
I.J. Information Engineering and Electronic Business, 2014, 1, 32-41
Published Online February 2014 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijieeb.2014.01.04

Copyright © 2014 MECS I.J. Information Engineering and Electronic Business, 2014, 1, 32-41

A Survey on Effective Defect Prevention - 3T

Approach

Priyanka Chandani

JSS Academy of Technical Education, Noida

priyanka.chandani@hotmail.com

Chetna Gupta

Jaypee Institute of Information Technology, Noida

chetnagupta04@gmail.com

Abstract — Defects are most detrimental entities which

deter the smooth operation and deployment of the

software system and can arise in any part of the life

cycle, they are most feared, but still Defect Prevention is

mostly discounted field of software quality. Unattended

defects cause a lot of rework and waste of effort. Hence

only finding the defects is not important, finding the

root cause of the defect is also important which is quite

difficult due to levels of abstraction in terms of people,

process, complexity, environment and other factors.

Through this study various techniques of Defect

classification, prevention and root cause analysis are

analysed. The intent of this paper is to demonstrate the

structured process showing defect prevention flow and

inferring three T‟s (Tracking, Technique and Training)

after analysis.

Index Terms — Defect, Defect Analysis, Defect

Prevention, Orthogonal Defect classification, Root

cause analysis.

1. Introduction

It is better to question than to worry later” holds as

much importance in software development and quality

conformation as in English literature. The illness of

software development can truly be healed by concrete

verification and validation. The requirement breakdown

and analysis from the stakeholders of the engagement is

very important and upon stages of software life cycle,

they develop into a concrete product. Failing to produce

a viable product, can make the customer unhappy and

defeat the objective. So, it is quintessential to capture

problems (defects) in all stages to ensure zero residual

nature of the product and improved quality. Quality

comprises of all characteristics and features of a product

which refers to satisfy a given requirement. It should

conform to specifications, customer satisfaction, and

value of the product, people, service, and processes.

Many companies that produce software have Software

Quality Assurance departments, designed to ensure

software quality where the focus is on Defect Prevention

[1].

A defect is a variance from a desired behaviour,

which affects the quality of the software. Defect

Prevention identifies those defects, correct them and

prevent them from reoccurring. The aim of defect

prevention is to produce good quality products within

the budget and time. We know no software can be built

as Defect Free; defects may be introduced during

specification, design, and coding of the test application.

Hence, defect prevention is an essential part of the

software process quality improvement, which cannot be

compromised [2][3]. Defect analysis and prevention

techniques have been applied successfully in a number

of software development organizations with significant

reductions in errors [4][5][6].

A technique which emphasise on identifying the root

causes of defects and initiate the action to correct them

is Root cause Analysis which looks simple, but is very

deep rooted. Root cause analysis for defects is proved to

be a successful process in defect prevention [7][8][9].

Defects are analysed one by one qualitatively which is

very time consuming and rigorous process. Hence we

need to view them in collections and should be able to

find the causes at the right level. Various classifications

have been developed over the last decades for

improving defect detection or educating developers

[10][11][12]. Orthogonal Defects Classification (ODC)

[12], devised by IBM, is commonly used technique for

classifying defects in the software products. Defects are

identified and analysed for patterns to improve the

quality of the software process. It provides a meaningful

classification of defects into classes that collectively

point to the process that needs attention

[12]. Various

case studies have shown that ODC can improve the

effectiveness and efficiency of development and testing

which is important for quality improvements

[13][14][15][16]. In this paper, an attempt is made to

present a comprehensive view of defect prevention

techniques and analyses them critically by stating the

advantages and limitations of selected approaches and

inferring 3T‟s of Defect Prevention through this study.

The remaining paper is organized as follows: In the

next section, data extraction from different sources

showing distribution of selected papers is presented. An

overview of related work on defect prevention along

with the critical analysis of the techniques is presented

in the third section. The defect Prevention flow and

mailto:priyanka.chandani@hotmail.com

 A Survey on Effective Defect Prevention - 3T Approach 33

Copyright © 2014 MECS I.J. Information Engineering and Electronic Business, 2014, 1, 32-41

three pillars of Defect Prevention along with learnings

from this study are described in fourth and fifth section

respectively and finally a sixth section presents the

conclusion.

2. Data extraction

A systematic literature review is being done after

searching widely on electronic database [17]. A total of

56 papers was founded; 40 were selected, and some

basic information was extracted. In this section,

distribution of papers is shown based on year, source

and technique used.

These papers are distributed in different categories as

shown below in Fig 1 based on technique or approach

used in the paper.

