

Assumption 1:

Let Xi= the number of methods in a given class i

Yi= the number of methods called from a given

method i

Zi= the number of instance variables used by a

method i

 Class Complexity Metric to Predict Understandability 71

Copyright © 2014 MECS I.J. Information Engineering and Electronic Business, 2014, 1, 69-76

Xi, Yi, Zi are discrete random variables each

characterized by some general distribution functions.

Further, all the Xis are independent and identically

distributed. The same is true for all the Yis, and Zis. This

suggests that the number of methods and variables

follow a statistical distribution that is not apparent to an

observer of the system. Further, that observer cannot

predict the variables and methods of one class based on

the knowledge of the variables and methods of another

class in the system

Assumption 2:

In general, two classes can have a finite number of

―identical‖ methods in the sense that a combination of

the two classes into one class would result in one class’s

version of the identical methods becoming redundant.

For example, a class ―foo_one‖has a method ―draw‖ that

is responsible for drawing an icon on a screen; another

class ―foo_two‖also has a―draw‖ method. Now a

designer decides to have a single class ―foo‖ and

combines the two classes. Instead of having two

different ―draw‖ methods the designer can decide to just

have one ―draw‖ method.

3. Propose Metric and its Analysis

3.1 Class Complexity Metric (CCM)

The metric CCM is proposed for class level and will

be used in this study for predicting the understandability

of classes. To calculate CCM, Total Cyclomatic

Complexity (TCC) of a class, Number of Methods

(NOMT) of a class, Number of Instance Variables

(INST) declared, Number of External Methods (EXT)

called, Number of Local Methods (LMC) called, and

Total Lines of Code (NLOC) have been taken. The

formula for CCM is:

CCM = k +w1 * TCC + w2 * NOMT + w3 * INST +

w4 * EXT + w5 * LMC + w6 * NLOC

Where, the weights w1, w2, w3 w4, w5, w6 and the

constant k are derived at by least square regression

analysis.

CCM is based upon the following assumptions:

 The number of methods, number of variables, total

cyclomatic complexity, total lines of code, number

of external methods called, number of local

methods called is predictor of understandability

(how much time and effort is required to develop

and maintain the class).

 Method names are counted as distinct variable

names.

 A local variable of same name in two different

blocks is considered to have two distinct variable

names.

 CCM directly relates to understandability of

classes. Higher the value of CCM, less

understandability (more complex) and more mental

exercise is required to design and code the class

and vice-versa with low CCM.

The CCM is directly related to Total Cyclomatic

Complexity (TCC) of a class, Number of Methods

(NOMT) of a class, Number of Instance Variables

(INST) declared, Number of External Methods (EXT)

called, Number of Local Methods (LMC) called, and

Total Lines of Code (NLOC). So, more relation

increases the understandability and a good design should

have less complex classes in nature. So the objective is

to find the better correlation coefficients between the

number of relation and propose complexity measure.

The number of relation is calculated by multiplying the

Total Number of Methods in a Classes (TNMC) and the

Total Number of Instance Variables in a Classes (TNVC)

and named it Degree of Understandability (DU).

Based on the above fact two hypotheses has been

designed to test the results:

HU0: the positive correlation of CCM with DU

increases understandability of class’s i.e. direct relation

with DU which is less complex in nature.

HU1: the negative correlation of CCM with DU

decreases understandability of class’s i.e. inverse

relation with DU which is more complex in nature.

To test these hypotheses correlation coefficient of

CCM with DU has been calculated for understanding the

classes in projects/ or software system.

3.2 Analytical Evaluation of CCM against Weyuker

properties

From assumption 1, the number of methods, number

of instance variables, number of external variables, total

lines of code, and number of local methods called in

class P and another class Q are independent and

identically distributed, this implies that there is a

nonzero probability that there exist Q such that CCM (P)

≠ CCM (Q), therefore Property 1 (Non-coarseness) is

satisfied. Similarly, there is a nonzero probability that

there exist R such that CCM (P) = CCM (R). Therefore

Property3, Non-uniqueness (notion of equivalence) is

satisfied. There is finite number of cases in the system

having the same CCM values for classes. Since CCM is

measured at the class level so Property 2, Granularity is

satisfied. The choice of number of methods, number of

instance variables, number of external variables, total

lines of code, and number of local methods is a design

decision and independent of the functionality of the class,

therefore property 4 design details matter is satisfied.

