
I.J. Information Engineering and Electronic Business, 2014, 1, 1-14
Published Online February 2014 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijieeb.2014.01.01

Copyright © 2014 MECS I.J. Information Engineering and Electronic Business, 2014, 1, 1-14

Design of FPGA based 32-bit Floating Point

Arithmetic Unit and verification of its VHDL

code using MATLAB

Naresh Grover, M.K.Soni

Faculty of Engineering and Technology, Manav Rachna International University, Faridabad, India

grovernr@rediffmail.com, dr_mksoni@hotmail.com

Abstract — Most of the algorithms implemented in

FPGAs used to be fixed-point. Floating-point operations

are useful for computations involving large dynamic

range, but they require significantly more resources than

integer operations. With the current trends in system

requirements and available FPGAs, floating-point

implementations are becoming more common and

designers are increasingly taking advantage of FPGAs

as a platform for floating-point implementations. The

rapid advance in Field-Programmable Gate Array

(FPGA) technology makes such devices increasingly

attractive for implementing floating-point arithmetic.

Compared to Application Specific Integrated Circuits,

FPGAs offer reduced development time and costs.

Moreover, their flexibility enables field upgrade and

adaptation of hardware to run-time conditions. A 32 bit

floating point arithmetic unit with IEEE 754 Standard

has been designed using VHDL code and all operations

of addition, subtraction, multiplication and division are

tested on Xilinx. Thereafter, Simulink model in MAT

lab has been created for verification of VHDL code of

that Floating Point Arithmetic Unit in Modelsim.

Index Terms — Floating Point, Arithmetic Unit, VHDL,

Modelsim, Simulink.

1. Introduction

The floating point operations have found intensive

applications in the various fields for the requirements

for high precious operation due to its great dynamic

range, high precision and easy operation rules. High

attention has been paid on the design and research of the

floating point processing units. With the increasing

requirements for the floating point operations for the

high-speed data signal processing and the scientific

operation, the requirements for the high-speed hardware

floating point arithmetic units have become more and

more exigent. The implementation of the floating point

arithmetic has been very easy and convenient in the

floating point high level languages, but the

implementation of the arithmetic by hardware has been

very difficult. With the development of the very large

scale integration (VLSI) technology, a kind of devices

like Field Programmable Gate Arrays (FPGAs) have

become the best options for implementing floating

hardware arithmetic units because of their high

integration density, low price, high performance and

flexible applications requirements for high precious

operation.

Floating-point implementation on FPGAs has been

the interest of many researchers. The use of custom

floating-point formats in FPGAs has been investigated

in a long series of work [1, 2, 3, 4, 5]. In most of the

cases, these formats are shown to be adequate for some

applications that require significantly less area to

implement than IEEE formats [6] and to run

significantly faster than IEEE formats. Moreover, these

efforts demonstrate that such customized formats enable

significant speedups for certain chosen applications. The

earliest work on IEEE floating-point [7] focused on

single precision although found to be feasible but it was

extremely slow. Eventually, it was demonstrated [8] that

while FPGAs were uncompetitive with CPUs in terms

of peak FLOPs, they could provide competitive

sustained floating-point performance. Since then, a

variety of work [2, 5, 9, 10] has demonstrated the

growing feasibility of IEEE compliant, single precision

floating point arithmetic and other floating-point

formats of approximately same complexity. In [2, 5], the

details of the floating-point format are varied to

optimize performance. The specific issues of

implementing floating-point division in FPGAs have

been studied [10]. Early implementations either

involved multiple FPGAs for implementing IEEE 754

single precision floating-point arithmetic, or they

adopted custom data formats to enable a single-FPGA

solution. To overcome device size restriction,

subsequent single-FPGA implementations of IEEE 754

standard employed serial arithmetic or avoided features,

such as supporting gradual underflow, which are

expensive to implement.

In this paper, a high-speed IEEE754-compliant 32-bit

floating point arithmetic unit designed using VHDL

code has been presented and all operations of addition,

subtraction, multiplication and division got tested on

Xilinx and verified successfully. Thereafter, the new

feature of creating Simulink model using MAT lab for

verification of VHDL code of that 32-bit Floating Point

Arithmetic Unit in Modelsim has been explained. The

s imu la t ion r e su l t s o f add i t ion , sub t r ac t ion ,

multiplication and division in Modelsim wave window

mailto:grovernr@rediffmail.com

2 Design of FPGA based 32-bit Floating Point Arithmetic Unit and verification of its VHDL code

using MATLAB

Copyright © 2014 MECS I.J. Information Engineering and Electronic Business, 2014, 1, 1-14

have been demonstrated.

The rest of the paper is organized as follows. Section

2 presents the general floating point architecture.

Section 3 explains the algorithms used to write VHDL

codes for implementing 32 bit floating point arithmetic

operations: addition/subtraction, multiplication and

division. The Section 4 of the paper details the VHDL

code and behaviour model for all above stated

arithmetic operation. The section 5 explains the design

steps along with experimental method to create

Simulink model in MAT lab for verification of VHDL

code in Modelsim and the results are shown and

discussed in its section 6 while section 7 concludes the

paper with further scope of work.