Figure 1: Distribution of selected papers based on technique

Fig 2 shows the distribution of the selected papers by

years and Table 1 shows the publication venues of

selected papers.

Figure 2: Distribution of the selected papers in different years

TABLE 1: Selected papers across different venue

Type Description Total

Journal

IEEE Transactions on Software

Engineering
1

IEEE Software 4

Journal of Systems and

Software
3

IEEE Journal on Selected Areas

in Communications
1

The Journal of Defence

Software Engineering
1

Journal of Information and

Software Technology
1

International Journal of

Computer Science and

Management Studies

1

IBM Systems Journal 1

International Journal of

Computer Applications
1

International Journal of

Advanced Computer Science

and Applications

1

International Journal of

Software Engineering &

Applications

2

International Journal of

Computer Technology and

Application

1

European Journal of scientific

Research
1

International Journal of Future

Computer and Communication
1

World Academy of Science,

Engineering and Technology
1

Confer

ence

India Software Engineering

Conference
1

International Conference on

Environmental Science and

Information application

Technology

1

International Conference on

Information and

Communications Technology

1

 International Conference on

Automated Software

Engineering

1

 International Conference on

Software Maintenance
1

 International conference on

software quality
1

International Conference on

Computer Science and Software

Engineering

1

International Conference on

Quality Software
1

http://www.informatik.uni-trier.de/~ley/db/journals/software/software29.html#LiSCK12
http://www.informatik.uni-trier.de/~ley/db/journals/jss/jss80.html#JaloteMP07
http://www.informatik.uni-trier.de/~ley/db/journals/jss/jss80.html#JaloteMP07

34 A Survey on Effective Defect Prevention - 3T Approach

Copyright © 2014 MECS I.J. Information Engineering and Electronic Business, 2014, 1, 32-41

International Conference on

Applications of Software

Measurement

1

India Software Engineering

Conference
1

International Conference on

Software Engineering
1

International Software Metrics

Symposium
1

Others

International Symposium on

Empirical Software Engineering
1

ACM SIGSOFT Software

Engineering Notes
2

Instrumentation & Measurement

Magazine, IEEE
1

Workshop on Defects in large

software systems
1

Scientific & Academic

Publishing
1

Computing Research Repository 1

3. Related Work

Different analysis strategies to improve software

processes in defect prevention have been studied and

researched upon. Some of them have been discussed

below:

Jalote, Munshi and Probsting [18] discussed When-

Who-How strategy of analysis of defect data to improve

the software quality process. Here the focus is on the

three dimensions- time, technique or process and the

group which finds the defects. Improvement is shown

when these three dimensions are combined together and

applied for the analysis of defect data for one version of

windows. The analysis was done on the component

level, which showed a correlation between early and late

defect density rate and monitored the defect density at

various milestones.

Li, Stalharse, Conradi and Kristiansen [19] worked on

enhancing the Defect Tracking System (DTS) to

improve the quality of the software. The author

examined various defect attributes of different tracking

system used by ten companies and found that different

companies use different defect attributes in DTS, but

they were not complete for software process

improvement. The authors selected two companies and

added some new attributes for these company‟s DTS

like Effort, Fixing types, Triggers, Root cause etc. The

improved DTS provided valuable input to developers

and testers and thereby reducing the time spent on fixing

defects, identifying the root causes, preventing defects

well in advance.

Mittal, Solanki and Saroha [20] mentioned that no

Software can be “Defect free”, after testing defects

should be reported using „Defect tracking system‟ which

can be managed to improve the quality of the software.

This paper focused on defect management process and

the approach for handling the defects which includes

counting and managing the defects, maintaining defect

leakage metrics. Control charts were used to measure

and improve the processes. Various approaches were

discussed to handle the defects like Firefighters,

Reactive and Proactive approach.

Hafiz Ansar Khan [21] proposed a defect

management process model after viewing the major

challenges of ITIL defect management process which is

used by most of the organizations. The author applied

the proposed model in one of the case organization and

found that this model is very easy to use and strengthens

the defect management and review process of the

organization. The proposed model also observes the

defect management from the customer's viewpoint.

Card [22] discussed two approaches to measure and

model software quality throughout the life cycle of the

software. Empirical and analytical approaches were

used to build up defect profile which when studied

makes the quality visible to be managed. These

approaches were applied and modelled in some real time

industry projects, generating defect profile and

analysing the departures from the defect profile early in

the life cycle. This process can provide feedback to the

developers and testers to work on the discrepancies.

Kalinowski, Card and Travassos [7] discussed how to

implement a Defect Causal Analysis (DCA) efficiently.