From assumptions 1, and 2 and let CCM (P) = XP and

CCM (Q) =XQ, then CCM (P+Q) = XP + XQ –y, where y

is the number of common methods, number of common

instance variables, number of common external

variables, cyclomatic complexity of the common method,

total lines of code, and number of local methods

72 Class Complexity Metric to Predict Understandability

Copyright © 2014 MECS I.J. Information Engineering and Electronic Business, 2014, 1, 69-76

between P and Q, so the maximum value of y is min (XP,

XQ). Therefore CCM (P+Q) ≥ XP + XQ–min (XP, XQ). It

follows that CCM (P+Q) ≥ CCM (P) and CCM (P+Q)

≥CCM (Q), thereby satisfying property 5(monotonicity).

Now, let CCM (P) = x, CCM (Q) = x and there exist a

class R such that it has a number of common methods,

number of common instance variables, number of

common external variables, cyclomatic complexity of

the common method, total lines of code, and number of

local methods α in common with Q (as per assumption

1and 2) and μ methods, variables, external variables,

cyclomatic complexity, total lines of code, and number

of local methods in common with P, where α ≠ μ. Let

CCM (R) = r;

CCM (P+R) = x + r – μ

CCM (Q+R) = x + r – α,

Therefore CCM (P+R) ≠CCM (Q+R) and property 6

(non-equivalence of interaction) is satisfied. Property 7

requires that permutation of program statements can

change the metric value. This metric is meaningful in

traditional program design where the ordering of if-then-

else blocks could alter the program logic and hence the

metric. In OOD (Object-Oriented Design) a class is an

abstraction of a real world problem and the ordering of

the statements within the class will have no effect in

eventual execution. Hence, it has been suggested that

property 7 is not appropriate for OOD metrics. Property

8 is satisfied because when the name of the measured

entity changes, the metric should remain unchanged. For

any two classes P and Q, XP + XQ –y< XP + XQ i.e. CCM

(P+Q) < CCM (P) + CCM (Q) for any P and Q.

Therefore, property 9 (Interaction increases complexity)

is not satisfied. Table 1 presents the results of analytical

evaluation of CCM against Weyuker’s Property.

TABLE 1：Analytical Evaluation Results for CCM against

Weyuker’s Properties

3.3 Analysis on Data

This section presents the description of data collection,

algorithm of the proposed work, summary of graphs and

tables, and their interpretation.

3.3.1 Data Collection

This section presents an outline of applied approach.

The variables of interest in this study are: TCC, NOMT,

INST, EXT, LMC, NLOC, which is to be modeled by

CCM. The above-mentioned six values were collected

for classes from three different project categories. In

each project categories the author had given the

responsibility to the team members of each project to

frame out the parameters/variables used in CCM.

The first project is related to “Account

Department”(Named it Set A). This project had been

developed by Well experienced Post Graduate

(PG)/Under Graduate (UG) teams, they had developed

the project in Java Language. The project involves 5

team members and containing 85 Java classes.

The second project is related to “Bio-Technology

Department” (named it Set B). This project had been

developed by PG teams. They have a sound knowledge

of Java Programming. They had developed a small tool

for the Department Research work. The project involves

2 team members and containing 20 Java classes.

The third project is related to ―Corporate

Department” (named it Set C). This project had been

developed by experienced PG teams. This project had

been developed in Java and for faculties for On-Line

Shopping. The project involves 3 team members and

containing 20 Java Classes.

3.3.2 Algorithm of Propose work

This section presents the algorithm of the proposed

work which is represented with the following steps:

1. Propose Quality metric.

2. Identify Quality factors (predicting

understandability of classes in software projects

which is to be used in this study).

3. Collect data of three different categories (Named as

Data Set A, Data Set B, and Data Set C).

4. LOOP: for each data sets perform following

actions:

a) Generate TCC, NOMT, INST, EXT, LMC, and

NLOC values used in CCM using Java Tool

(named JHAWK TOOL (Named JAVA CODE

METRIC)

b) Generate values for weights w1, w2, w3 w4,

w5, w6 and the constant k used in CCM using

Least Square Regression Analysis by

MATLAB6.1 TOOL.

END LOOP;

5. LOOP: for each data sets do the following:

a) Find summary statistics TCC, NOMT, INST,

EXT, LMC, NLOC and DU using IBM SPSS

Software.