2. Floating Point Architecture

Floating point numbers are one possible way of

representing real numbers in binary format; the IEEE

754 [11] standard presents two different floating point

formats, Binary interchange format and Decimal

interchange format. This paper focuses only on single

precision normalized binary interchange format. Figure

1 shows the IEEE 754 single precision binary format

representation; it consists of a one bit sign (S), an eight

bit exponent (E), and a twenty three bit fraction (M) or

Mantissa.

32 bit Single Precision Floating Point Numbers IEEE

standard are stored as:
S EEEEEEEE MMMMMMMMMMMMMMMMMMMMMM

 S: Sign – 1 bit

 E: Exponent – 8 bits

 M: Mantissa – 23 bits Fraction

Sign bit
8 bits 23 bits

32 bits

Figure.1: IEEE 754 single precision binary format representation

The value of number V:

If E=255 and F is nonzero, then V= Nan ("Not a

Number")

If E=255 and F is zero and S is 1, then V= - Infinity

If E=255 and F is zero and S is 0, then V= Infinity

If 0<E<255 then V= (-1) **S * 2 ** (E-127) * (1.F)

(exponent range = -127 to +128)

If E=0 and F is nonzero, then V= (-1) **S * 2 ** (-126)

* (0.F) ("un-normalized" values”)

If E=0 and F is zero and S is 1, then V= - 0

If E=0 and M is zero and S is 0, then V = 0

An extra bit is added to the mantissa to form what is

called the significand. If the exponent is greater than 0

and smaller than 255, and there is 1 in the MSB of the

significand then the number is said to be a normalized

number; in this case the real number is represented by (1)

V = (-1s) * 2 (E - Bias) * (1.M) (1)

Where M = m22 2-1 + m21 2-2 + m20 2-3+…+ m1 2-

22+m0 2-23; Bias = 127.

3. Algorithms for Floating Point Arithmetic Unit

The algorithms using flow charts for floating point

addition/subtraction, multiplication and division have

been described in this section, that become the base for

writing VHDL codes for implementation of 32-bit

floating point arithmetic unit.

3.1 Floating Point Addition / Subtraction

The algorithm for floating point addition is explained

through flow chart in Figure 2. While adding the two

floating point numbers, two cases may arise. Case I:

when both the numbers are of same sign i.e. when both

the numbers are either +ve or –ve. In this case MSB of

both the numbers are either 1 or 0. Case II: when both

the numbers are of different sign i.e. when one number

is +ve and other number is –ve. In this case the MSB of

one number is 1 and other is 0.

Case I: - When both numbers are of same sign

Step 1:- Enter two numbers N1 and N2. E1, S1 and E1,

S2 represent exponent and significand of N1 and N2

respectively.

Step 2:- Is E1 or E2 =‟0‟. If yes; set hidden bit of N1 or

N2 is zero. If not; then check if E2 > E1, if yes swap N1

and N2 and if E1 > E2; contents of N1 and N2 need not

to be swapped.

Step 3:- Calculate difference in exponents d=E1-E2. If d

= „0‟ then there is no need of shifting the significand. If

d is more than „0‟ say „y‟ then shift S2 to the right by an

amount „y‟ and fill the left most bits by zero. Shifting is

done with hidden bit.

Step 4:- Amount of shifting i.e. „y‟ is added to exponent

of N2 value. New exponent value of E2= (previous E2)

+ „y‟. Now result is in normalize form because E1 = E2.

Step 5:- Check if N1 and N2 have different sign, if „no‟;

Step 6:- Add the significands of 24 bits each including

hidden bit S=S1+S2.

Step 7:- Check if there is carry out in significand

addition. If yes; then add „1‟ to the exponent value of

either E1 or new E2. After addition, shift the overall

result of significand addition to the right by one by

making MSB of S as „1‟ and dropping LSB of

significand.

Step 8:- If there is no carry out in step 6, then previous

exponent is the real exponent.

Step 9:- Sign of the result i.e. MSB = MSB of either N1

or N2.

 Biased exponent Significand

 Design of FPGA based 32-bit Floating Point Arithmetic Unit and verification of its VHDL code 3

using MATLAB

Copyright © 2014 MECS I.J. Information Engineering and Electronic Business, 2014, 1, 1-14

Step 10:- Assemble result into 32 bit format excluding

24th bit of significand i.e. hidden bit.

Case II: - When both numbers are of different sign

Step 1, 2, 3 & 4 are same as done in case I.

Step 5:- Check if N1 and N2 have different sign, if

„Yes‟;

Step 6:- Take 2‟s complement of S2 and then add it to

S1 i.e. S=S1+ (2‟s complement of S2).

Step 7:- Check if there is carry out in significand

addition. If yes; then discard the carry and also shift the

result to left until there is „1‟ in MSB and also count the

amount of shifting say „z‟.

Step 8:- Subtract „z‟ from exponent value either from E1

or E2. Now the original exponent is E1-„z‟. Also append

the „z‟ amount of zeros at LSB.

Step 9:- If there is no carry out in step 6 then MSB must

be „1‟ and in this case simply replace „S‟ by 2‟s

complement.

Step 10:- Sign of the result i.e. MSB = Sign of the larger

number either MSB of N1or it can be MSB of N2.

Step 11:- Assemble result into 32 bit format excluding

24th bit of significand i.e. hidden bit.