This paper discussed the readiness of an organization for

DCA. For DCA implementation, Pareto charts and

cause effect diagrams are very helpful to identify the

causes of defects. Indicators that support DCA were also

discussed like number of defects found by size unit, the

mean number of defects found per hour of inspection,

phase input quality, phase output quality which help

identify the efficiency of the DP activities. It was shown

that up to 50 percent of improvement in the defect rates

can be achieved, however, implementation cost varies

from 0.5 to 1.5 percent which is very marginal in

comparison to the gain.

Lehtimen, Mantyla and Vanhanen [23] introduced

lightweight root cause analysis method (ARCA) to

detect the causes and how the corrective actions are

taken. Unlike the normal RCA methods, this one does

not require heavy start-up investment and can be easily

applied in small-medium sized companies, unlike

normal Root Cause Analysis (RCA) methods. The

author evaluated this approach through field studies at

four software companies through feedbacks using

interviews, meetings and query forms. This method is

easy to use, highly adaptable, feasible and looks very

promising for defect prevention.

According to Dalal and Chhillar [8], Root cause

analysis was done for some software failures that

happened in the past and ongoing software projects.

Various RCA methods and processes which help to

reduce the chances of software failure were also

discussed like Cause-Effect Analysis, Events and Causal

Factor Analysis, Fault Tree Analysis, Causal Factor

Charting, Brain Storming and 5 Whys. Based on the

empirical study of root cause analysis of software

failures, it was perceived that lots of software failed at

the time of upgrading the software and due to

 A Survey on Effective Defect Prevention - 3T Approach 35

Copyright © 2014 MECS I.J. Information Engineering and Electronic Business, 2014, 1, 32-41

inadequate system and integration testing [16]. Many

good examples of efforts on causal analysis have been

published [44].

Navid Hashemi Taba and Siew Hock Ow [24]

highlighted some traditional inspections approaches

used for more than a decade which are not effective for

the current processes. A comprehensive software

inspection model was introduced in this paper which

performs defect removal activities as an important task

of inspection. This proposed model suggested a defect

management approach for removing defects iteratively.

Customized evaluations of the process prepare

important information about the effectiveness of the

inspection process. In a real environment, it helps to

detect and remove defects.

Suma and Nair [5] discussed the importance of the

effective defect prevention approach in software

processes highlighting that on an average 15% of

inspection and 30% of testing is required for 99% of

defect elimination. Author highlighted that the

inspection is most valuable and competent technique

[5].

A lot of information was provided on various methods

and practices for defect prevention and defect detection

adopted in five projects.

Ajit Ashok Shenvi [13] worked on presenting a defect

prevention framework using Orthogonal Defect

Classification methodologies. The structured process for

defect prevention mechanism using ODC attributes for

defect classification is discussed along with related

interpretations for causal analysis and planning. The

suitability of this methodology in some real time project

was also presented in the paper.

Trivedi and Pachori [14] discussed that various defect

measurement and defect tracking mechanism are used

for measuring the software quality. In software

development life cycle, 40% or the more of the time is

utilized on defect detection tasks. This paper focused on

the ODC implementation in real world application. It

explained about various defect classification schemes

and how we can adopt ODC in development of software.

This paper mentioned various improvements in software

project after implementing ODC.

According to Sakthi and Baskaran [6], the cost of

finding and fixing defects is one of the most expensive

software development activities, hence better

methodologies have to be applied to defect prevention

process. Five projects were selected, and different types

of defects were first identified, classified using

Orthogonal Defect Classification and analysed for

patterns to improve the quality of software processes.

Defect prevention methods were established for

reducing these patterns of similar defects in future

projects thereby improving the quality of the projects.

LI and HOU [15] described ODC, analysed the

classification of its attributes and effectiveness of

software process by the ODC measure method. This

study helped in understanding how ODC provides a

new software process measurement to improve the

software development process and provides a reasonable

quantitative standard. It is important how to choose the

ODC measure mode corresponding to the different

measure objectives to evaluate the software

development process and software quality.

Bridge [16] showed how ODC can be used to provide

process enhancement feedback to developers also how

to measure the progress of development and to

emphasise improvement activities where the customer is

most impacted. The principals behind ODC were shown

by the results of feasibility studies. ODC forms an

excellent foundation for the development of defect

prevention and quantitative process management

techniques [16].

Wagner [10] summarized the work on defect

classification approaches that have been proposed by

two IT companies IBM and HP. The IBM approach is

Orthogonal Defect classification. In IBM, a defect is

classified based on defect type, source, impact, trigger,

phase found and severity. In HP, defects are classified

across three dimensions – Defect origin; types and

modes [10].