END LOOP;

6. LOOP: for each data sets do the following:

a) Find the Correlation Coefficients of CCM with

DU and also find the Correlation Coefficients

Property Number CCM

1 √

2 √

3 √

4 √

5 √

6 √

7 √

8 √

9 ×

√: Metric satisfies the properties

×: Metric does not satisfy the properties

 Class Complexity Metric to Predict Understandability 73

Copyright © 2014 MECS I.J. Information Engineering and Electronic Business, 2014, 1, 69-76

TCC, NOMT, INST, EXT, LMC, and NLOC

with DU using MATLAB6.1 TOOL.

b) Plot graph and analysis of data using IBM

SPSS Software.

END LOOP;

3.3.3 Empirical Data

Multivariate Regression Analysis was applied on all

three data sets and correlation coefficients were

calculated. The summary statistics, correlation

coefficients, and graphs used for CCM for three

different data sets are shown (at the end of this paper in

Appendix) in Table 2, Table 3, Table 4, Table 5, Table 6,

Fig. 1, Fig, 2 and Fig. 3.

3.3.4 Discussion

The CCM has been applied to each class of three

software projects. Total 125 Java classes have given as

input to JHAWK tool to calculate the values of CCM,

TCC, NOMT, INST, EXT, LMC, NLOC and DU for

each data set. Correlation Coefficient approach was used

to validate the performance of the proposed metric for

predicting understandability of classes. The proposed

complexity metric is directly related to TCC, NOMT,

INST, EXT, LMC, NLOC and relation between them.

So, more relation increases the understandability of

classes and a good design should have less complex

classes in nature.

Certain observations made from Table 6. The first six

columns list out the correlation coefficient obtained

when TCC, NOMT, INST, EXT, LMC, NLOC are

independently related with DU. The seven column lists

out the correlation coefficient obtained when all the six

(TCC, NOMT, INST, EXT, LMC, NLOC) are

combined for regression with DU. In all the cases this

column entry has the highest values in each row. In the

first case, the data had been collected from a well-

defined similar group of PG/UG teams (with very

similar programming experiences), and the CCM turned

out to be a better predictor of understandability of

classes. In the second case data had been collected from

novice group of PG teams (with very sound knowledge

of Java), CCM is turned out be good than TCC, NOMT,

INST, EXT, LMC, NLOC as a predictor of DU. In the

last case, since the data came from experienced PG

teams and CCM turned out be a best predictor of DU.

The overall observations found that CCM has a better

direct relation with DU in Data Set A and Data Set C but

with Data Set B it has a direct relation with DU when

combined but less direct relation with DU when

measured individually. So there may be a necessity of

redesign in Data Set B to predict the better

understandability of classes.

4. Conclusion and Future Scope

In this paper, an attempt has been made to define new

Complexity Metric CCM which is used to predict the

understandability of classes in software projects. On

evaluating CCM against a set of standard criteria CCM

is found to possess a number of desirable properties and

suggest some ways in which the OO approach may

differ in terms of desirable or necessary design features

from more traditional approaches. Generally, CCM

satisfy the majority of the properties presented by

Weyuker with one strong exception, Property 9

(Interaction Increases Complexity). Failing to meet

Property 9 implies that a Complexity Metric could

increase rather than reduce if a class is divided into more

classes. In other words complexity can increase when

classes are divided into more classes.

In addition to the proposal and analytical evaluation,

this paper has also presented empirical data on CCM

from three software projects. All projects are developed

in Java. From Table 6, it is found that the CCM is turned

out to the best predictor of understandability of classes

in chosen software projects.

In this study, the CCM is used for predicting the

understandability of classes and through CCM one can

choose to measure the same and complex design.

The future scope includes some fundamental issues:-

 To analyze the nature of proposed metric with

performance indicators such as maintenance effort and

system performance.

 Another interesting study would be together

different complexity metrics at various intermediate

stages of the project. This would provide insight into

how application complexity evolves and how it can be

managed/control through the use of metrics.

References

[1] IEEE Std 1061-1998.,‖Standard for software

Quality Metrics Methodology‖, IEEE Computer

society, 1998.

[2] Rajnish. K and Bhattacherjee. V, ―Complexity of

class and development time: A Study‖, Journal of

theoretical and Applied Information Technology

(JATIT), Asian Research Publication Network

(ARPN), Scopus (Elsevier) Index, Vol. 3, No. 1,

2006, pp. 63-70.

[3] Rajnish. K and Bhattacherjee. V, ―Object-Oriented

Class Complexity Metric-A Case Study‖,

Proceedings of 5th Anuual International

Conference on Information Science Technology

and Management (CISTM) 2020 pennsylvania NW,

Ste 904, Washington DC, publish by the

Information Institute, USA, 2007, pp.36-45.