 Yes

 No
 Yes

 Yes No

 Yes No

 Carry Out Carry Out No Carry Out

 No Carry Out

Figure. 2: Flow Chart for floating point Addition/Subtraction

Enter N1 and N2 in

Floating Format

Is E1 or E2=0 Set S23 =0 of N1 or

N2 i.e. hidden bit

Is E1 or E2=0 Swap N1 and N2

Calculate Difference d=E1-E2

Shift S2 of N2 to right by amount ‘d’ and fill left most

bit by Zero’s. Shifting is done by Hidden Bit.

Amount of Shifting i.e. ‘d’ is added to the exponent of N2 .New

exponent of N2 =D+E2 {Expo N1=Expo N2}. Now result is in normalized

form

Are N1 and N2

having different
sign?

Replace S2 of N2 by 2’s

complement
Compute

Sign=Sign of
larger number

Compute

Sign=Sign of N1

or N2

Compute Significand

S=S1+S2

Compute Significand

S=S1+S2

Discard Carry and shift the result to left

until there is ‘1’ at MSB fill least

significant bits by zero. Calculate

amount of shifting say ‘x’

Add 1 to Exponent and

Also Shift overall result

to right dropping LSB

and making MSB ‘1’

Previous

Exponent is the

real Exponent

If MSB is 1, Replace S by

2’s Complement,

otherwise keep S as such
Amount of Shifting is Subtracting from Exponent to produce original

exponent .Exponent of result =N1Expo/N2Expo-‘x’

Assemble Result into 32 bit format

 Start

4 Design of FPGA based 32-bit Floating Point Arithmetic Unit and verification of its VHDL code

using MATLAB

Copyright © 2014 MECS I.J. Information Engineering and Electronic Business, 2014, 1, 1-14

In this algorithm three 8-bit comparators, one 24-bit

and two 8-bit adders, two 8-bit subtractors, two shift

units and one swap unit are required in the design.

First 8-bit comparator is used to compare the

exponent of two numbers. If exponents of two numbers

are equal then there is no need of shifting. Second 8-bit

comparator compares exponent with zero. If the

exponent of any number is zero set the hidden bit of that

number zero. Third comparator is required to check

whether the exponent of number 2 is greater than

number 1. If the exponent of number 2 is greater than

number 1 then the numbers are swapped.

One subtractor is required to compute the difference

between the 8-bit exponents of two numbers. Second

subtractor is used if both the numbers are of different

sign than after addition of the significands of two

numbers if carry appears. This carry is subtracted from

the exponent using 8-bit subtractor.

One 24-bit adder is required to add the 24-bit

significands of two numbers. One 8-bit adder is required

if both the numbers are of same sign than after addition

of the significands of two numbers if carry appears. This

carry is added to the exponent using 8-bit adder. Second

8-bit adder is used to add the amount of shifting to the

exponent of smaller number.

One swap unit is required to swap the numbers if N2

is greater than N1. Swapping is normally done by taking

the third variable. Two shift units are required one is

shift left and second is shift right.

3.2 Floating Point Multiplication

The algorithm for floating point multiplication is

explained through flow chart in Figure 3. Let N1 and N2

are normalized operands represented by S1, M1, E1 and

S2, M2, E2 as their respective sign bit, mantissa

(significand) and exponent. Basically following four

steps are used for floating point multiplication.

1. Multiply signifcands, add exponents, and determine

sign

M=M1*M2

E=E1+E2-Bias

S=S1XORS2

2. Normalize Mantissa M (Shift left or right by 1) and

update exponent E

3. Rounding the result to fit in the available bits

4. Determine exception flags and special values for

overflow and underflow.

 Yes No

 Yes No

 Yes No

 Yes

 No

Figure. 3: Flow Chart for floating point Multiplication

 Start

Enter N1 and N2 in

Floating Format

Add E1 from E2 i.e.

E=E1+E2-Bias

Multiply M1 and M2

i.e. M=M1*M2

Is M=0 Set Exponent E for

zero

 Check if M

overflows

Right Shift M and

Set E=E+1

Left Shift M and

Set E=E-1

Check if M

is

normalized

Check if E

overflows

Set Indication for

overflow

Assemble Result into 32 bit format with final S, M and E

Compute Sign

S=S1 XOR S2

 Design of FPGA based 32-bit Floating Point Arithmetic Unit and verification of its VHDL code 5

using MATLAB

Copyright © 2014 MECS I.J. Information Engineering and Electronic Business, 2014, 1, 1-14

Sign Bit Calculation: The result of multiplication is a

negative sign if one of the multiplied numbers is of a

negative value and that can be obtained by XORing the

sign of two inputs.

Exponent Addition is done through unsigned adder

for adding the exponent of the first input to the exponent

of the second input and after that subtract the Bias (127)

from the addition result (i.e. E1+E2 - Bias). The result

of this stage can be called as intermediate exponent.

Significand Multiplication is done for multiplying the

unsigned significand and placing the decimal point in

the multiplication product. The result of significand

multiplication can be called as intermediate product (IP).

The unsigned significand multiplication is done on 24

bit.