Kumaresh and Bhaskaran [3] proposed defect

framework highlighting the 5 Dimensions (D‟s) of the

defect origin. Each one of the D‟s concentrates on

defects in one particular stage of the software

development Lifecycle like Deficiency in Requirements,

Design Flaws, Defective Coding Process, Delinquency

in Testing and Duration Slippage. Analysis of various

defect types was done and the most prominent defects

were identified. For each one of the defect type, the

reason for such defect was found out, and the Defect

Prevention actions were suggested. The author also

proposed a defect injection metric based on the severity

of the defect instead of defect count. The defect

injection metric value, once calculated, serves as a

standard to make improvement in the software process

development among similar kind of projects.

Langari and Pidduck [25] proposed a new approach

by merging Cleanroom methodologies and formal

methods for software quality. Cleanroom highlights

defect prevention rather than defect removal and Formal

methods use mathematical and logical formalizations to

find defects early in SDLC [25].

The techniques identified (T1–T13) are mapped to

different publications as shown in Table 2. Table 3

summarizes the strength and limitations of various

techniques.

36 A Survey on Effective Defect Prevention - 3T Approach

Copyright © 2014 MECS I.J. Information Engineering and Electronic Business, 2014, 1, 32-41

TABLE 2: Mapping of Techniques with Publications

Technique Publication

(Reference No)

Key Points

No Identified

1.T1 ODC [6],[12],[13],[

14],[15][16],[

21],[26],[27],[

28],[43],[47],[

48]

Defect type, Defect

type distribution,

Defect Triggers,

Principal

Association Table,

Cause Trigger table

2.T2 RCA [7],[9],[21],[2

9]

Defects, causal

analysis

T3 Inspection [5],[30] Case study, Defect

removal efficiency,

Testing,

Comparative

analysis

T4 Comprehe

nsive

Inspection

Model

[24] Inspection, Defect

Plan, Inspection

routines, Evaluation

T5 Defect

Origin,

Types and

Modes

[10] Origin ,Types,

Modes

T6 Defect

Tracking

System

(DTS)

[19],[31],[32] Defect attributes,

SQA, SPI, case

studies, metrics and

report

T7 Defect

Analysis

Feedback

[34] DP team, meetings,

trainings, goals

T8 Lightweig

ht Root

Cause

analysis

(ARCA)

[23] Target problem

detection, root

cause detection,

corrective action

innovation and

documentation of

results , field study

T9 Who-

When-

How

Approach

[18] Time, technique,

team analysis,

component level

analysis

T10 Bug

tracking

and

reliability

assessmen

t system

[35] Bug tracking

system,

Comparative

analysis,

classification

T11 Action

Based

Defect

Preventio

n

[36] Feature subset

selection, sampling

T12 Empirical

and

Analytical

Model

[22] Defect Profile,

Rayleigh dispersion

curve

T13 Cleanroo

m

Methodol

ogy

[25] Cleanroom, Formal

methods

TABLE 3: Strength and limitations of various techniques

T1

Collectively point to

the process that

needs attention. It

classifies the defects

and help deducing a

pattern

Empirical knowledge

is less. Different set

of dimensions and

artifacts.

T2

It analysis the defects

one by one to find

the root cause of the

problem. It is very

deep rooted.

This approach is

qualitative

and labour intensive

T3

Inspection is proved

to be

most successful

technique for defect

prevention and

detection

There can be some

models or tools of

inspection which

could give better

results

T4

This intelligent

model gives a defect

management

approach for

removing defects

It is an intelligent

model however

trainings has to be

given to stakeholders

to be able to use it

correctly

T5

Relationship between

defects and

document types can

be analysed

The triggers in ODC

are not directly

documented (if

compared to ODC)

T6

 DTS provides

valuable input to

developers and

testers and reduces

the time spent on

fixing defects,

finding the root

causes, preventing

defects

Requires lot of

motivation and

training to the users

so that DTS can be

used properly. Other

problems are

incomplete and

consistent data or

mixed data

T7

It uses iterative

development process

where defect data

from one iteration is

used in future

iterations in defect

prevention

Results might not be

as effective with

other process models

 A Survey on Effective Defect Prevention - 3T Approach 37

Copyright © 2014 MECS I.J. Information Engineering and Electronic Business, 2014, 1, 32-41

T8

Unlike the normal

RCA methods, this

one does not require

heavy startup

investment and can

be easily applied in

small-medium sized

companies unlike

normal Root Cause

Analysis (RCA)

methods.