[4] Kulkarni. L, Kalshetty. R. Y and Arde. V. G,

―Validation of CK metrics for Object-Oriented

design measurement‖, proceedings of third

international conf. on Emerging Trends in

Engineering and Technology, IEEE Computer

Soceity, 2010, pp. 646-651.

[5] Misra. S, Akman. I and Koyuncu. M, ―An

inheritance complexity metric for object-oriented

74 Class Complexity Metric to Predict Understandability

Copyright © 2014 MECS I.J. Information Engineering and Electronic Business, 2014, 1, 69-76

code:A cognitive approach‖, Indian Academy of

Sciences, Vol. 36, Part 3, 2011, pp. 317–337.

[6] Chidamber. R. S and Kemerer. F. C, ‖A Metric

Suite for Object-Oriented Design‖, IEEE

Transaction on Software Engineering, Vol. 20, No.

6, 1994, pp. 476-493.

[7] Alshayeb. M and Li. W, ―An Empirical Validation

of Object – Oriented Metrics in Two Different

Iterative Software Processes‖, IEEE Trans. on

Software Engineering, Vol. 29, No. 11, 2003,

pp.1043 – 1049.

[8] Emam. EL. K, Benlarbi. S, Goel. N and Rai. N. S,

―The Confounding Effect of Class Size on the

Validity of Object – Oriented Metrics‖, IEEE Trans.

Software Eng., Vol. 27, No.7, 2001, pp. 630 – 650.

[9] Evanco. M. W, Comments on ―The Confounding

Effect of Class Size on the Validity of Object-

Oriented Metrics‖, IEEE Trans. on Software

Engineering, Vol. 29, No.7, 2003, pp.670 – 672.

[10] Neville. I. C, Martin. J. S, ―Comment on : A Metric

Suite for Object-Oriented Design‖, IEEE

Transaction on Software Engineering, Vol. 21, No.

3, 1995, pp.263-265.

[11] Agarwal. K. K, Singh. Y, Kaur. A and Malhotra. R,

―Software Design Metrics for Object-Oriented

Design‖, Journal of Object Technology, Vol. 6, No.

1, 2006, pp. 121-138.

[12] Koh. W. T, Selamat. H. M, Ghani. A. A. A, and

Abdullah. R, ―Review of Complexity Metrics for

Object Oriented Software Products‖, IJCSNS

International Journal of Computer Science and

Network Security, VOL.8 No.11, 2008, pp.

317.337.

[13] Li. W, ―Another Metric Suite for Object-Oriented

Programming‖, The Journal of System and

Software, Vol. 44, No. 2, 1998, pp. 155-162.

[14] Arisholm. E, Briand. C. L and Foyen. A, ―Dynamic

Coupling Measures for Object- Oriented Software‖,

IEEE Trans. on Software Engineering, Vol. 30, No.

8, 2004, pp. 491 – 506.

[15] Chae. S. H, Kwon. R. Y and Bae. H. D,

―Improving Cohesion Metrics for Classes by

considering Dependent Instance Variables‖, IEEE

Trans. on Software Engineering, Vol. 30, No.11,

2004, pp. 826 – 832

[16] Liu. D and Xu. S, ―New Quality Metrics for

Object-Oriented programs‖, Proceedings of Eighth

ACIS Int. Conf. on Software Engineering,

Artificial Intelligence, Networking, and parallel/

Distributing Computng, IEEE Computer Soceity,

2007, pp. 870-875.

[17] Basilli. R. V and Melo. W. L, ―A Validation of

Object-Oriented Design Metrics as Quality

indicators‖, IEEE Transaction on Software

Engineering, Vol.22, No. 10, 1996, pp.751-761.

[18] Yacoub. S, Robinson. T and Ammar. H. H,

―Dynamic Merics for Object-Oriented Design‖,

Proceedings of 6th International Conf. on Software

Metrics Symposium, 1999, pp. 50-61.

[19] Bansiya. J and Davis. C. G‖, A Hierarchical Model

for Object-Oriented Design Quality Assessment‖,

IEEE Transaction on Software Engineering, Vol.

28, No. 1, 2002, pp. 4-17.

[20] Munson. C. J and Khoshgoftaar. M. T‖, Measuring

Dynamic program Complexity‖, IEEE Software,

Vol. 9, No. 6, 1992, pp. 48-55.

[21] Mayo. A. K, Wake. S. A and Henry. S. M‖, Static

and Dynamic Software Quality Metric tools‖,

Department of Computer Science, Virginia Tech,

Blacksburg, Technical Report, 1990.