The result of the significand multiplication

(intermediate product) must be normalized to have a

leading „1‟ just to the left of the decimal point (i.e. in

the bit 46 in the intermediate product). Since the inputs

are normalized numbers then the intermediate product

has the leading one at bit 46 or 47. If the leading one is

at bit 46 (i.e. to the left of the decimal point) then the

intermediate product is already a normalized number

and no shift is needed. If the leading one is at bit 47 then

the intermediate product is shifted to the right and the

exponent is incremented by 1.

Overflow/underflow means that the result‟s exponent

is too large/small to be represented in the exponent field.

The exponent of the result must be 8 bits in size, and

must be between 1 and 254 otherwise the value is not a

normalized one .An overflow may occur while adding

the two exponents or during normalization. Overflow

due to exponent addition can be compensated during

subtraction of the bias; resulting in a normal output

value (normal operation). An underflow may occur

while subtracting the bias to form the intermediate

exponent. If the intermediate exponent < 0 then it is an

underflow that can never be compensated; if the

intermediate exponent = 0 then it is an underflow that

may be compensated during normalization by adding 1

to it .When an overflow occurs an overflow flag signal

goes high and the result turns to ±Infinity (sign

determined according to the sign of the floating point

multiplier inputs). When an underflow occurs an

underflow flag signal goes high and the result turns to

±Zero (sign determined according to the sign of the

floating point multiplier inputs).

3.3 Floating Point Division

The algorithm for floating point multiplication is

explained through flow chart in Figure 4. Let N1 and N2

are normalized operands represented by S1, M1, E1 and

S2, M2, E2 as their respective sign bit, mantissa

(significand) and exponent. If let us say we consider

x=N1 and d=N2 and the final result q has been taken as

“x/d”. Again the following four steps are used for

floating point division.

 Yes No

 Yes No

 Yes No

 Yes

 No

Figure. 4: Flow Chart for floating point Division (q = x/d; N1=x and N2=d)

Start

Enter N1 and N2 in Floating

Format

Subtract E2 from E1 i.e.

E=E1-E2

Divide M1 by M2 i.e.

M=M1/M2

Is M=0 Set Exponent E for

zero

 Check if M

overflows

Right Shift M and Set

E=E+1

Left Shift M and

Set E=E-1

Check if M is

normalized

Check if E

overflows

Set Indication for

overflow

Assemble Result q into 32 bit format with final S, M and E

Compute Sign S=S1

XOR S2

6 Design of FPGA based 32-bit Floating Point Arithmetic Unit and verification of its VHDL code

using MATLAB

Copyright © 2014 MECS I.J. Information Engineering and Electronic Business, 2014, 1, 1-14

1. Divide signifcands, subtract exponents, and determine

sign

M=M1/M2

E=E1-E2

S=S1XORS2

2. Normalize Mantissa M (Shift left or right by 1) and

update exponent E

3. Rounding the result to fit in the available bits

4. Determine exception flags and special values

The sign bit calculation, mantissa division, exponent

subtraction (no need of bias subtraction here), rounding

the result to fit in the available bits and normalization is

done in the similar way as has been described for

multiplication.

4. VHDL Code

This section illustrates the main steps of VHDL code

that has been used to implement the 32-bit floating point

arithmetic functions: addition/subtraction, multiplication

and division. It includes the arithmetic structure

followed by behavior model for different arithmetic

functions for 32-bit floating point format following

IEEE 754 standards.

ARITHMETIC UNIT STRUCTURE

entity fp_alu is

port(in1,in2:in std_logic_vector(31 downto 0);

clk:in std_logic;

sel:in std_logic_vector(1 downto 0);

output1:out std_logic_vector(31 downto 0));

end fp_alu;

architecture fp_alu_struct of fp_alu is

component divider is

port(

 clk : in std_logic;

 res : in std_logic;

 GO : in std_logic;

 x : in std_logic_vector(31 downto 0);

 y : in std_logic_vector(31 downto 0);

 z : out std_logic_vector(31 downto 0);

 done : out std_logic;

 overflow : out std_logic

);

 end component;

component fpa_seq is

 port(

 n1,n2:in std_logic_vector(32 downto 0);

 clk:in std_logic;

 sum:out std_logic_vector(32 downto 0)

);

end component;

component fpm is

port(in1,in2:in std_logic_vector(31 downto 0);

out1:out std_logic_vector(31 downto 0)

);

end component;

signal out_fpa: std_logic_vector(32 downto 0);

signal out_fpm,out_div: std_logic_vector(31 downto 0);

signal in1_fpa,in2_fpa: std_logic_vector(32 downto 0);

begin

in1_fpa<=in1&'0';

in2_fpa<=in2&'0';

fpa1:fpa_seq port map(in1_fpa,in2_fpa,clk,out_fpa);

fpm1:fpm port map(in1,in2,out_fpm);

fpd1:divider port map(clk,'0','1',in1,in2,out_div);

process(sel,clk)

begin

if(sel="01")then

output1<=out_fpa(32 downto 1);

elsif(sel="10")then

output1<=out_fpm;

elsif(sel="11")then

output1<=out_div;

end if;

end process;

end fp_alu_struct;