The conclusions are

made based on

personal experience

of the case attendees

which might affect

the results on

comparison between

ARCA and RCA

T9

Three dimensions

combined together

can be applied for

the detailed analysis

of defect data

More work is

required to be done

in this respect to

determine rules of

evaluation

T1

0

It is a automated

bug-tracking tool

which streamlines

the process of

reporting, managing

and fixing issues

This tool can

be incorporated the

visualization and

machine learning

techniques due to

which bug

assignment can be

done automatically

during reporting of

the bug.

T11

This technique helps

in identifying actions

that causes defects

using FSS and

sampling techniques

It is concluded that

patterns exist among

actions causing many

defects. Scope is to

apply sequence

pattern analysis

techniques to

increase the

prediction

performance and

identify pattern

T12

These two

approaches model

and measure the

quality throughout

the SDLC by

building up the

defect profile. It

gives feedback to the

developers and

testers

Analytical model are

useful when

organisation lacks

complete life cycle

defect data or like to

smooth existing data

to provide initial

solution for new

projects without

historical data

T13

This methodology

prevents defects

from happening

rather than removing

them after they have

happened, Quality

improvement, cost

reduction

The role of other

factors such as team

size or CMM level

are needed to be

discovered

4. Defect Prevention Flow

Defect prevention is a quality assurance method for

improving the quality of the software product which

makes it one of the most important activities in any

software project [46]. Defect Prevention is identified as

a level 5 Key Process Area (KPA) in the Capability

Maturity Model (CMM) by the Software Engineering

Institute, which involves analysing defects and take

action to prevent the recurrence of similar type of

defects in the future [49]. Analysis of defects at early

stages reduces time, cost and resources and in the end

enhances the overall productivity.

From the logical viewpoint, the flow of Defect

Prevention can be elaborated as shown in Fig 3

Figure 3: Defect Prevention Flow

The various steps of DP flow are elaborated below:

 Data from past projects, UAT reports, meetings and

inspections are taken, and defects are identified.

 All the defects should be logged through the Defect

logging system regularly and a considerable amount

of information is recorded to facilitate tracking or

resolution [18].

 Defects are classified using some good classification

scheme like Orthogonal Defect Classification (ODC).

ODC attributes extracted from the defects provide an

enormous amount of information from individual

defect [12] and defect type distribution i.e. defect

signature would be generated. If adequate

information is collected on each defect found and

fixed, one can easily exploit ODC-based analysis in

a very short time [37].

 With the use of ODC, it is possible to arrive at

patterns and do Root Cause Analysis (RCA) on them.

RCA plays an important role in finding the root

cause of the problem and initiate action or corrective

measures to eliminate the source of defect [7].

 Apply the learning‟s of the projects as precautionary

ideas in similar projects [38].

38 A Survey on Effective Defect Prevention - 3T Approach

Copyright © 2014 MECS I.J. Information Engineering and Electronic Business, 2014, 1, 32-41

Through the study of various papers, it has been

observed that ODC in conjunction with RCA is quite

advantageous, ODC can alter the economics and

viability of root cause analysis by reducing the time it

takes to perform the work and allow for greater

coverage of the defect space [39]. RCA is a staple diet

for the improvement of software development process

and ODC helps reduce the cost of RCA while increasing

its coverage [40].

Defect Prevention is one ignored part in some of the

projects. In actual practice, DP teams should be

identified, and a kick-off meeting should be held in

starting to raise awareness and identify solutions,

training on DP and causal analysis should be given [34].

DP teams should meet often to identify the problems

and find the root cause of the problems. The aim is to

improve software quality by using readily available data

to decrease defects injected and increase defects

detected which can be done by applying ODC to DP

process [41]. An automated tool like Performance and

Continuous Re-Commissioning Analysis Tool

(PACRAT) is created for implementation of DP and

defect detection activities [33].

5. Pillars of Defect Prevention – T3

Based on the learning‟s from a set of papers, three T‟s

have been identified which are three important pillars

for the improvement of the Defect Prevention approach

as shown in Fig 4.

Figure 4: Pillars of Defect Prevention

Training is identified as one critical point that needs

attention. A proper training is required to all the

stakeholders so that they understand the use of proper

defect tracking and technique of defect prioritization,

classification and prevention. Defect Prevention is

applied everywhere, but the manner of application is

important. Hence adequate training should be given to

everybody involved in projects like tester or developer

or manager about how important Defect Prevention is,

how it can help to reduce the rework when applied

properly.