[22] Mal. S and Rajnish. K, ―Applicability of

Weyuker’s Property 9 to Inheritance Metric‖,

International Journal of Computer Application‖,

Foundation of Computer Science, USA, Vol. 66,

No.12, 2013, pp.21-26

[23] Mal. S and Rajnish. K, ― New Quality Inheriatnce

Metrics for Object-Oriented Design‖, International

Journal of Software Engineering and its

Application, SERSC, Scopus (Elsevier), Vol. 7, No.

6, pp. 185-200, November 2013.

[24] Weyuker. J. E, ―Evaluating Software Complexity

Measures‖, IEEE Trans. on Software Engineering,

Vol.14, 1998, pp.1357-1365.

[25] Abreu. B and Melo. W, ―Evaluating the Impact of

OO Design on Software Quality‖, presented at

Third International Software Metrics Symposium,

Berlin, 1996.

Appendix

TABLE 2：Summary Statistics for the Data Set A

 Minimum Maximum Mean Std. Deviation

TCC 1.00 16.00 7.1294 3.18773

NOMT 1.00 10.00 3.1647 1.12172

INST 0.00 34.00 7.7765 6.34218

EXT 6.00 51.00 25.6941 9.65232

LMC 0.00 1.00 0.2353 0.42670

NLOC 30.00 157.00 67.5059 20.85587

DU 0.00 120.00 26.5294 22.57453

 Class Complexity Metric to Predict Understandability 75

Copyright © 2014 MECS I.J. Information Engineering and Electronic Business, 2014, 1, 69-76

Figure 1: Parameters Values used in CCM for the Data Set A

TABLE 3：Summary Statistics for the Data Set B

 Minimum Maximum Mean Std. Deviation

TCC 0.00 59.00 17.30 16.89628

NOMT 0.00 48.00 10.95 11.17080

INST 0.00 12.00 2.20 2.83957

EXT 0.00 43.00 6.70 11.61261

LMC 0.00 8.00 0.90 2.14966

NLOC 7.00 400.00 88.050 100.47910

DU 0.00 60.00 17.150 20.75490

Figure 2: Parameters Values used in CCM for the Data Set B

TABLE 4：Summary Statistics for the Data Set C

 Minimum Maximum Mean Std. Deviation

TCC 1.00 21.00 5.1111 5.77916

NOMT 1.00 15.00 4.3889 4.48709

INST 0.00 17.00 1.8889 4.39102

EXT 0.00 39.00 3.5556 9.31932

LMC 0.00 2.00 0.500 0.85749

NLOC 4.00 172.00 26.6111 42.18048

DU 0.00 204.00 23.0556 54.46043

76 Class Complexity Metric to Predict Understandability

Copyright © 2014 MECS I.J. Information Engineering and Electronic Business, 2014, 1, 69-76

Figure 3: Parameters Values used in CCM for the Data Set C

Table 5：Values of the coefficients for the six independent variables and constant used in CCM from three different data sets by Least Square

Regression Analysis

 W1 W2 W3 W4 W5 W6 k

SET A -1.9865 9.7890 3.2926 -0.4374 17.4461 -0.1164 0

SET B 0.4253 0.6650 5.2092 0.6272 1.5007 -0.1403 0.0007

SET C -6.3444 7.4854 15.2038 1.4431 -2.8707 -0.3579 0

Table 6：Correlation Coefficient with respect to DU for the three different Data Sets

 TCC NOMT INST EXT LMC NLOC CCM

SET A 0.5183 0.5917 0.9006 0.5187 0.2786 0.8513 0.9586

SET B 0.3533 0.3934 0.6701 0.2146 0.2198 0.2112 0.9085

SET C 0.9248 0.8121 0.9950 0.7939 0.7766 0.9567 0.9980

Author Profile

Kumar Rajnish: He is an

Assistant Professor in the

Department ofInformation

Technology at Birla Institute of

Technology, Mesra, Ranchi,

Jharkahnd, India. He received his

PhD in Engineering from Birla

Institute of Technology Mesra,

Ranchi, Jharkhand, India in the

year of 2009. He received his

MCA Degree from Madan Mohan Malaviya

Engineering College, Gorakhpur, State of Uttar Pradesh,

India in the year of 2001. He received his B.Sc

Mathematics (Honours) from Ranchi College Ranchi,

India in the year 1998. He has 28 International and

National Research Publications. His Research area is

Object-Oriented Metrics, Object-Oriented Software

Engineering, Software Quality Metrics, Programming

Languages, and Database System