FPA BEHAVIOUR

entity fpa_seq is

port(n1,n2:in std_logic_vector(32 downto 0);

clk:in std_logic;

sum:out std_logic_vector(32 downto 0));

end fpa_seq;

architecture Behavioral of fpa_seq is

 Design of FPGA based 32-bit Floating Point Arithmetic Unit and verification of its VHDL code 7

using MATLAB

Copyright © 2014 MECS I.J. Information Engineering and Electronic Business, 2014, 1, 1-14

--signal f1,f2:std_logic_vector(23 downto

0):="000000000000000000000000";

signal sub_e:std_logic_vector(7 downto

0):="00000000";

--signal addi:std_logic_vector(34 downto 0);

signal c_temp:std_logic:='0';--_vector(34 downto 0);

signal shift_count1:integer:=0;

signal num2_temp2: std_logic_vector(32 downto

0):="000000000000000000000000000000000";

signal s33:std_logic_vector(23 downto

0):="000000000000000000000000";

signal s2_temp :std_logic_vector(23 downto

0):="000000000000000000000000";

signal diff:std_logic_vector(7 downto 0):="00000000";

----------sub calling---

sub(e1,e2,d);

if(d>="00011100")then

sum<=num1;

elsif(d<"00011100")then

shift_count:=conv_integer(d);

shift_count1<=shift_count;

num2_temp2<=num2;

--s2_temp<=s2;

--------------shifter calling-------------------------------------

shift(s2,shift_count,s3);

--s33<=s3;

------------sign bit checking------

 if (num1(32)/=num2(32))then

 s3:=(not(s3)+'1');------2's complement

 adder23(s1,s3,s4,c_out);

 if(c_out='1')then

 shift_left(s4,d_shl,ss4);

 sub(e1,d_shl,ee4);

 sum<=n1(32)& ee4 & ss4;

 else

 if(s4(23)='1')then

 s4:=(not(s4)+'1');------2's complement

 sum<=n1(32)& e1 & ss4;

 end if;

 end if;

 else

 s3:=s3;

 -- end if;

 ---------------------same sign start

---------------adder 8 calling---------------

adder8(e2,d,e3);

sub_e<=e3;

num1_temp:=n1(32)& e1 & s1;

num2_temp:=n2(32)& e3 & s3;

---------------adder 23 calling---------------

adder23(s1,s3,s4,c_out);

--s2_temp<=s4;

c_temp<=c_out;

if(c_out='1')then

--shift1(s4,s_1,s5);

--s2_temp<=s5;

s33<=s4;

s5:='1' & s4(23 downto 1);

s2_temp<=s5;

adder8(e3,"00000001",e4);

e3:=e4;

--sub_e<=e4;

sum<=n1(32)& e3 & s5;

else

sum<=n1(32)& e3 & s4;

end if;

end if;

end if;

end if;----same sign end

end if;

------final result assembling----------

--sum_temp<=n1(32)& e1 & s4;

--sum<=n1(32)& e3 & s4;

end process;

end Behavioral;

FPM BEHAVIOUR

entity fpm is

port(in1,in2:in std_logic_vector(31 downto 0);

8 Design of FPGA based 32-bit Floating Point Arithmetic Unit and verification of its VHDL code

using MATLAB

Copyright © 2014 MECS I.J. Information Engineering and Electronic Business, 2014, 1, 1-14

out1:out std_logic_vector(31 downto 0));

end fpm;

architecture Behavioral of fpm is

procedure adder(a,b:in std_logic_vector(7 downto 0);

 sout : out STD_LOGIC_VECTOR (8 downto

0))is

variable g,p:std_logic_vector(7 downto 0);

variable c:std_logic_vector(8 downto 0);

variable sout1 :STD_LOGIC_VECTOR (7 downto 0);

begin

c(0):='0';

for i in 0 to 7 loop

g(i):= a(i) and b(i);

p(i):= a(i) xor b(i);

end loop;

for i in 0 to 7 loop

c(i+1):=(g(i) or (c(i) and p(i)));

end loop;

for i in 0 to 7 loop

sout1(i):=c(i) xor a(i) xor b(i);

end loop;

sout:=c(8) & sout1;

end adder;

---multiplier-------------

procedure multiplier (a,b : in STD_LOGIC_VECTOR

(23 downto 0);

 y : out STD_LOGIC_VECTOR (47 downto 0))is

variable temp,prod:std_logic_vector(47 downto 0);

begin

temp:="000000000000000000000000"&a;

prod:="000000000000000000000000000000000000000

000000000";

for i in 0 to 23 loop

if b(i)='1' then

prod:=prod+temp;

end if;

temp:=temp(46 downto 0)&'0';

end loop;

y:=prod;

end multiplier;

--------------------------end multipier--------------------------

begin

process(in1,in2)

variable sign_f,sign_in1,sign_in2: std_logic:='0';

variable e1,e2: std_logic_vector(7 downto

0):="00000000";

variable add_expo:std_logic_vector(8 downto

0):="000000000";

variable m1,m2: std_logic_vector(23 downto

0):="000000000000000000000000";

variable mantisa_round: std_logic_vector(22 downto

0):="00000000000000000000000";

variable prod:std_logic_vector(47 downto

0):="000

0000000";

variable mul_mantisa :std_logic_vector(47 downto

0):="000

0000000";

variable bias:std_logic_vector(8 downto

0):="001111111";

variable bias_sub:std_logic_vector(7 downto

0):="00000000";

variable inc_bias:std_logic_vector(8 downto

0):="000000000";

variable bias_round:std_logic_vector(8 downto

0):="000000000";

begin

sign calculation

sign_in1:=in1(31);

sign_in2:=in2(31);

sign_f:=sign_in1 xor sign_in2;