Tracking of all the defects is important as we want

everybody to get complete and consistent information

about them like the origin of the defect, phase of

detection, priority, defect types etc. Defect tracking

provides valuable information to improve software

processes and streamline the process of reporting,

handling and fixing issues. They should be chosen based

on user‟s requirement and constraint [35]. There are

various defect tracking system, however, more

important is users must be motivated to make the correct

use of defect tracking system by refilling the data after

the defect is re-examined or updated.

Another important point is the use of the proper

defect classification technique that can be applied on the

defect. There are different types of defect classification

techniques like IBM‟s Orthogonal Defect Classification

or HP approach called Defect Origins, Types and Modes.

Stefan Wagner and Huber have summarized these two

classification techniques along with the comparison and

current challenges in this aspect [10][42]. Defect

classification helps in deciding which defect to correct

firstly and which one can be ignored for later correction.

There are lots of case studies which demonstrated the

use of ODC for improving software quality [43]. The

approach is to analyse defects by categorizing them and

creating a distribution chart about the process However,

it has also been found that general defect type

classifications are difficult to use and need to be

developed or modified for specific project domain and

environment [45].

Some of the learnings of this study are also listed

below:

1. Make developers, testers and managers realize the

importance of Defect Prevention.

2. Use simplified but Elaborative Defect Tracking

system.

3. A case study of defect detection and analysis

techniques in previous projects should be given to

stakeholders.

4. One good defect classification technique should be

applied in projects.

6. Conclusion

It is very important to encourage defect preventive

practices in various software projects so as to reduce

defects for improving the quality of software by

reducing the cost, time and rework. This paper gave a

conceptual view of the defect management, defect

prevention, classification and processes used. Through

this study, work done by different authors have been

summarized, and various techniques have been

identified which are critically analysed in this paper.

Through T3 approach, better quality in software projects

can be achieved by focusing more on few aspects which

are often ignored due to lack of time but when taken

seriously can give commendable results.

A structured way of training on proper defect tracking,

defect classification technique and root cause analysis

 A Survey on Effective Defect Prevention - 3T Approach 39

Copyright © 2014 MECS I.J. Information Engineering and Electronic Business, 2014, 1, 32-41

and their implementation in software projects of various

organizations is suggested. The techniques used and the

results obtained can be a boost for people to try ODC,

RCA, inspection with other techniques discussed above

in their own projects to set up a structured process.

Therefore, we propose to invest more effort in tracking

the defects and trying some standardized classification

techniques. Last but not the least, imbibing the users to

use processes as they are easy.

References

[1] Wheeler S and Duggins S. Improving software

quality[C]. ACM Southeast Regional conference,

1998, 300-309.

[2] Li M, Xiaoyuan H and Sontakke A. Defect

Prevention: A General Framework and its

Applications[C]. Proceedings of the IEEE sixth

International Conference on Quality Software,

Beijing, China, Oct. 2006,281-286.

[3] Kumaresh S. and Ramachandran B. Defect

Prevention based on 5 dimensions of Defect

Origin[J]. International Journal of Software

Engineering & Applications (IJSEA),2012,3(4).

[4] Mays R.G. Applications of Defect Prevention in

Software Development[J]. IEEE J. Selected Areas

in Communications,1990,8(2):164–168.

[5] Suma V and Gopalakrishnan Nair T.R. Effective

Defect Prevention Approach in Software Process

for Achieving Better Quality Levels[J].

Proceedings of World Academy of Science,

Engineering and Technology,2008,32

[6] Kumaresh S. and Baskaran R. Defect Analysis and

Prevention For Software Process Quality

Improvement[J]. International Journal of Computer

Applications,2010,8(7):42–47.

[7] Kalinowski M., Card D. and Travassos G.H.

Evidence –Based Guidelines to Defect Causal

Analysis[J]. Software, IEEE,2012,29(4):16-18, doi:

10.1109/MS.2012.72.

[8] Dalal S and Chhillar R.S. Empirical Study of Root

Cause Analysis of Software Failure[C]. ACM

SIGSOFT Software Engineering Notes archive,

July 2013,38(4):1-7.

[9] Leszak, M., Perry D., and Stoll, D. A Case Study

in Root Cause Defect Analysis[C]. Proceedings of

the 22nd International Conference on Software

Engineering, ACM Press, June 2000, 428-437.

[10] Stefan Wagner. Defect Classification and Defect

Type Revisited[A]. Proceedings of the 2008

workshop on Defects in large software systems,

(DEFECTS‟08), ACM Press, 2008.73-83.