FPD BEHAVIOUR

entity divider is

port(

 clk : in std_logic;

 res : in std_logic;

 GO : in std_logic;

 x : in std_logic_vector(31 downto 0);

 y : in std_logic_vector(31 downto 0);

 z : out std_logic_vector(31 downto 0);

 done : out std_logic;

 Design of FPGA based 32-bit Floating Point Arithmetic Unit and verification of its VHDL code 9

using MATLAB

Copyright © 2014 MECS I.J. Information Engineering and Electronic Business, 2014, 1, 1-14

 overflow : out std_logic

);

end divider;

architecture design of divider is

 signal x_reg : std_logic_vector(31 downto 0);

 signal y_reg : std_logic_vector(31 downto 0);

 signal x_mantissa : std_logic_vector(23 downto 0);

 signal y_mantissa : std_logic_vector(23 downto 0);

 signal z_mantissa : std_logic_vector(23 downto 0);

 signal x_exponent : std_logic_vector(7 downto 0);

 signal y_exponent : std_logic_vector(7 downto 0);

 signal z_exponent : std_logic_vector(7 downto 0);

 signal x_sign : std_logic;

 signal y_sign : std_logic;

 signal z_sign : std_logic;

 signal sign : std_logic;

 signal SC : integer range 0 to 26;

 signal exp : std_logic_vector(9 downto 0);

 signal EA : std_logic_vector(24 downto 0);

 signal B : std_logic_vector(23 downto 0);

 signal Q : std_logic_vector(24 downto 0);

 type states is (reset, idle, s0, s1, s2, s3, s4);

 signal state : states;

begin

 x_mantissa <= '1' & x_reg(22 downto 0);

 x_exponent <= x_reg(30 downto 23);

 x_sign <= x_reg(31);

 y_mantissa <= '1' & y_reg(22 downto 0);

 y_exponent <= y_reg(30 downto 23);

 y_sign <= y_reg(31);

 process(clk)

 begin

 if clk'event and clk = '1' then

 if res = '1' then

 state <= reset;

 exp <= (others => '0');

 sign <= '0';

 x_reg <= (others => '0');

 y_reg <= (others => '0');

 z_sign <= '0';

 z_mantissa <= (others => '0');

 z_exponent <= (others => '0');

 EA <= (others => '0');

 Q <= (others => '0');

 B <= (others => '0');

 overflow <= '0';

 done <= '0';

 else

 case state is

 when reset => state <= idle;

 when idle =>

 if GO = '1' then

 state <= s0;

 x_reg <= x;

 y_reg <= y;

 end if;

 when s0 => state <= s1;

 overflow <= '0';

 SC <= 25;

 done <= '0';

 sign <= x_sign xor y_sign;

 EA <= '0' & x_mantissa;

 B <= y_mantissa;

 Q <= (others => '0');

 exp <= ("00" & x_exponent) + not ("00"

& y_exponent) + 1 + "0001111111";

 when s1 => if (y_mantissa = x"800000" and

y_exponent = x"00") then

 overflow <= '1';

 z_sign <= sign;

 z_mantissa <= (others => '0');

 z_exponent <= (others => '1');

 done <= '1';

 state <= idle;

elsif exp(9) = '1' or exp(7 downto 0) = x"00" or

(x_exponent = x"00" and x_mantissa = x"00") or

(y_exponent = x"FF" and y_mantissa = x"00") then

 z_sign <= sign;

 z_mantissa <= (others => '0');

 z_exponent <= (others => '0');

 done <= '1';

10 Design of FPGA based 32-bit Floating Point Arithmetic Unit and verification of its VHDL code

using MATLAB

Copyright © 2014 MECS I.J. Information Engineering and Electronic Business, 2014, 1, 1-14

 state <= idle;

 else

 EA <= EA + ('0' & not B) + 1;

 state <= s2;

 end if;

 when s2 =>

 if EA(24) = '1' then

 Q(0) <= '1';

 else

 Q(0) <= '0';

 EA <= EA + B;

 end if;

 SC <= SC - 1;

 state <= s3;

 when s3 => if SC = 0 then

 if Q(24) = '0' then

 Q <= Q (23 downto 0) & '0';

 exp <= exp - 1;

 end if;

 state <= s4;

 else

 EA <= EA(23 downto 0) & Q(24);

 Q <= Q(23 downto 0) & '0';

 state <= s1;

 end if;

 when s4 => if exp = x"00" then

 z_sign <= sign;

 z_mantissa <= (others => '0');

 z_exponent <= (others => '0');

 elsif exp(9 downto 8) = "01" then

 z_sign <= sign;

 z_mantissa <= (others => '0');

 z_exponent <= (others => '1');

 else

 z_sign <= sign;

 z_mantissa <= Q(24 downto 1);

 z_exponent <= exp(7 downto 0);

 end if;

 done <= '1';

 state <= idle;

 end case;

 end if;

 end if;

 end process;

z <= z_sign & z_exponent & z_mantissa(22 downto 0);

end design;

The VHDL code written has been tested and verified

on Xilinx ISE 8.1i for all operation. The design

utilization summary has been shown in Figure 5.

Figure. 5: Design Utilization Summary of Floating Point Arithmetic Unit on FPGA

 Design of FPGA based 32-bit Floating Point Arithmetic Unit and verification of its VHDL code 11

using MATLAB

Copyright © 2014 MECS I.J. Information Engineering and Electronic Business, 2014, 1, 1-14

5. Generation and verification of HDL code using

MATLAB

Generation and verification of HDL code using

MATLAB requires compatible versions of MATLAB

(Simulink) and HDL Simulator „Modelsim‟ to be loaded

on the same system [13, 14, 15]. The basic design steps

to create Simulink model for verification of VHDL code

in Modelsim HDL Simulator is shown in the flow chart

of Fig. 6.

Figure. 6: Design steps to create Simulink model for verification of

VHDL code in Modelsim

The Simulink Model to generate and verify Floating

Point arithmetic created is shown in Figure 7. Input 1

and Input 2 are the two 32 bit floating point inputs to the

model and „Select‟ is set to „01‟ for Adder, „11‟ for

Divider and „10‟ for Multiplier. It also has a scope to

view the output. A sub-system is created to launch the

Modelsim Simulator from Simulink as shown in Fig. 8.

Figure. 7: Simulink model to generate and verify Floating Point

arithmetic

Figure. 8: Simulink sub-system to launch HDL Simulator

6. RESULTS

Double clicking the „Launch HDL Simulator‟ in the

Simulink model loads the test bench for simulation. The

ModelSim Simulator opens a display window for

monitoring the simulation as the test bench runs. The

wave window in Figure 9 shows the simulation of two

exponential inputs and Select set to „01‟for „adder‟

result as HDL waveform. Figure 10 shows the

simulation of two decimal inputs for „adder‟. Figure 11

and 12 show the simulation of two decimal inputs for

„divider‟. Figure 13 and 14 show the simulation of two

decimal inputs for „multiplier‟.

12 Design of FPGA based 32-bit Floating Point Arithmetic Unit and verification of its VHDL code

using MATLAB

Copyright © 2014 MECS I.J. Information Engineering and Electronic Business, 2014, 1, 1-14

Figure. 9: Simulation result of decimal inputs 1.1 & 1.1 for „adder‟ in

Modelsim wave window

Figure. 10: Simulation result of decimal inputs 2.5 & 4.75 for „adder‟

in Modelsim wave window

Figure. 11: Simulation result of decimal inputs 1.1 & 1.1 for „divider‟

in Modelsim wave window

Figure. 12: Simulation result of decimal inputs 2.5 & 4.75 for „divider‟

in Modelsim wave window

Figure. 13: Simulation result of decimal inputs 1.1 & 1.1 for

„multiplier‟ in Modelsim wave window

Figure. 14: Simulation result of decimal inputs for 2.5 & 4.75

„multiplier‟ in Modelsim wave window

 Design of FPGA based 32-bit Floating Point Arithmetic Unit and verification of its VHDL code 13

using MATLAB

Copyright © 2014 MECS I.J. Information Engineering and Electronic Business, 2014, 1, 1-14

Table-I below shows the input output details of the Floating point arithmetic architecture designed and linked using

Simulink and Modelsim.

Table I

Wave Select Input 1 Input 2 Output

Figure 9 01 32‟h3F8CCCCD 32‟h3F8CCCCD 32‟h404CCCCD

Figure 10 01 32‟h40200000 32‟h40980000 32‟h41440000

Figure 11 11 32‟h3F8CCCCD 32‟h3F8CCCCD 32‟h3F06BCA1

Figure 12 11 32‟h40200000 32‟h40980000 32‟h3F800000

Figure 13 10 32‟h3F8CCCCD 32‟h3F8CCCCD 32‟h3F9AE148

Figure 14 10 32‟h40200000 32‟h40980000 32‟h413E0000

7. Conclusion and Future Scope of Work

The VHDL code written for complete 32-bit floating

point arithmetic unit has been implemented and tested

on Xilinx. A process described to create Simulink model

in MAT lab for verification of VHDL code in Modelsim

HDL Simulator has been used on the same VHDL code

and results were found in order. Once the Simulink

model has been created using MAT lab for VHDL code,

the same can be optimized in MAT lab and the VHDL

code can be regenerated with the optimized results and

tested on Xilinx to see the improvement in the

parameters.

References

[1] N. Shirazi, A. Walters, and P. Athanas,

“Quantitative analysis of floating point arithmetic

on fpga based custom computing machines,” in

Proceedings of the IEEE Symposium on FPGAs

for Custom Computing Machines, pp. 155–162,

1995.

[2] P. Belanovic and M. Leeser, “A library of

parameterized floating-point modules and their

use,”in Proceedings of the International

Conference on Field Programmable Logic and

Applications, 2002.

[3] J. Dido, N. Geraudie, L. Loiseau, O. Payeur, Y.

Savaria, and D. Poirier, “A flexible floating-point

format for optimizing data-paths and operators in

fpga based dsps,” in Proceedings of the ACM

International Symposium on Field Programmable

Gate Arrays, (Monterrey, CA), February 2002.