[11] Chillarege Ram. Orthogonal Defect

Classification[M]. In M. R. Lyu, editor, Handbook

of Software Reliability Engineering, chapter 9.

IEEE Computer Society Press and McGraw-Hill,

1996.

[12] Chillarege R., Bhandari I.S., Chaar J.K., Halliday

M.J., Moebus D.S., Ray B.K. and Wong M.Y.

Orthogonal Defect Classification-A Concept for

In-Process Measurements[J]. IEEE Transactions

on Software Engineering, 1992, 18(11):943-956.

[13] Shenvi A. Defect Prevention with Orthogonal

Defect Classification[C]. In Proc- ISEC ‟09, Feb

2009,83-88.

[14] Trivedi P. and Pachori S. Modelling and Analysis

of Software Defect Prevention using ODC[J].

International Journal of Advanced Computer

Science and Applications, 2010, 1(3) :75-77

[15] Zhi-bo L, Xue-mei H, Lei Y, Zhu-ping D and Bing

X. Analysis of software Process Effectiveness

Based on Orthogonal Defect Classification[C]. 3rd

International Conference on Environmental

Science and Information application

Technology(ESIAT 2011), Elsevier, 2011, 765-

770.

[16] Bridge N and Miller C. Orthogonal Defect

Classification Using Defect Data to Improve

Software Development[C]. International

conference on software quality, Oct 6-8,

1997,7(0),197-213.

[17] Biolchini J et al. Systematic Review in Software

Engineering[R]. Tech. report ES 679/05-

PESC/COPPE/UFRJ, Federal Univ. of Rio de

Janeiro, 2005.

[18] Jalote P., Munshi R. and Proebsting T.A. The

When-Who-How analysis of defects for improving

the quality control process[J]. Journal of Systems

and Software,2007,80(4):584-589.

[19] Li J, Stålhane T, Conradi R and Kristiansen J.M.W.

Enhancing Defect Tracking Systems to Facilitate

Software Quality Improvement[J]. IEEE Software,

2012, 29(2): 59-66.

[20] Mittal S., Solanki K and Saroha A. menment of

Defects for Improving Software Processes[J].

International Journal of Computer Science and

Management Studies, 2011,11(2):2231-5268.

[21] Khan H.A. Establishing a Defect Management

Process Model for Software Quality

Improvement[J]. International Journal of Future

Computer and Communication, 2013,2(6):585-589.

[22] Card D.N. Managing software quality with

defects[J]. The Journal of Defence Software

Engineering,2003.

[23] Lehtinen, T., Mäntylä, M.V. and Vanhanen, J.

Development and evaluation of a lightweight root

cause analysis method (ARCA method) - Field

studies at four software companies[J]. Journal of

Information and Software Technology,

2011,53(10):1045-1061.

[24] Taba N.H. and Ow S.H. Software Defect

Management Using a Comprehensive Software

Inspection Model[J]. Software Engineering,2012,

2(4):160-164 DOI:10.5923/j.se.20120204.09.

[25] Langari, Z. and Pidduck, A. B. Quality, cleanroom

and formal methods[C]. SIGSOFT Softw Eng.

Notes, May 2005, 30(4) ,1-5. DOI=

http://doi.acm.org/10.1145/1082983.1083302.

[26] Huang L, Ng V, Persing I, Geng R, Bai X, and

Tian J. AutoODC:Automated Generation of

40 A Survey on Effective Defect Prevention - 3T Approach

Copyright © 2014 MECS I.J. Information Engineering and Electronic Business, 2014, 1, 32-41

Orthogonal Defect Classifications[C]. Proceedings

of the 26th IEEE/ACM Int. Conf. on Automated

Software Engineering, Lawrence, KS,

USA,2011,412-415.

[27] Dubey A. Towards adopting ODC in automation

application development projects[C]. In

Proceedings of the 5th India Software Engineering

Conference, New York, USA, 2012,153–156

[28] Basin K and Santhanam P. Managing the

Maintenance of Ported, Outsourced, and Legacy

Software via Orthogonal Defect Classification[C].

In Proceedings of the IEEE International

Conference on Software Maintenance, Washington

DC, USA, 2001, 726. IEEE Computer

Society,2001.

[29] Card D. Defect Causal Analysis Drives Down

Error Rates[J]. IEEE Software,1993,10(4):98–99.

[30] Suma V and Nair T.R.G. Defect Management

Strategies in Software Development[R]. CoRR

abs/1209.5573, 2012.

[31] Potnuri D, and Stringfellow C.V. Analysis of Open

Source Defect Tracking Tools for Use in Defect

Estimation[C]. Software Engineering Research and

Practice, CSREA Press, 2005, 296-301.