[4] A. A. Gaar, W. Luk, P. Y. Cheung, N. Shirazi, and

J. Hwang, “Automating customisation of floating-

point designs,” in Proceedings of the International

Conference on Field Programmable Logic and

Applications, 2002.

[5] J. Liang, R. Tessier, and O. Mencer, “Floating

point unit generation and evaluation for fpgas,” in

Proceedings of the IEEE Symposium on Field-

Programmable Custom Computing Machines,

(Napa Valley, CA), pp. 185–194, April 2003.

[6] IEEE Standards Board, “IEEE standard for binary

floating-point arithmetic,” Tech. Rep. ANSI/IEEE

Std. 754-1985, The Institute of Electrical and

Electronics Engineers, New York, 1985.

[7] B.Fagin and C. Renard, “Field programmable gate

arrays and floating point arithmetic,” IEEE

Transactions on VLSI, vol. 2, no. 3, pp. 365–367,

1994.

[8] W. B. Ligon, S. P. McMillan, G. Monn, F. Stivers,

K. Schoonover, and K. D. Underwood, “A re-

evaluation of the praticality of floating-point on

FPGAs,” in Proceedings of the IEEE Symposium

on FPGAs for Custom Computing Machines,

(Napa Valley, CA), pp. 206–215, April 1998.

[9] Z. Luo and M. Martonosi, “Accelerating pipelined

integer and floating-point accumulations in

configurable hardware with delayed addition

techniques,” IEEE Transactions on Computers, vol.

49, no. 3, pp. 208–218, 2000.

[10] X. Wang and B. E. Nelson, “Tradeoffs of

designing floating-point division and square root

on virtex fpgas,” in Proceedings of the IEEE

Symposium on Field-Programmable Custom

Computing Machines, (Napa Valley, CA), pp.

195–203, April 2003.

[11] IEEE 754-2008, IEEE Standard for Floating-Point

Arithmetic, 2008.

[12] Simulink HDL Coder 1; User‟s Guide; 2006-2010

by the MathWorks, Inc.

[13] Hikmat N. Abdullah and Hussein A. Hadi “Design

and Implementation of FPGA Based Software

Defined Radio Using Simulink HDL Coder”.

Engineering and Technology Journal, Iraq, ISSN

1681-6900 01/2010; Vol.28 (No.23):pp.6750-6767.

[14] B. K. Mishra, S. Save , R. Mane. A frame work for

model based designing of analog circuits using

Simulink. ICWET '11 Proceedings of the

International Conference & Workshop on

Emerging Trends in Technology. Pages 1225-1228;

http://www.researchgate.net/researcher/2005572085_Hikmat_N_Abdullah_and_Hussein_A_Hadi/
http://dl.acm.org/author_page.cfm?id=81416604155&coll=DL&dl=ACM&trk=0&cfid=311977209&cftoken=56120389
http://dl.acm.org/author_page.cfm?id=81456633757&coll=DL&dl=ACM&trk=0&cfid=311977209&cftoken=56120389
http://dl.acm.org/author_page.cfm?id=81485655580&coll=DL&dl=ACM&trk=0&cfid=311977209&cftoken=56120389
http://www.icwet.co.cc/

14 Design of FPGA based 32-bit Floating Point Arithmetic Unit and verification of its VHDL code

using MATLAB

Copyright © 2014 MECS I.J. Information Engineering and Electronic Business, 2014, 1, 1-14

ACM New York, NY, USA ©2011 ISBN: 978-1-

4503-0449-8.

[15] Alejandro A. Valenzuela, Hikmat N. Abdullah. A

Joint Matlab/FPGA Design of AM Receiver for

Teaching Purposes. Electromagnetics and Network

Theory and their Microwave Technology

Applications , 2011, pp 189-199.

Naresh Grover did his B.Sc (Engg.) in

1984 and M.Tech in Electronics and

Communication Engineering in 1998

from REC Kurukshetra (Now NIT

Kurukshetra). He has a rich experience

of 29 years in academics. He has

authored two books on

Microprocessors and is a co-author for a book on

Electronic Components and Materials. His core area of

interest is Microprocessors and Digital System Design.

Presently he is doing his research work in the area of

FPGA based digital system designs.

Dr. M. K Soni did his B.Sc (Engg.) in

1972 and M.Sc (Engg.) in 1975 from

REC Kurukshetra (Now NIT

Kurukshetra) and thereafter completed

his Ph.D from REC Kurukshetra (in

collaboration with IIT Delhi) in 1988.

He has a total 40 years of rich

experience into Academics. His area of interest is

microprocessor based control systems and digital

system design. He has more than 100 research papers in

the International and National Journals to his credit.

Presently he is Executive Director & Dean, Faculty of

Engineering and Technology, Manav Rachna

International University, Faridabad.

http://www.acm.org/publications
http://link.springer.com/search?facet-author=%22Alejandro+A.+Valenzuela%22
http://link.springer.com/search?facet-author=%22Hikmat+N.+Abdullah%22
http://link.springer.com/book/10.1007/978-3-642-18375-1
http://link.springer.com/book/10.1007/978-3-642-18375-1
http://link.springer.com/book/10.1007/978-3-642-18375-1