[32] Tiejun P, Leina Z and Chengbin F. Defect Tracing

System Based on Orthogonal Defect

Classification[C]. In Proc. International

Conference on Computer Science and Software

Engineering, 2008, 2, 574-577.

[33] Bean E. Defect Prevention and Detection in

Software for Automated Test Equipment[J].

Instrumentation & Measurement Magazine,

IEEE,2008,11(4):16-23.

[34] Jalote P and Agarwal N. Using Defect Analysis

Feedback for Improving Quality and Productivity

in Iterative Software Development[C]. In proc- ITI

3rd International Conference on Information and

Communications Technology, Dec 2007, 703-713.

[35] Singh V.B. and Chaturvedi K.K. Bug Tracking and

Reliability Assessment System (BTRAS)[J].

International Journal of Software Engineering and

Its Applications, 2011,5(4):1-14.

[36] Chang C.P. And Chu C.P. Defect prevention in

software processes: An action-based approach[J].

Journal of Systems and Software,2007, 80(4): 559-

570.

[37] Bassin K.A, Kratschmer T, and Santhanam P.

Evaluating Software Development Objectively[J].

IEEE Software,1998,15(6):66-74.

[38] Sharma A., Hemrajani N., Shiwani S and Dave R.

Defect Prevention Technique in Test Case of

Software Process for Quality Improvement[J].

International Journal of Computer Technology and

Application,2012, 3(1):56-61.

[39] Ram Chillarege. ODC - a 10x for Root Cause

Analysis[A]. Proceedings RAM 2006 Workshop,

Berkeley CA, 2006.

[40] Chillarege R. ODC Measurement and Analysis -

Industry Applications[R]. Technical report,

Chillarege Inc., 2007.

[41] Graham M. Software Defect Prevention using

Orthogonal Defect Prevention[R]. 2005,

http://twin-spin.cs.umn.edu/node/844.

[42] Huber, J. T. A comparison of IBM‟s orthogonal

defect classification to Hewlett Packard‟s defect

origins, types and modes[C]. In Proceedings of

International Conference on Applications of

Software Measurement, San Jose, CA, 2000, 1-17.

[43] Buther M, Murino M. and Kratcher T. Improving

Software Testing using ODC - Three Case

Studies[J]. IBM Systems Journal,2002, 41(1):31-

44.

[44] Leszak M., Perry D., and Stoll D. Classification

and Evaluation of Defects in a Project

Retrospective[J]. Journal of Systems and Software,

Elsevier,2002,61(3):173-187.

[45] Freimut B, Denger C, and Ketterer M. An

Industrial Case Study of Implementing and

Validating Defect Classifcation for Process

Improvement and Quality Management[C]. In

Proc.11th IEEE International Software Metrics

Symposium (METRICS '05), IEEE Computer

Society, Sept 2005,19.

[46] Kavitha D. and Sheshasaayee A. Literature

Review on Defect Management Process[J].

European Journal of scientific Research,2012,

85(3):426 – 431.

[47] http://www.chillarege.com/odc.

[48] http://researcher.watson.ibm.com/researcher/view_

project.php?id=480.

[49] http://www.isixsigma.com/industries/software-

it/software-defect-prevention-nutshell/.

Authors’ Profiles

Chetna Gupta is Assistant Professor

(Senior Grade) at Jaypee Institute of

Information Technology, India. She

obtained her Doctorate in the area of

Software Testing. She also holds a

Masters of Technology and a Bachelor

of Engineering degree in Computer

Science and Engineering. Her areas of interest are

Software Engineering, Requirement Engineering,

Software Testing, Software Project Management, Data

Structures, Data Mining and Web Applications. She has

many publications in international journals and

conferences to her credit.

 A Survey on Effective Defect Prevention - 3T Approach 41

Copyright © 2014 MECS I.J. Information Engineering and Electronic Business, 2014, 1, 32-41

Priyanka Chandani is Assistant

Professor at JSS Academy of

Technical Education, India. She also

holds a Masters of Technology and a

Bachelor of Engineering degree in

Information Technology. She has also

worked at Infosys Technologies and

TechMahindra. She is pursuing her Ph.D from Jaypee

Institute of Information Technology.Her research

interest includes Software Quality, Software Testing and

Requirement Engineering

How to cite this paper: Priyanka Chandani, Chetna Gupta,"A Survey on Effective Defect Prevention - 3T Approach",

IJIEEB, vol.6, no.1, pp.32-41, 2014. DOI: 10.5815/ijieeb.2014.01.04

